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INTRODUCTION

Catalysis by enzymes is a critical step in many biologi-
cal processes. Numerous biotechnological applications also 
rely on enzymes, many of which have been engineered to 
improve their kinetics or stability (1). Given the ubiquitous 
role of enzymes in biology and biotechnology, enzyme ki-
netics is an important topic that is commonly addressed in 
undergraduate science coursework. Unfortunately, enzyme 
kinetics is often a challenging subject for students (2). Hands-
on laboratory exercises provide students an opportunity 
to work with enzymes and visualize an enzyme-catalyzed 
reaction. Laboratory exercises further allow students to 
collect and interpret kinetic data that can provide context 
to understand kinetic parameters. With these goals in mind, 
we describe a laboratory exercise for students to measure 
kinetics of restriction enzymes. 

Beginning in the 1950s, restriction enzymes played a 
transformative role in advancing molecular biology research 
and biotechnology by enabling the construction of recom-
binant DNA (3). Here, we describe a laboratory exercise 
where students measure restriction enzyme kinetics to 
couple skills in DNA technology and enzyme kinetics. The 
exercise offers an alternative to colorimetric enzyme assays 
previously described for undergraduate laboratories (4–6). 
Unlike other enzyme assays, our lesson does not require 
a spectrophotometer. Instead, our lesson accommodates 
laboratories that have access to a thermocycler and DNA 
gel electrophoresis equipment. Additional laboratory tech-
niques used in the exercise include restriction digest, gel 
electrophoresis, and image analysis.

Through this exercise, students will consider the op-
portunities of enzyme engineering by comparing the kinetics 

of a restriction enzyme and an engineered version of the 
same enzyme. Early work to quantify restriction enzyme 
kinetics measured radioactivity from radio-labeled DNA 
excised from agarose gels (7), which is not well-suited for 
undergraduate laboratories. Newer methods to quantify 
enzyme functions have used DNA substrates with fluores-
cent tags (8, 9), which are advantageous compared with 
semi-quantitative total DNA stains. Here, we employ a fluo-
rescent tag strategy to monitor digestion of a fluorescently-
labeled PCR product by gel electrophoresis. The lab exercise 
can be completed in a single two-hour session. Students 
measure the kinetics of BsaI and BsaI-HFv2 (engineered 
BsaI) by monitoring the digestion of a fluorescently labeled 
PCR product. The exercise has the advantage of producing 
visual data, allowing students to view the disappearance of 
substrate (full-length PCR product) and the appearance of 
product (cleaved PCR product) in the agarose gel. DNA gel 
images can be quantified using the freely available software 
ImageJ (10) to calculate enzyme kinetic parameters for the 
standard and engineered enzyme.

PROCEDURE

Materials and equipment

A detailed materials list for instructors is included in 
Appendix 1. Student instructions to complete the laboratory 
exercise are included in Appendix 2. Equipment required 
to run the laboratory exercise include a thermocycler, 
microcentrifuge, gel imager, water bath or heat block, 
micropipettes, Nanodrop (or other DNA quantification 
method), and DNA gel electrophoresis apparatus. 

Instructor preparation

In advance of the laboratory session, instructors prepare 
FAM-labeled PCR products by performing a PCR on pUC19 
using primers designed to amplify a ~1-kb region that con-
tains a BsaI restriction site (Table 1). The forward primer is 
synthesized with a FAM group at the 5´ end. The resulting 
PCR products have a single FAM tag at the 5´ end. The PCR 
products are then purified using a PCR purification kit.
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Laboratory session

Students are tasked with setting up restriction digest 
time courses of the FAM-labeled PCR products using both 
the standard BsaI restriction enzyme and the engineered 
version of the enzyme (BsaI-HFv2). Reactions are started 
at staggered times and halted simultaneously by the addi-
tion of a stop solution that contains EDTA, glycerol, and a 
loading dye. The reactions can then be loaded directly onto 
an agarose gel for electrophoresis. PCR product digested 
with BsaI yields fragments of 131 and 944 base pairs (Fig. 1).

Post-lab exercises

After data collection, students can quantify DNA bands 
using ImageJ (10). DNA bands can be selected using the 
rectangle tool and quantified by the ImageJ function Analyze 
Gels. Using the known amount of DNA in the undigested 
control (500 ng), students can calculate the fraction of PCR 
product (substrate) at each timepoint. From this data, stu-
dents can calculate product formation and reaction velocity, 
which can be fit to an integrated Michaelis-Menten equation 
(Appendix 3), using their own code or our provided webtool 
to determine the Km and maximum reaction velocity (Vmax) 
of both the native and engineered enzymes (Fig. 2).

Modifications and extensions

To introduce the concept of non-specific restriction 
enzyme cleavage (star activity), instructors can prepare 
an additional PCR product from a pUC19 plasmid with a 
mutation in the BsaI recognition site (pUC19-ΔBsaI). In 
pUC19-ΔBsaI, the bla gene (conferring ampicillin resistance) 
contains a silent mutation in the codon for glycine 239 

(“GGG” to “GGT”), removing the BsaI site (plasmid avail-
able upon request). Students can perform a digest on this 
product as a control to verify the absence of star activity 
(Fig. 3). Additional options for tailoring this activity to the 
specific needs of your curriculum include:

• Student preparation of PCR products
• Variation of experimental conditions: buffer, tem-

perature, etc.
• Creation of models of enzyme activity using soft-

ware such as MATLAB SimBiology to compare with 
experimental results

Safety issues

Work for this laboratory exercise should be performed 
at biosafety level 1 (BSL1). Instructors should refer to the 
ASM BSL1 guidelines for laboratory space requirements, 
personal protection requirements, and standard laboratory 
practices. Students should be instructed on safe use of DNA 
electrophoresis apparatus to avoid electrical hazards. Stu-
dents should also be instructed on appropriate use of the 
DNA gel imager. Care should be exercised with the total 
DNA stain and DNA gel to avoid contact with the skin or 
eyes. Students should follow manufacturer safety instruc-
tions when using all reagents.

CONCLUSION

Here we describe a relatively short and inexpensive 
enzyme kinetics laboratory exercise that gives students 
a hands-on experience working with restriction enzymes 
and kinetic data. The experiment yields data that are easily 
visualized and combines teaching enzyme kinetics with in-
struction in the techniques of restriction digest and DNA gel 
electrophoresis. Students also gain experience using image 
quantification software (ImageJ) to process the data. This 
exercise is appropriate for undergraduate lab courses that 
teach enzyme kinetics and DNA technology. This exercise 
may be of particular interest to students who are inter-
ested in enzyme engineering or biotechnology companies 
that generate these reagents. Variations or extensions to 
this activity could include testing buffers, temperatures, or 
other parameters.

SUPPLEMENTAL MATERIALS

Appendix 1: Instructor preparation protocol
Appendix 2: Student protocol
Appendix 3: Supplementary methods
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FIGURE 1. DNA gel electrophoresis of BsaI and BsaI-HFv2 time 
course. 

TABLE 1. 
Primers used to generate FAM-labeled pUC19 PCR products. 

Primer Sequence Tm (°C)

Forward 5´-/FAM/actctagcttcccggcaacaat-3´ 58.7

Reverse 5´-gccagcaaaaggccaggaac-3´ 59.8

https://imagej.nih.gov/ij/
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FIGURE 2. Best-fit velocity vs. substrate plots of BsaI and BsaI-HFv2 enzymes.

FIGURE 3. DNA gel electrophoresis of optional exercise to test 
BsaI-HFv2 for star activity.


