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Abstract: Effective, robust, and automatic tools for brain tumor segmentation are needed for the ex-
traction of information useful in treatment planning. Recently, convolutional neural networks have
shown remarkable performance in the identification of tumor regions in magnetic resonance (MR)
images. Context-aware artificial intelligence is an emerging concept for the development of deep
learning applications for computer-aided medical image analysis. A large portion of the current
research is devoted to the development of new network architectures to improve segmentation
accuracy by using context-aware mechanisms. In this work, it is investigated whether or not the ad-
dition of contextual information from the brain anatomy in the form of white matter (WM), gray
matter (GM), and cerebrospinal fluid (CSF) masks and probability maps improves U-Net-based brain
tumor segmentation. The BraTS2020 dataset was used to train and test two standard 3D U-Net
(nnU-Net) models that, in addition to the conventional MR image modalities, used the anatomical
contextual information as extra channels in the form of binary masks (CIM) or probability maps
(CIP). For comparison, a baseline model (BLM) that only used the conventional MR image modalities
was also trained. The impact of adding contextual information was investigated in terms of overall
segmentation accuracy, model training time, domain generalization, and compensation for fewer
MR modalities available for each subject. Median (mean) Dice scores of 90.2 (81.9), 90.2 (81.9),
and 90.0 (82.1) were obtained on the official BraTS2020 validation dataset (125 subjects) for BLM,
CIM, and CIP, respectively. Results show that there is no statistically significant difference when
comparing Dice scores between the baseline model and the contextual information models (p > 0.05),
even when comparing performances for high and low grade tumors independently. In a few low
grade cases where improvement was seen, the number of false positives was reduced. Moreover, no
improvements were found when considering model training time or domain generalization. Only
in the case of compensation for fewer MR modalities available for each subject did the addition
of anatomical contextual information significantly improve (p < 0.05) the segmentation of the whole
tumor. In conclusion, there is no overall significant improvement in segmentation performance
when using anatomical contextual information in the form of either binary WM, GM, and CSF masks
or probability maps as extra channels.

Keywords: automatic segmentation; artificial intelligence; 3D U-Net; anatomical contextual information;
high grade glioma; low grade glioma

1. Introduction

Generally, patients diagnosed with brain tumor undergo radical treatment which can
include a combination of surgical tumor resection, radiotherapy, and chemotherapy [1].
In case of surgery, a major factor that influences patient survival and postoperative morbid-
ity is the extent of the resection [1,2]. Treatment planning depends extensively on diagnostic
radiology images for the identification of the tumor, key information for balancing the ex-
tent of the treatment target with the collateral effects.
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MR imaging modalities, such as T1-weighted (T1w), T1-weighted with post-contrast
gadolinium enhancement (T1Gd), T2-weighted (T2w), and T2 fluid attenuated inversion
recovery (FLAIR), are commonly used for the identification of the tumor [3]. Reliable tools
for the extraction of relevant information from the MR images are needed. For this, manual
annotation of brain tumors is commonly practiced in clinical routine [4]; however, this is
a time consuming and labor-intensive task. Moreover, manual annotation is not objective,
with poor agreement between specialists [5]. Automatic methods could overcome these
limitations, providing a faster and objective identification of the tumor sub-regions.

Automatic segmentation of brain tumor structures in MR images is challenging and
has attracted a great research interest. Among the proposed methods [6], convolutional
neural networks (CNNs) have shown state-of-the-art performance, ranking first in the mul-
timodal Brain Tumor Image Segmentation Benchmark (BraTS) challenge during recent
years [7]. Given the automatic feature extraction of CNNs [8], the majority of the research
is focused on designing network architectures which provide better accuracy for the seg-
mentation task. One of the most popular CNN architectures is U-Net [9], which introduced
skip connections between the layers in the network. A plethora of U-Net-like architectures
have since then been developed, including, among others, laborious skip connections
strategies [10] and attention mechanisms [11]. However, Isensee et al. [12], who obtained
top performance using a well-trained U-Net, showed that improving segmentation per-
formance is not only a matter of adjusting the network architecture. The choice of loss
function, training strategy, augmentation, and post-processing showed to have a large
impact on the segmentation performance.

An emerging topic in artificial intelligence applications, including computer-aided
medical interventions, is context-awareness that will allow algorithms to use the informa-
tion from the surrounding and perform segmentation of images considering the anatomy
context [13] and, thus, potentially improve the outcome. The latest literature describes
different approaches for context-aware deep learning including auto-context strategies,
changing the model architecture, and/or providing additional contextual information
during training. Examples of auto-context strategies used to improve model segmentation
performance can be seen in References [14,15]. In particular, Reference [15] implemented
auto-context in their 3D symmetric fully convolutional neural network by combining
multi modal MR images with 3D Haar features with the purpose of improving brain
tumor segmentation.

A number of attempts have been made to evaluate the impact of the introduction
of context-aware blocks in the model architecture on brain tumor segmentation [16–20].
For example, Pei et al. [19] used a context-aware deep neural network which thanks to a con-
text encoding module between the encoder and the decoder part of the network, helped
in overcoming the class imbalance problem that challenges brain tumor segmentation.
However, such an implementation does not allow a comparison between the model accu-
racies with and without the context encoding module; thus, the contribution of context
information cannot be assessed.

Another approach for achieving context-awareness is to provide the network with
more information [21–24]. Wachinger et al. [21] included brain spectral coordinates informa-
tion while training a patch-based deep CNN for brain anatomy segmentation. The authors
argued that patches lose context information when propagating through the network, with
possible confusion due to the symmetry of the brain. During training, each patch was
supplemented with location information obtained from a spectral-based parameterization
of the brain volume. Interestingly, the additional information was provided intermediately
in the network, concatenating the context information to the feature maps of the initial con-
volutional layers. In two studies, Shen et al. [22,23] instead added four channels to the input
of their fully convolutional network in addition to the four conventional MR modalities.
The additional information consisted of symmetry maps computed on all the MR modali-
ties, describing the asymmetry between the brain hemispheres introduced by the tumor.
Kao et al. [24] included brain parcellation information during the training of a 3D U-Net
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as means of location information. In their work, the authors registered the MNI152 1 mm
brain parcellation atlas [25] to each BraTS subject, obtaining a mapping of each voxel into
one of the defined 69 brain structures.

The aim of this study is to expand this line of thought and investigate if using anatom-
ical contextual information as additional input channels can improve brain tumor segmen-
tation performance considering four aspects: (1) segmentation accuracy when training
on multimodal MR images, (2) model training time, (3) compensation for fewer MR modal-
ities available for each subject, and (4) domain generalization. All four aspects are studied
also with respect to low grade glioma (LGG) and high grade glioma (HGG) cases inde-
pendently. Anatomical contextual information is defined in this study as white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF) masks or probability maps obtained
automatically using an automatic segmentation tool.

2. Materials and Methods
2.1. Dataset

The BraTS2020 dataset was used in this work [7,26,27], which contains 369 preop-
erative multimodal (T1w, T1Gd, T2w, and T2-FLAIR) 3D MR images, from 19 different
centers, of both HGG (n = 293) and LGG (n = 79). Manual annotations of three tumor
sub-regions for each case are provided with the dataset identifying the necrotic (NCR)
and the non-enhancing tumor core (NET), the enhancing tumor (ET) and the peritumoral
edema tissue (ED). The combination of the above annotations, namely the tumor core
(TC = NCR ∪ NET ∪ ET), the ET, and the whole tumor (WT = TC ∪ ED), are targets
of the segmentation task. A complete description of the BraTS2020 dataset is available in
Reference [7]. Only the BraTS2020 dataset was used in this study, since it is a standardized
and widely used dataset that allows comparison between methods and literature.

2.2. Anatomical Contextual Information

Contextual information in the form of binary WM, GM, and CSF masks and probabil-
ity maps was obtained using FMRIB’s automated segmentation tool (FAST) [28] applied
on the T1w MR volumes, each with normalized and zero-centered intensity. The differ-
ence between the FAST masks obtained from the raw T1w and the intensity normalized
and zero-centered T1w volumes was minor. Of the total 369 subjects, 92% showed less
than 10% difference in voxel classification (WM, GM, or CSF). The intensity normalized
and zero-centered volumes were used instead of the raw data, since a preliminary inves-
tigation of the proposed method indicated that segmentation quality was lower when
using contextual information from raw T1w data compared to when it was obtained from
the intensity normalized and zero-centered volumes. As Tudorascu et al. described [29],
methods that use spatial priors during the brain anatomy segmentation, such as the meth-
ods in the Statistical Parametric Mapping (SPM) [30] or FreeSurfer [31] softwares, may
perform poorly on diseased brains that contain deformations. Brain tumors can induce
substantial deformation of the brain structures, making the intensity-based FAST tool more
suitable for obtaining the contextual information used in this study, even if it is not specifi-
cately designed for patients with tumors. An initial qualitative investigation on obtaining
the anatomical segmentation through SPM showed that WM, GM, and CSF masks and
probability maps lacked detail and were distorted. Given the qualitatively assessed higher
quality of the soft tissue masks, and that no spatial priors are used during the anatomical
segmentation, FAST was used in this study.

2.3. Model

Figure 1 shows an overview of the methodology, where the nnU-Net deep learning
framework [32] was used. There are two reasons for this choice: (1) nnU-Net’s repeated
success in the BraTS challenges in the recent years shows the reliability of this framework,
which could be difficult to achieve with an in-house model, and (2) this allows repro-
ducibility of the presented investigation. nnU-Net is built upon the 3D U-Net architecture
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and automatically the tunes network hyperparameters based on the training dataset and
hardware available. Among others, the framework tunes the number of convolutional
layers, input patch size and batch size [32]. In this study, the 3D full resolution U-Net
configuration was adopted, and four NVIDIA Tesla V100 GPUs (32 GB memory) were used
for the training. During training, the sum of Dice and cross-entropy loss was minimized
using stochastic gradient descent with Nesterov momentum (µ = 0.99). The number
of training epochs was automatically set to 1000 by nnU-Net, without any early stopping
strategies. Each epoch consisted of 250 mini-batches.
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Figure 1. Schematic of the proposed method showing the segmentation for one subject when using all four conventional
MR modalities (T1w = T1-weighted, T1Gd = T1-weighted with post-contrast gadolinium enhancement, T2w = T2-weighted,
and FLAIR = T2 fluid attenuated inversion recovery) and the 3D U-Net-based deep learning model. By applying FMRIB’s
automated segmentation tool (FAST) to the intensity normalized and zero-centered T1w volumes, the contextual information
is obtained as white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) masks. The red patch in the contextual
masks shows where the tumor is located. In this region, the contextual masks are distorted. The final segmentation,
obtained as an ensemble of three cross-validation (CV) folds and provides regions of tumor core (TC), enhancing tumor
(ET), and edema (ED), shown here in green, red, and blue, respectively. BLM is the baseline model, and CIM and CIP are
the contextual information models using binary masks and probability maps, respectively.

2.4. Evaluation and Statistical Methods

To investigate if the addition of contextual information has an impact on glioma
segmentation performance, three models were trained that differed in the use or not
of the contextual information: a baseline model (BLM) with input channels chosen among
the four conventional MR modalities provided by BraTS, and two contextual information
models both with three additional channels compared to BLM to accommodate the extra
information obtained from FAST. One contextual information model used binary WM, GM,
and CSF masks (CIM), while the other model used the WM, GM, and CSF probability maps
(CIP). A 3-fold cross validation scheme was used to train each setting described below.
After training, the segmentation of the test subjects was obtained as an ensemble of the pre-
dictions of the three models trained through cross validation. Dice score [26] and 95%
Hausdorff distance (HD) [26] on the segmentation targets were obtained through the au-
tomatic validation system, on both the official BraTS2020 validation dataset (125 cases)
and an independent test dataset (36 cases), described in Section 2.5. The non-parametric
Wilcoxon signed-rank test was used to test the null hypothesis of no difference between
the baseline model and the contextual information models, at a significance level of 5%. Sta-
tistical analysis was performed in IBM® SPSS® (Version 27.0, Armonk, NY, USA, IBM Corp).

2.5. Multimodal MR Model Training

To study the effect of anatomical contextual information on segmentation performance,
all four conventional MR modalities were used as input to the three models, with CIM
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and CIP additionally using the anatomical contextual information, as described above.
In addition to the official BraTS2020 validation dataset, 36 subjects containing an equal
number of HGGs and LGGs were randomly selected from the training dataset as the in-
dependent test dataset, with the remaining 333 subjects used for training. The choice
of an independent test dataset with control over the tumor grades allows us to investigate
the effect that anatomical contextual information has on the segmentation of LGGs and
HGGs independently. Moreover, to understand the impact of contextual information
on the model training time, the validation loss curves saved by nnU-Net were analyzed
a posteriori for these models. Training was considered finished when the validation loss
did not improve over 50 epochs.

2.6. Compensation for Fewer MR Modalities

To explore if anatomical contextual information could compensate for the missing
information when only one MR modality is used as input, the three models were trained
and tested, similarly as in Section 2.5, with only T1Gd provided instead of four MR images
per subject. T1Gd was selected, among the other MR modalities, given that (1) it provides
contrast of the tumor core region compared to the surrounding healthy tissue [7] and
(2) because T1w is already used by FAST to obtain the anatomical contextual information.

2.7. Domain Generalization

Finally, to investigate if the addition of contextual information improves domain
generalization, the three models were trained on BraTS cases from a single institute and
tested on data from a variety of institutes. In particular, a total of 69 (35 LGGs and
34 HGGs), among the 369 cases, were identified to originate from one of the 19 institutes
that contributed to the BraTS2020 dataset. Identification of the institutes was possible using
the information from References [7,27] and the BraTS name mapping information. Models
were trained using all conventional MR modalities, and the 69 cases were excluded from
the independent test dataset.

3. Results

An example of contextual information obtained using FAST can be seen in Figure 2,
where the cross-section of CSF, GM, and WM masks are shown for two subjects. By visually
inspecting the FAST results, the soft tissue segmentations are descriptive of the brain
WM, GM, and CSF structures, with the masks and probability maps being distorted only
in the regions where the tumor is located or proximal to it.

3.1. Segmentation Accuracy for Multimodal MR Model Training

An example of segmentation results in an axial slice for one of the independent test
samples for BLM, CIM, and CIP models when using all the available MR modalities is
shown in Figure 3. Performance of the three models on the official validation dataset
(125 subjects) is shown as boxplots in Figure 4, where Dice scores and 95% HD are reported
for all segmentation targets. Dice scores’ median values (mean) across target regions
were 90.15 (81.85), 90.17 (81.87), and 90.04 (82.06), for BLM, CIM, and CIP, respectively.
Table 1 summarizes the median Dice scores and and 95% HD obtained on the independent
test dataset for LGG and HGG cases separately, showing that HGGs are overall better
segmented than LGGs. When comparing CIM and CIP to BLM across the different tumor
regions, no statistically significant difference (p > 0.05) in Dice scores was found when
analyzing the results from both the independent test dataset and the official BraTS2020
validation set. Moreover, no significant difference (p > 0.05) was observed when comparing
the effect of contextual information in segmenting LGG and HGG cases separately, with
HGG showing slightly lower p-values. When looking at the cases that showed at least
5% improvement in mean Dice score when using anatomical contextual information, it
could be seen that the enhancing tumor region was better segmented. Among the subjects
in the independent test dataset, all of those with improved mean Dice score (5.6% of the total
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subjects) were LGGs, with the contextual information models avoiding false positives
for the enhancing tumor region. Table 2 summarizes mean Dice scores across tumor regions
for studies that implemented context-awareness by means of auto-context, architectural
changes, or additional contextual information. The mean Dice scores obtained in this study
are in the same range as results previously reported in literature. Note that the disparity
in segmentation performance of the result presented here compared to Reference [32] is
due to the fact that, in this work, only the 3D full resolution U-Net configuration was used,
instead of a combination of 2D U-Net, 3D low resolution, and 3D full resolution U-Net,
that can be trained and ensembled using the nnU-Net framework, at the cost of a longer
training time.

a

b

CSF GM WM

CSF GM WM

Figure 2. Examples of contextual information obtained using FMRIB’s automated segmentation tool
are shown for two cases in an axial slice with the tumor annotation overlay in red. From left to right,
cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) masks. (a) A case where the soft
tissue masks are highly distorted; (b) a case where masks are only distorted in the tumor region.

Ground truth BLM CIM CIP

ED

TC

ET

Figure 3. Segmentation results obtained for one of the independent test subjects and for the three
models (BLM = baseline model, CIM = contextual information model using binary masks, and CIP
using probability maps) are shown as colored labels overlaid on a T1-weighted axial slice. Tumor
core (TC), enhancing tumor (ET), and edema (ED) are shown in green, red, and blue, respectively.
Dice scores for BLM, CIM, and CIP for the presented test case are 92.54, 92.53, and 92.33, respectively.
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Figure 4. Boxplot of Dice scores and 95% Hausdorff distance (HD) of different models trained
on multimodal MR images computed for the official BraTS2020 validation dataset (125 subjects).
Boxplots show median and range (with box showing 25% and 75% quantiles) for each model
(BLM = baseline model, CIM = contextual information model using binary masks, and CIP using
probability maps) and segmentation target (ET = enhancing tumor, TC = tumor core, and WT = whole
tumor). The statistical analysis showed no significant difference (p > 0.05) when comparing CIM and
CIP with BLM.

Table 1. Median Dice scores and 95% Hausdorff distance (HD) across target regions (ET = enhancing tumor, TC = tumor
core, and WT = whole tumor) for the different models (BLM = baseline model, CIM = contextual information model using
binary masks, and CIP using probability maps) trained on multimodal MR images. Results are shown for low grade glioma
(LGG) and high grade glioma (HGG) cases independently computed on the independent dataset (36 subjects). There was
no significant difference (p > 0.05) when comparing CIM and CIP to BLM for neither of LGG and HGG cases. The results
in bold correspond to the best performing model in each tissue region.

Grade Model
Median Dice Score Median 95% HD

[Min, Max] [Min, Max]
TC ET WT TC ET WT

LGG
(18 cases)

BLM 79.96 36.72 93.28 7.21 39.66 3.00
[0.00, 98.39] [0.00, 100.00] [0.00, 97.09] [1.00, 373.13] [0.00, 373.13] [1.00, 373.13]

CIM 81.95 44.87 93.51 6.98 25.18 3.00
[0.00, 98.38] [0.00, 100.00] [0.00, 96.98] [1.00, 373.13] [0.00, 373.13] [1.41, 373.13]

CIP 82.27 51.27 93.22 7.64 23.17 3.08
[0.00, 80.00] [0.00, 100.00] [10.08, 97.18] [1.00, 373.13] [0.00, 373.13] [1.00, 18.49]

HGG
(18 cases)

BLM 94.83 89.22 92.79 1.41 1.41 2.00
[65.76, 97.56] [75.54, 96.57] [86.64, 97.19] [1.00, 21.47] [1.00, 3.00] [1.00, 7.87]

CIM 94.80 89.16 92.94 1.57 1.41 1.87
[64.22, 97.37] [74.74, 96.17] [86.90, 97.17] [1.00, 22.03] [1.00, 3.00] [1.00, 7.87]

CIP 94.54 89.12 92.74 1.57 1.41 1.87
[67.68, 97.48] [74.21, 96.55] [86.96, 97.27] [1.00, 14.87] [1.00, 3.00] [1.00, 7.55]
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Table 2. Mean Dice scores reported by similar studies using context-aware methods. ∗ identifies
the method ranking first in BraTS2020 (not using context-awareness mechanisms). 1 obtained via
official BraTS test dataset, 2 obtained via official BraTS validation datasets, 3 obtained from a randomly
selected subset of BraTS training data. ET = enhancing tumor, TC = tumor core, and WT = whole tumor,
and BLM = baseline model, CIM = contextual information model using binary masks, and CIP using
probability maps. The results in bold correspond to the best performing model in each tissue region.

Model Dataset Mean Dice Score Claimed Improvement
Using Context AwarenessTC ET WT

Isensee et al. [33] ∗ BraTS2020 1 85.95 82.03 88.95 no context-aware
mechanism used

Liu et al. [15] BraTS2017 3 84.00 78.00 89.00 comparison between
models with and without
context-aware mechanism

not available

Liu et al. [18] BraTS2019 2 85.10 75.90 88.50
Ahmad et al. [16] BraTS2020 1 84.67 79.10 89.12

Chandra et al. [17] BraTS2018 1 73.33 61.82 82.99
Pei et al. [19] BraTS2019/20 3 83.50 82.10 89.50

Shen et al. [23] BraTS2013 3 71.80 72.50 88.70 2–3% (no p-value)
Shen et al. [22] BraTS2015 1 82.00 75.00 87.00 1.3% (p-value < 0.01)
Kao et al. [24] BraTS2018 1 79.30 74.90 87.50 1–2% (no p-value)
Le et al. [20] BraTS2018 2 88.88 81.41 90.95 2% (no p-value)

BLM
BraTS2020 3

(36 cases)

81.80 67.20 90.80
noneCIM 81.90 77.00 90.10

CIP 81.80 70.40 90.50

BLM
BraTS2020 2

(125 cases)

81.60 73.41 90.54
noneCIM 81.61 73.43 90.58

CIP 81.44 74.05 90.69

3.2. Model Training Time for Multimodal MR Model Training

From the a posteriori analysis of the validation loss curves, the baseline model trained
12 and 5 h (46 and 9 epochs) faster than CIM and CIP, respectively, when looking at
the average values across the three folds. Average training times and epochs for the three
models are summarized in Table 3.

Table 3. Average training epochs and time across folds for the different models (BLM = baseline
model, CIM = contextual information model using binary masks, and CIP using probability maps).

Model Average Training Time [hh:mm:ss] Epochs [250 Mini-Batches Each]

BLM 8:15:11 79
CIM 20:02:39 140
CIP 12:58:57 103

3.3. Compensation for Fewer MR Modalities

Segmentation performance results on the BraTS2020 validation set (125 subjects)
for BLM, CIM, and CIP when trained using only T1Gd as MR modality are summarized
in Figure 5. Dice score values for TC and ET regions are similar when compared to
the models trained on all the four MR modalities. The whole tumor region segmentation,
on the other hand, shows a decrease in performance that can be attributed to the lack
of the contrast in the T1Gd between edema region and surrounding tissue, that is present
in FLAIR.

When comparing the models trained only on T1Gd on the BraTS validation dataset,
the Dice score for the whole tumor region is significantly improved (p < 0.05) for both
contextual information models compared to the baseline model (also after Bonferroni
correction for multiple comparisons). Considering the results for LGG and HGG cases
separately computed on the independent test dataset (36 subjects), no significant difference



Diagnostics 2021, 11, 1159 9 of 15

could be found between the models, not even with respect to the whole tumor region.
Median Dice and 95% HD for the independent test set are summarized in Table 4.
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CIM-T1Gd
CIP-T1Gd

Figure 5. Boxplot of Dice scores and 95% Hausdorff distance (HD) of different models (BLM = base-
line model, CIM = contextual information model using binary masks, and CIP using probability
maps) trained using only T1-weighted with post-gadolinium enhancement (T1Gd) as single MR
modality computed for the official BraTS2020 validation dataset (125 subjects). For comparison,
the performance of BLM trained on data from all institutes is presented (blue box). Boxplots show
median and range (with box showing 25% and 75% quantiles) for each model and segmentation
target (ET = enhancing tumor, TC = tumor core, and WT = whole tumor). By comparing CIM and
CIP with the BLM, Dice scores of the WT region show a statistically significant difference (p < 0.05).

Table 4. Median Dice scores and 95% Hausdorff distance (HD) across target regions (ET = enhancing tumor, TC = tumor
core, and WT = whole tumor) for the different models (BLM = baseline model, CIM = contextual information model using
binary masks, and CIP using probability maps) trained using only T1-weighted with post-gadolinium enhancement as MR
modality. Values are shown for low grade glioma (LGG) and high grade glioma (HGG) cases from the independent test
dataset. There was no significant difference (p > 0.05) for neither of LGG and HGG cases when comparing CIM and CIP
with BLM. The results in bold correspond to the best performing model in each tissue region.

Grade Model
Median Dice Score Median 95% HD

[Min, Max] [Min, Max]
TC ET WT TC ET WT

LGG
(18 cases)

BLM 79.99 61.08 86.65 9.25 176.67 86.01
[0.00, 98.06] [0.00, 100.00] [0.00, 95,34] [1.00, 373.13] [0.00, 373.13] [0.00, 373.13]

CIM 78.21 37.93 83.85 6.42 37.85 9.26
[0.00, 98.04] [0.00, 100.00] [0.00, 95.16] [1.00, 373.13] [0.00, 373.13] [2.00, 373.13]

CIP 79.58 52.22 83.27 7.87 23.43 10.37
[0.00, 98.21] [0.00, 100.00] [0.00, 94.87] [1.00, 373.13] [0.00, 373.13] [2.24, 373.13]

HGG
(18 cases)

BLM 94.41 89.70 90.35 1.87 1.41 3.86
[87.55, 97.10] [69.71, 96.29] [71.90, 94.51] [1.00, 4.90] [1.00, 2.83] [1.73, 15.17]

CIM 93.90 89.86 89.58 1.87 1.41 3.93
[66.94, 97.06] [70.93, 96.41] [77.27, 94.49] [1.00, 13.49] [1.00, 3.00] [2.00, 13.00]

CIP 94.10 89.75 89.96 1.87 1.41 3.86
[63.08, 97.34] [72.14, 96.45] [79.54, 94.61] [1.00, 22.38] [1.00, 3.00] [1.73, 10.72]
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3.4. Domain Generalization

Dice scores and 95% HD values on the official BraTS validation dataset obtained
for the models trained on data from a single institute are summarized in Figure 6. Com-
pared to the baseline model trained on data from all the institutes, performance is lower
especially for the TC and ET tumor regions. The drop in performance of all the models
trained only on single-center data shows the impact of domain shift between the training
and test datasets. The addition of anatomical contextual information does not help in this
aspect, since the three models trained on single-center data have similar performances,
which are all significantly lower (p < 0.05) than the one of the model trained on all the MR
data available. Results on the independent test dataset, summarized in Table 5, show a
similar trend for both LGG and HGG cases.

ET TC WT
Tumor regions
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Figure 6. Boxplot of Dice scores and 95% Hausdorff distance (HD) for the different models
(BLM = baseline model, CIM = contextual information model using binary masks, and CIP us-
ing probability maps) trained on single center data computed for BraTS2020 validation dataset.
For comparison, the performance of BLM trained on data from all institutes is presented (blue box).
Boxplots show median and range (with box showing 25% and 75% quantiles) for each model and
segmentation target (ET = enhancing tumor, TC = tumor core, and WT = whole tumor). The statistical
difference was insignificant (p > 0.05) when comparing CIM and CIP with BLM.

Table 5. Median Dice scores and 95% Hausdorff distance (HD) across target regions (ET = enhancing tumor, TC = tumor core,
and WT = whole tumor) for the different models (BLM = baseline model, CIM = contextual information model using binary
masks, and CIP using probability maps) trained on single center data. Values are shown for low grade glioma (LGG) and
high grade glioma (HGG) cases from the independent test dataset (36 subjects). The statistical difference was insignificant
(p > 0.05) for either LGG or HGG cases when comparing CIM and CIP with BLM. In bold, the results of the better performing
model for each segmentation target.

Grade Model
Median Dice Score Median 95% HD

[Min, Max] [Min, Max]
TC ET WT TC ET WT

LGG
(18 cases)

BLM 78.47 60.81 92.77 6.40 7.64 2.73
[0.00, 97.31] [0.00, 100.00] [76.48, 97.11] [0.00, 97.31] [1.00, 373.13] [0.00, 373.13]

CIM 75.99 56.71 93.02 6.71 13.42 2.53
[0.00, 96.85] [0.00, 100.00] [84.68, 97.21] [1.00, 373.13] [0.00, 373.13] [1.41, 12.69]

CIP 73.53 60.19 93.29 6.54 13.98 2.45
[0.00, 97.05] [0.00, 100.00] [14.81, 96.94] [1.00, 373.13] [0.00, 373.13] [1.00, 14.78]
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Table 5. Cont.

Grade Model
Median Dice Score Median 95% HD

[Min, Max] [Min, Max]
TC ET WT TC ET WT

HGG
(18 cases)

BLM 91.68 85.66 89.30 2.24 2.00 3.23
[63.67, 96.15] [53.57, 94.62] [76.57, 96,62] [1.00, 12.37] [1.00, 6.63] [1.00, 75.21]

CIM 90.97 86.37 89.13 2.34 2.00 3.67
[67.18, 96.62] [53.79, 94.29] [80.83, 96.84] [1.14, 10.05] [1.00, 6.48] [1.00, 13.64]

CIP 92.16 86.33 89.41 2.27 1.23 3.38
[63.55, 96.36] [54.59, 94.25] [81.16, 96.63] [1.41, 13.19] [1.00, 6.40] [1.00, 10.20]

4. Discussion

The effect of anatomical contextual information on brain tumor segmentation was in-
vestigated with respect to segmentation performance, model training, model generalization,
and compensation for fewer MR modalities.

4.1. Segmentation Accuracy and Training Time for Multimodal MR Model Training

Glioma segmentation performance in this study showed no significant improvement
when comparing models trained with the addition of anatomical contextual information
as input channels along with the conventional MR modalities. A possible reason for the ob-
served results may be found in how the WM, GM, and CSF information are computed.
FAST uses pixel intensity and spatial information for the segmentation. Arguably, this is
very similar to what a U-Net architecture is using when trained for semantic segmentation.
Thus, it is possible that the network is independently creating a representation of WM,
GM, and CSF at some stage during training from the conventional MR modalities, nulli-
fying the additional information. However, providing such information already as input
channels did not speed up model training, given that BLM trained faster compared to
the contextual information models based on the a posteriori analysis of the validation
loss curves. The addition of the contextual information does not improve segmentation
performance but instead increases the model convergence time, suggesting that the extra
information is not used and makes the segmentation problem harder to solve.

Direct comparison between the obtained results with other works is partially possible,
given the differences in testing datasets. The results presented here are in the same range
of reported findings of studies that used additional contextual information during model
training. Overall, the reported results in literature and the ones obtained in this study show
that the inclusion of context-awareness, by means of model architecture changes or addi-
tional information as input to the network, has marginal or no improvement on glioma
segmentation [15–20,22–24]. This should not discourage future research on the topic, but
instead promote studies that exploit contextual information for brain tumor segmentation
by other approaches and perhaps a combination of the currently implemented methods,
i.e., context-aware blocks and additional contextual information as input to the network.

4.2. Quality of the Anatomical Contextual Information

Another reason for why the model does not use the additional anatomical information
may be found in the quality of the WM, GM, and CSF binary masks and probability maps.
As shown in Figure 2, the WM, GM, and CSF masks are distorted in the brain region
containing the tumor, which may not help the network. One possible way of investigating
this aspect is to compare model performance with anatomical contextual information ob-
tained automatically or from manual annotations. However, the amount of time that would
be needed for the annotation of WM, GM, and CSF of each subject is exceedingly large
making this comparison unfeasible. Another possible approach is to obtain the anatomical
information from quantitative MRI (qMRI) [34]. By quantitatively measuring the relaxation
times of tissues in the brain, qMRI can provide probability maps for WM, GM, and CSF.
In contrast to the automatically generated probability maps used in this study, the ones
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obtained through qMRI are not derived quantities; thus, the information given in each
of the input channels is unique and is not a different version of the same information. This
does increase the amount of information that the model can actually use for the segmen-
tation task. Given that the BraTS2020 dataset does not provide qMRI data, this approach
remains open for investigation.

4.3. Compensation for Fewer MR Modalities

Reducing the MR modalities needed to be acquired could have a positive impact on pa-
tient hospitalization experience and on healthcare economy, since a shorter time would be
needed for the patient to be in the MR scanner and more patients could be scanned [35].
For this reason, here, it was investigated whether or not the addition of anatomical informa-
tion could compensate for the decrease in segmentation performance caused by using only
one MR modality (T1Gd) as input to the model. Results show that only the segmentation
of the whole tumor region is affected by the lack of the excluded MR modalities. This is
not surprising since the WT includes the ED region, which is not visible in T1Gd. However,
the addition of contextual information marginally improves WT segmentation, suggesting
that the WM, GM, and CSF masks help the model to better identify the edema region.

4.4. Domain Generalization

Domain shift is a challenge that today’s deep learning models in general have to
address when intended for real world applications [36]. In the context of medical image
segmentation, models trained on data from a single center or scanner often struggle
to retain segmentation performance when tested or used on data that originates from
different centers or scanners. As described by Zhou et al. [36], domain generalization is still
a challenge that hinders the expansion of deep learning methods for real world applications.
Anatomical contextual information has shown no impact on domain generalization, given
that the models trained on single center data and with WM, GM, and CSF as extra input
channels have suffered from a similar drop in the performance compared to the baseline
performance as the model trained without it. A possible reason for this, as discussed above,
is that the model is not using the additional anatomical information.

4.5. Effect of Contextual Information on LGG and HGG Cases

Overall, anatomical contextual information does not improve segmentation perfor-
mance when considering high and low grade cases separately. Even if no statistically
significant improvement could be found between the baseline and the contextual infor-
mation models, in some of the LGG cases, the addition of contextual information reduced
the number of false positives for the enhancing tumor region. The low number of LGGs
in the training dataset, compared to HGGs, could bias the model in always segmenting
an enhancing tumor region. However, in LGG cases, this tumor sub-region is missing,
which leads to a high number of false positives when the model segments it. When using
anatomical contextual information, the model could better discriminate HGG and LGG
cases, thus avoiding segmenting the enhancing tumor region that is not present in LGGs.
Yet, the statistical comparison does not support this hypothesis, since no statistically sig-
nificant difference was found between the baseline model and the contextual information
models for the cases in this study. Nevertheless, a higher number of LGG test samples are
needed to study this effect.

4.6. Future Perspectives

A possible approach to investigate is providing contextual information not as addi-
tional channels to the input, but after the initial convolutional layers. Wachinger et al. [21]
showed improved neuroanatomy segmentation performance when concatenating context
information intermediately in the convolutional network. Moreover, the authors also
showed that different types of context information affect the performance differently; a
combination of spectral and cartesian-based parametrization of the brain volume yielded a
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better performance than when only one of the two was used, suggesting that they might
contain complementary information. Thus, investigation could focus on finding different
types of contextual information and their combinations. Future research could also address
if using additional MR modalities (e.g., diffusion MR imaging) would improve brain tumor
segmentation. The major factor hindering such investigation at the current moment is
the lack of a standardized open access dataset which includes extra MR modalities.

5. Conclusions

Anatomical contextual information in the form of binary WM, GM, and CSF and
probability maps was obtained in this study using the automatic FAST segmentation tool.
The addition of anatomical contextual information as extra channels to the network shows
no statistically significant difference in tumor segmentation performance when using a stan-
dardized 3D U-Net architecture and conventional multimodal MR images as dataset. Only
in the case of using one conventional MR modality (T1Gd) did the addition of the anatomi-
cal contextual information show to significantly improve whole tumor region segmentation.
No statistically significant improvements could be seen when investigating HGG and LGG
cases separately, nor when considering model training time, domain generalization, and
compensation for fewer MR modalities. Overall, context-aware approaches implemented
for brain tumor segmentation in the recent literature show only minor or no improvements.
This suggests that effective integration of context awareness in deep learning models
for glioma segmentation has yet to be explored.
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