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Abstract: Mesenchymal stem cells (MSCs) affect immune cells and exert anti-inflammatory effects.
Human amniotic fluid stem cells (hAFSCs), a type of MSCs, have a high therapeutic effect in animal
models of inflammation-related diseases. hAFSCs can be easily isolated and cultured from amniotic
fluid, which is considered a medical waste. Hence, amniotic fluid can be a source of cells for MSC
therapy of inflammatory diseases. However, the effect of hAFSCs on acquired immunity in vivo,
especially on regulatory T cells, has not yet been fully elucidated. Therefore, in this study, we aimed
to understand the effects of hAFSCs on acquired immunity, particularly on regulatory T cells. We
showed that hAFSCs ameliorated the thioglycollate-induced inflammation by forming aggregates
with host immune cells, such as macrophages, T cells, and B cells in the peritoneal cavity. Further,
the regulatory T cells increased in the peritoneal cavity. These results indicated that, in addition to
helping the innate immunity, hAFSCs could also aid the acquired immune system in vivo against
inflammation-related diseases by increasing regulatory T cells.

Keywords: amniotic fluid stem cells; mesenchymal stem cells; peritonitis; Treg

1. Introduction

Mesenchymal stem cells (MSCs) affect immune cells, exert a strong anti-inflammatory
effect, and can be easily isolated and cultured from adipose tissue, bone marrow, and
fetal tissues [1–5]. There are over 600 clinical trials listed at www.clinicaltrials.gov (ac-
cessed on 30 October 2021) utilizing MSCs; further, MSC-based drugs for graft-versus-host
diseases are commercially available [6,7]. MSCs regulate immune responses and exert
anti-inflammatory effects via the regulation of immune effector cells such as T, B, natural
killer (NK) and dendritic cells, and macrophages [6,8,9]. Moreover, MSCs may be used
therapeutically for other diseases without any effective treatment at present, including
cerebral and myocardial infarction [9,10]. Among MSCs, human amniotic fluid stem cells
(hAFSCs) are some of the most promising cells for MSC therapy. hAFSCs meet the MSC
criteria and can be conveniently isolated and cultured from amniotic fluid [5]. Growth
factors, chemokines, cytokines and hormones have been shown to induce the amplification
of hAFSCs [11,12]. Amniotic fluid is obtained in large quantities as medical waste during
amniocentesis, amnioreduction, delivery, and cesarean section. To date, hAFSCs have been
shown to have anti-inflammatory effects on animal models of various diseases [13–18].

The anti-inflammatory effect of MSCs is critical for various biological processes [6,19].
T cells, B cells, NK cells, and macrophages are mainly involved in immunity caused by
inflammation. The acquired immunity is activated in response to stimulation by foreign
substances. It is characterized by high specificity and immune memory. In contrast,
innate immunity recognizes foreign substances by targeting molecular patterns specific to
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microorganisms. Compared to acquired immunity, innate immunity is less specific and has
no immune memory. However, it has the advantage of an immediate response to pathogen
invasion [20]. MSCs, including hAFSCs, modulate both innate and acquired immunity,
resulting in anti-inflammatory effects, but the mechanism underlying such effects has not
been fully elucidated.

The relationship between hAFSCs and T cells, particularly Tregs, which play an
important role in immune responses, requires investigation, as there have been fewer
reports on the effects of hAFSCs on acquired immunity than those on the effects of hAFSCs
on the macrophages in the innate immune system. In addition, in our previous study we
attempted, unsuccessfully, to ascertain this relationship. In brief, we created a rat model
of neonatal sepsis by administering LPS intraperitoneally and evaluated the therapeutic
effects of hAFSCs. We also showed that the anti-inflammatory effect of hAFSCs resulted
from the regulation of the inflammatory responses of macrophages with or without direct
contact in the abdominal cavity [18,21]. However, it was concluded that neonatal immunity
is predominantly innate, carried by macrophages, and that the model is not compatible
with sufficiently investigating the acquired immune system.

We therefore focused on the peritonitis model, in which acquired immunity is known
to be involved. Peritonitis is one of the most life-threatening inflammatory diseases [22,23].
Several rodent models have been developed to evaluate the pathophysiology of peritonitis
and study the effects of various therapeutic interventions designed against the disease. In-
traperitoneal administration of thioglycollate (TG) [24] or lipopolysaccharide (LPS) [25] and
cecal ligation and puncture [26] are often used to develop rodent models of peritonitis [27].
The immune system of the abdominal cavity responds rapidly to bacteria that may be
released by rupture of the intestinal tract, and both innate and acquired immunity are
critical players in this response [28,29].

Several studies have explored the relationship between MSCs and acquired immu-
nity using models of peritonitis. MSCs can reduce inflammation in vivo in a peritonitis
model [29,30]. In particular, bone marrow-MSCs injected into the abdominal cavity form ag-
gregates with host macrophages, B cells, and T cells to reduce inflammation in vivo [29,31].
Gosemann et al. reported that hAFSCs injected into the abdominal cavity regulated the
acquired immune response via T cells and improved distant organ damage using an LPS-
induced peritonitis model [32]. However, the efficacy of hAFSC administration in other
animal models of peritonitis and the relationship between hAFSCs and acquired immune re-
sponses via T cells, especially regulatory T cells (Treg), has not been completely elucidated.

Hence, in this study, we aimed to investigate the anti-inflammatory effects of hAFSCs
in a peritonitis model induced by TG and determine the effects of hAFSCs on in vivo
acquired immunity mainly regulated by T cells. We found that hAFSCs ameliorated the
TG-induced inflammation by forming aggregates with host immune cells in the peritoneal
cavity. Further, hAFSC administration increased the Treg cells in the peritoneal cavity.

2. Results
2.1. Isolation and Characterization of hAFSCs

The hAFSCs were evaluated for their differentiation potential and surface markers to
ensure that they met the definition of MSCs. As reported in our previous studies [18], we
expanded the amniotic fluid-derived stem cells isolated by the CD117 magnetic sorting kit
using cultures in a growth medium, as described in our previous studies [16,17] (Figure 1a).
The hAFSCs did not express hematopoietic surface markers (CD14, CD34, and CD45) but
expressed mesenchymal markers (CD73, CD90, and CD105) (Figure 1b). Further, they exhib-
ited the ability to differentiate into adipocytes, osteocytes, and chondrocytes (Figure 1c).
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Figure 1. Characteristics of human amniotic fluid stem cells (hAFSCs). (a) A bright-field image 
shows the morphology of hAFSCs in culture (scale bar = 200 µm); (b) Surface CD markers of hAFSCs 
were analyzed by flow cytometry; (c) hAFSCs were cultured using adipogenic, osteogenic, or chon-
drogenic differentiation media. To assess the differentiation potential, the expression of genes char-
acteristic of each differentiated cell was assessed using RT-qPCR. U, undifferentiated; D, differenti-
ated. 

2.2. Treatment with hAFSCs Modulates Peritoneal Inflammation 
Injection of TG into the peritoneal cavity induces inflammation. Therefore, we exam-

ined the mRNA expression levels of genes encoding the pro-inflammatory cytokines in-
terferon gamma (IFNγ), interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNFα), 
and monocyte chemoattractant protein-1 (MCP-1) in intraperitoneal washout cells 48 h 
after TG administration. Their expression increased in the group that received only TG, 
but decreased in the group that had received hAFSCs before TG administration (Figure 
2).  
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Figure 1. Characteristics of human amniotic fluid stem cells (hAFSCs). (a) A bright-field image shows
the morphology of hAFSCs in culture (scale bar = 200 µm); (b) Surface CD markers of hAFSCs were
analyzed by flow cytometry; (c) hAFSCs were cultured using adipogenic, osteogenic, or chondrogenic
differentiation media. To assess the differentiation potential, the expression of genes characteristic of
each differentiated cell was assessed using RT-qPCR. U, undifferentiated; D, differentiated.

2.2. Treatment with hAFSCs Modulates Peritoneal Inflammation

Injection of TG into the peritoneal cavity induces inflammation. Therefore, we ex-
amined the mRNA expression levels of genes encoding the pro-inflammatory cytokines
interferon gamma (IFNγ), interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNFα),
and monocyte chemoattractant protein-1 (MCP-1) in intraperitoneal washout cells 48 h
after TG administration. Their expression increased in the group that received only TG, but
decreased in the group that had received hAFSCs before TG administration (Figure 2).

2.3. Engrafted hAFSCs form Aggregates in the Peritoneal Cavity

To investigate the localization of hAFSCs in the abdominal cavity, we labeled the
hAFSCs with a highly biocompatible fluorescent dye. We examined the localization of
hAFSCs using an in vivo imaging system (IVIS®) before, immediately after, and 24 and 48 h
after hAFSC administration. The fluorescence emitted by the cells gradually aggregated
(Figure 3), and cell aggregates were observed in the mice’s abdominal cavity after 48 h
(Figure 4a). Certain regions of the cell aggregates were positive for anti-human mitochondria-
specific antibodies, macrophage marker F4/80 antibodies, T cell marker CD3, and B cell
marker CD45R/B220 (Figure 4b). These results indicated that the intraperitoneally trans-
planted hAFSCs aggregated with host immune cells.
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Figure 2. Levels of the pro-inflammatory cytokines. mRNA expressions of interferon gamma 
(IFNγ), interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNFα), and monocyte chemoattract-
ant protein-1 (MCP-1) were investigated using RT-qPCR (n = 5) in lavaged cells in control (C), thio-
glycollate (TG) (T), and TG + hAFSCs (A) groups. Results are presented as mean ± SEM. Statistical 
differences between groups were assessed using analysis of variance and Tukey’s honest significant 
difference. * p < 0.05. 
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Figure 2. Levels of the pro-inflammatory cytokines. mRNA expressions of interferon gamma (IFNγ),
interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNFα), and monocyte chemoattractant
protein-1 (MCP-1) were investigated using RT-qPCR (n = 5) in lavaged cells in control (C), thiogly-
collate (TG) (T), and TG + hAFSCs (A) groups. Results are presented as mean ± SEM. Statistical
differences between groups were assessed using analysis of variance and Tukey’s honest significant
difference. * p < 0.05.
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CD45R/B220+ B cells (scale bar = 200 µm). 
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Figure 3. Distribution of DiR-labelled hAFSCs after intraperitoneal implantation. Distribution of
hAFSCs (n = 5) after injection was determined using in vivo imaging (IVIS®). Images display the
ventral side and reveal the aggregation of transplanted cells over time.
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Figure 4. Microscopic analysis showing cellular aggregates. The aggregates were composed of
immune cells (macrophages, T cells, and B cells) and human mitochondria-positive hAFSCs (n = 5).
(a) Representatives image of the aggregates obtained by staining with hematoxylin & eosin (HE)
stain (Scale bar = 100 µm) (b) The aggregates contained anti-human mitochondrial antibody (AMA)-
positive hAFSCs. They were also composed of F4/80+ peritoneal macrophages, CD3+ T cells, and
CD45R/B220+ B cells (scale bar = 200 µm).

2.4. Administration of hAFSCs Increases the Number of Regulatory T Cells in the Abdominal Cavity

hAFSCs switch the polarity of macrophages in the abdominal cavity from the inflam-
matory type (M1) to the anti-inflammatory type (M2) [18]. However, there are immune
cells other than macrophages in the abdominal cavity, especially those involved in acquired
immunity. One such immune cell of the acquired immune system is the Treg. To detect
Tregs, CD4+ cells were gated from a total cell population (Figure 5a), and CD25+ and
Foxp3+ populations were further gated (Figure 5b). The ratio of the CD4+ CD25+ Foxp3+

population (Treg) was significantly higher in the hAFSC-treated groups compared with
the TG-treated group (Figure 5c). The number of intraperitoneal lavaged cells in mice not
receiving TG was so low that it could not be evaluated.
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Figure 5. Regulatory T cell (Treg) analysis of the lavaged cells. Ratio of CD4+ CD25+ Foxp3+ Tregs.
(a, b) The gating strategy used is shown. (c) The proportion of CD4+ CD25+ Foxp3+ Tregs is shown
as a graph (n = 5). The data are shown as the means ± SEM. Significance was determined by the
Student’s t test. * p < 0.05.

3. Discussion

In this study, we found that hAFSC therapy significantly modulated the inflammation
induced by intraperitoneal-TG injection in a mouse model of peritonitis. Our in vivo exper-
iments demonstrated that hAFSC administration significantly modulated TG-triggered acti-
vation of pro-inflammatory cytokines in the abdominal cavity. hAFSCs formed aggregates
with host immune cells, such as T cells, B cells, and macrophages in the peritoneal cavity
and survived for at least 48 h. Furthermore, hAFSC treatment increased the number of Treg
cells in the peritoneal cavity. To our knowledge, this is the first in vivo study to demonstrate
that hAFSC administration increases Treg levels in rodent models of peritonitis.

Further, we investigated the relationship between hAFSCs and T cells. hAFSCs affect
immune cells and are highly anti-inflammatory [13–15,17,18,33–35]. Administration of
hAFSCs into the peritoneal cavity is a safe procedure and allows their migration, homing,
and integration into various organs of healthy—and inflammation-induced—newborn rats.
Moreover, hAFSCs have strong immunomodulatory activity via innate immunity, mainly
through macrophages, in neonatal rats [18,33]. Unfortunately, since innate immunity and
not acquired immunity plays a central role in neonates, we did not elucidate the effect of
hAFSCs on T cells using neonatal rat models in our previous studies. Hence, to investigate
the effects of hAFSCs on cells associated with acquired immunity, we focused on the
relationship between transplanted hAFSCs and T cells in the host’s abdominal cavity.

Injection of TG into the peritoneal cavity is a traditional method of inducing in-
flammation in the peritoneal cavity and promoting the migration of inflammatory cells,
including T cells [36]. In the abdominal cavity, there are immune cells, such as macrophages
and lymphocytes, and the number of these cells increases in response to various stim-
uli [37,38]. Compared to the LPS-induced peritonitis model in mice, we obtained more
lavaged immune cells, such as macrophages and lymphocytes, in the TG-treated model
(data not shown).

Our in vivo experiments showed that the TG-administered hAFSCs aggregated and
modulated the inflammation induced by TG in the abdominal cavity. A previous hAFSC-
tracking study demonstrated that hAFSCs formed aggregates with host immune cells in
the abdominal cavity within 48 h, suggesting that these aggregates could contribute to
the modulation of inflammation. Previous reports of the therapeutic effects of hAFSCs
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in neonatal sepsis rats showed that they aggregated mainly with macrophages [14,18].
However, in the present study, we found that hAFSCs injected into the abdominal cavity
of adult rodents accumulated and also aggregated with T cells and B cells in addition to
macrophages. These findings were consistent with a previous report on bone marrow-MSC
treatment in a mouse model of ulcerative colitis [31]. Thus, hAFSCs form aggregates with
the host immune cells critical for regulating innate and acquired immunity, resulting in the
modulation of inflammation in the abdominal cavity.

We found that the intraperitoneal administration of hAFSCs increased the number
of Tregs in vivo (Figure 5). Tregs (CD4+ CD25+ Foxp3+) suppress immune responses
to infectious pathogens, cancer, allogeneic organs, and stem cell transplantation [39–41].
The induction of Tregs by MSCs is widely known. The proposed mechanisms include
the secretion of soluble mediators by MSCs, cell-to-cell contact, and the regulation of
antigen-presenting cells [6,42,43]. In vivo and in vitro studies have shown that MSC therapy
increases the number of Tregs in the host [44–46]. Unfortunately, there is limited evidence
on the effect of hAFSCs on Tregs. In particular, the relationship between hAFSCs and
Tregs in vivo has not been investigated, although an in vitro study showed that hAFSCs
increased Tregs [47]. The present study fills this gap as it shows that hAFSCs also increase
Tregs in vivo. The ability of Tregs to regulate immune regulation in vivo can be present in
other MSCs as well, such as bone marrow- and adipose-derived MSCs.

However, this study has some limitations. First, the composition of the intraperitoneal
wash cells needs to be comprehensively investigated. With the advent of flow cytometry,
multiplex staining of cells has become easier. However, flow cytometry of intraperitoneal
lavaged cells from hAFSC-treated mice is complex. This is because the administered
hAFSCs and host macrophages express several cell-adhesion factors [43] that cause many
cells to become attracted to each other and become doublets. In our experiments using flow
cytometry (hAFSC and lavaged cells), we also observed the following events: human cell-
specific antibody positive, mouse macrophage antibody positive, and mouse T cell antibody
positive (data not shown). This indicates a direct contact between the administered hAFSCs,
host macrophages, and T cells. Thus, it is necessary to disengage these cells without
damaging them prior to flow cytometric analysis since clarifying the cell composition in the
peritoneal cavity will help unravel the effects of hAFSCs on immune cells in more detail.

Second, a detailed analysis of the expressions of anti-inflammatory cytokines and their
downstream pathways is needed. It needs to be clarified whether these genes are expressed
in transplanted cells or in host immune cells. This requires a comprehensive analysis
employing detailed sequencing and PCR targeting human- and mouse-specific sequences.

Finally, we have not sufficiently investigated the specific regulatory mechanisms of
Tregs. Future studies should elucidate the mechanism of Treg regulation by hAFSCs in
more detail. For example, the effects of soluble mediators and cell-to-cell contacts should
be investigated through the co-culture of T cells and hAFSCs directly or indirectly using
semipermeable membranes. The prevailing hypothesis is that MSCs regulate the Th17/Treg
axis through the mTOR pathway. mTOR/HIF-1α-mediated metabolic reprogramming
and mTOR/STATs-mediated modification of signaling pathways have been reported to
be effective in resolving Th17/Treg imbalances [44]. However, these mechanisms are
extremely complex and need to be resolved in the future.

4. Materials and Methods
4.1. Isolation, Culture, and Characterization of hAFSCs

This study was approved by the institutional review board of the Keio University
School of Medicine (No. 20140285). Amniotic fluid collection and culture of hAFSCs were
performed in the same way as previously described [14,18]. Briefly, amniotic fluid was
obtained from three healthy pregnant women who underwent amniotic fluid examination
at 15–16 weeks of gestation and it was cultured in a growth medium. Subsequently, we
confirmed that the CD117-positive cells isolated with magnetic beads fulfilled the character-
istics of MSCs by analyzing the surface antigen markers and inducing differentiation [18].
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4.2. Animals and TG Medium Injection into the Peritoneal

All experiments were approved by the Animal Committee of Keio University, Japan
(No. 21033-(0)). Adult C57BL/6J mice (Charles River Laboratories Japan Inc., Kanagawa,
Japan) were bred in an appropriate environment. PBS (2 mL) or TG medium (BD BBLTM
Thioglycollate medium Brewer Modified #211716, BD Biosciences, San Jose, CA, USA)
(2 mL) was administered intraperitoneally with a 26 G needle (NN-2613S; Terumo, Tokyo,
Japan) attached to a syringe (SS-02SZ; Terumo). After 15 min, animals were intraperi-
toneally injected with either PBS or PBS containing 2 × 106 suspended hAFSCs. After TG
administration, the animals were observed every 24 h for two days.

4.3. Collection of Lavage Cell

At 48 h post-TG administration, the animals were anesthetized with 5% isoflurane
(Abbott Laboratories, Chicago, IL, USA). To collect the intraperitoneal cells, we injected
cold PBS (5 mL) intraperitoneally and gently massaged the abdomen. The intraperitoneal
fluid was collected with a syringe as previously reported [17]. The fluid was centrifuged at
500× g and 4 ◦C for 10 min. After discarding the supernatant, the cell pellets were subjected
to RNA extraction (see “Real-time qPCR”).

4.4. Tracking hAFSCs after Intraperitoneal Administration and Immunofluorescence Staining of
Cell Aggregates

An in vivo imaging system was used to track the administered hAFSCs, and the cell
aggregates found in the abdominal cavity were immunostained. The detailed methods are
described elsewhere [16,17]. Briefly, XenoLight DiR-labeled hAFSCs were administered
intraperitoneally and imaged using IVIS® Spectrum (PerkinElmer, Waltham, MA, USA).
We fixed the intraperitoneal cell aggregates with 4% paraformaldehyde and prepared
frozen sections (8 µm). These slides were stained with hematoxylin and eosin, anti-human
mitochondrial antibody, anti-T cell antibody, anti-B cell antibody and anti-macrophage
antibody (see Supplementary Table S1 for antibody information). Stained sections were
observed under a confocal laser microscope (LSM710; Zeiss, Jena, Germany).

4.5. Flow Cytometry

To investigate the characteristics of intraperitoneal T cells, the lavaged cells were
centrifuged from intraperitoneal washings and were analyzed for surface antigens by
flow cytometry. A PerFix nc kit (Beckman Coulter Inc., Brea, CA, USA) was used and the
manufacturer’s instructions were followed. Briefly, 50 µL of lavaged cells were fixed with
the Fixative Reagent and incubated for 15 min at room temperature. Subsequently, 300 µL of
Permeabilizing Reagent was added and stained by the antibodies or isotype controls custom
mixture for 60 min. The mixture was incubated with PE-conjugated antibodies against CD4,
Alexa Fluor 488-conjugated antibodies against Foxp3, APC-conjugated antibodies against
CD25, and appropriate isotype controls (Supplementary Table S2). Finally, the sample was
washed once with the final solution. Stained cells were analyzed using a MoFlo Astrios
EQs cell sorter (Beckman Coulter) and data analyses were performed using FlowJo v10
software (TreeStar Inc., Ashland, OR, USA).

4.6. Real-Time qPCR

Total RNA was isolated from the cells using the RNeasy Mini Kit (Qiagen, Hilden,
Germany), following the manufacturer’s protocol. Reverse transcription to cDNA was
performed using the Prime Script RT Master Mix (Takara Bio, Shiga, Japan). Quantitative
PCR (25 µL reaction volume) was performed in duplicate using a 96-well Bio-Rad CFX96
Real-time PCR System (Bio-Rad, Inc., Hercules, CA, USA). The thermocycling conditions
were as follows: 50 cycles of 95 ◦C for 30 s, 95 ◦C for 5 s, and 60 ◦C for 20 s. Relative
expression per sample was calculated using the 2−∆∆CT method and was normalized to
GAPDH expression. The primers used are listed in Supplementary Table S3.
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4.7. Statistical Analysis

Results are presented as the mean ± standard error of the mean of at least five
(n = 5) independent experiments. Statistically significant differences between groups were
assessed using the t-test or analysis of variance and Tukey’s honest significant difference,
whichever was appropriate. All statistical analyses were performed using IBM SPSS
software (version 25, IBM Corporation, Armonk, NY, USA). Statistical significance was set
at p < 0.05.

5. Conclusions

This is the first study to demonstrate the effects of hAFSCs on Tregs in vivo using a
rodent model of peritonitis induced by TG injection into the abdominal cavity. We showed
that hAFSCs ameliorated the TG-induced inflammation, probably by forming aggregates
with host immune cells such as macrophages, T cells, and B cells in the peritoneal cavity.
These results indicated that hAFSCs could activate both the innate and acquired immunity
in vivo against inflammation-related diseases.
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