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Abstract

Motivation: Studying the interaction or co-expression of the proteins or markers in the tumor microenvironment of
cancer subjects can be crucial in the assessment of risks, such as death or recurrence. In the conventional approach,
the cells need to be declared positive or negative for a marker based on its intensity. For multiple markers, manual
thresholds are required for all the markers, which can become cumbersome. The performance of the subsequent
analysis relies heavily on this step and thus suffers from subjectivity and lacks robustness.

Results: We present a new method where different marker intensities are viewed as dependent random variables,
and the mutual information (MI) between them is considered to be a metric of co-expression. Estimation of the joint
density, as required in the traditional form of MI, becomes increasingly challenging as the number of markers
increases. We consider an alternative formulation of MI which is conceptually similar but has an efficient estimation
technique for which we develop a new generalization. With the proposed method, we analyzed a lung cancer dataset
finding the co-expression of the markers, HLA-DR and CK to be associated with survival. We also analyzed a triple
negative breast cancer dataset finding the co-expression of the immuno-regulatory proteins, PD1, PD-L1, Lag3 and
IDO, to be associated with disease recurrence. We demonstrated the robustness of our method through different
simulation studies.

Availability and implementation: The associated R package can be found here, https://github.com/sealx017/MIAMI.

Contact: souvik.seal@cuanschutz.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, multiplex tissue imaging (Bataille et al., 2006) tech-
nologies like, imaging mass cytometry (Ali et al., 2020), multiplex
immunohistochemistry (mIHC) (Tan et al., 2020) and multiplexed
ion beam imaging (MIBI) (Angelo et al., 2014) have become increas-
ingly popular for probing single-cell spatial biology. The technolo-
gies help in understanding the biological mechanisms underlying
cellular and protein interactions in a wide array of scientific con-
texts. MIBI (Ionpath Inc.) (Angelo et al., 2014) platform and the
mIHC platforms such as Vectra 3.0 (Akoya Biosciences) (Huang
et al., 2013) and Vectra Polaris (Akoya Biosciences) (Pollan et al.,
2020) produce images of similar structure. In particular, each image
is two-dimensional, collected at cell- and nucleus-level resolution
and proteins in the sample have been labeled with antibodies that at-
tach to cell membranes. We will refer to the antibodies as markers in
the article. Typically, mIHC images have 6–8 markers, whereas
MIBI images can have 40 or more markers.

Many of the above markers are surface or phenotypic markers
(Shipkova and Wieland, 2012; Zola et al., 2007), which are primar-
ily used for cell type identification. Additionally, there are functional

markers (Ijsselsteijn et al., 2019) such as HLA-DR (Saraiva et al.,
2018), PD1, PD-L1 (Alsaab et al., 2017) and CD45RO (Lee et al.,
2008) that dictate or regulate important cell functions. Both surface
and functional markers are quantified as continuous valued marker
intensities. However, in the traditional method, the interaction or
co-expression effects of the markers are studied by binarizing them.
For every marker, a threshold is chosen to indicate whether a cell
(or, a pixel) in the tumor microenvironment (TME) (Binnewies
et al., 2018) is positive or negative for that marker. If a cell is posi-
tive for two markers, it implies that the markers have co-expressed
or co-occurred in that cell. Next, for all the subjects considering
every unique pair of markers, the proportion of cells positive for
both the markers, the proportion of cells positive for only the first
marker and the proportion of cells positive for only the second
marker are computed. These proportions can then be used in hier-
archical clustering (Murtagh and Legendre, 2014) to group the sub-
jects. It can then be tested if the cluster labels correlate with clinical
outcomes, such as disease recurrence or time to death (Jackson
et al., 2020; Johnson et al., 2021; Koguchi et al., 2015). The step of
binarizing the marker expression profiles can be performed either
using compatible commercially available software or manual
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assessment of the segmented images. For example, Johnson et al.
(2018) used AQUAnalysisVR software (Dolled-Filhart et al., 2010;
McCabe et al., 2005) for binarizing the functional markers, PD1,
PD-L1, HLA-DR and IDO, and discovered that their co-expression
predicted improved outcomes of anti-PD1 therapies in metastatic
melanoma. On the other hand, Patwa et al. (2021) used their own
clinical expertise and careful evaluation of the segmented images to
determine the binarizing thresholds and discovered the interaction
between the markers, PD1, PD-L1, IDO and Lag3 to be associated
with disease recurrence. It should be pointed out that such
expression-thresholding or binarization is also popular in cell–cell
communication or interaction analysis (Jin et al., 2021) in the con-
text of single-cell RNA sequencing data. As an example, Armingol
et al. (2021) defined a pair of cells to be interacting if the expressions
of both ligand and receptor (Wong et al., 1997) in those cells exceed
certain chosen thresholds.

The manual threshold selection process for multiple markers can
be extremely challenging and is subjective. Alternatively, commer-
cially available softwares, such as AQUAnalysisVR and inForm
(Dolled-Filhart et al., 2010; Kramer et al., 2018), can be used for
automated threshold selection in the context of a few particular data
types. However, these softwares generally follow a ‘black box ap-
proach’ and can be difficult to interpret. On top of these difficulties,
many authors have criticized binarizing continuous random varia-
bles in general due to the resulting loss of power (Altman and
Royston, 2006; Irwin and McClelland, 2003; Seal et al., 2022a).

In this article, we propose a threshold-free approach for studying
marker co-expression. We treat the marker intensities as continuous
random variables and use their marginal and joint probability dens-
ity functions (PDF’s) to construct a metric of co-expression based on
mutual information (MI) (Cover and Thomas, 2006). Unlike the
correlation coefficient, MI is capable of capturing non-linear pat-
terns of dependence between the markers and is easily extendable
for more than two markers. However, as the number of markers
increases, computing the joint PDF becomes increasingly challenging
which makes the computation of MI infeasible as well. Therefore,
we use a slightly different formulation of MI known as Euclidean
quadratic mutual information (EQMI) (Principe et al., 2000) which
has a similar interpretation but can be computed more efficiently.
The computation algorithm is discussed in Principe (2010) with a
simpler assumption that we further generalize. The vector of esti-
mated values of the EQMI of all the subjects is tested for association
with clinical outcomes. With the proposed method, we analyzed an
mIHC lung cancer dataset (Seal et al., 2022b) finding that a higher
co-expression of the markers, HLA-DR and CK was significantly
associated with better 5-year overall survival. We analyzed a MIBI

triple-negative breast cancer (TNBC) dataset (Keren et al., 2018)
studying the co-expression of two sets of functional markers, (a)
HLA-DR, CD45RO, H3K27me3, H3K9ac and HLA-Class-1, and
(b) PD1, PD-L1, Lag3 and IDO, which are also known as immuno-
regulatory proteins (IRP’s). We found the co-expression of the IRP’s
to be significantly associated with recurrence. We demonstrated the
robustness of our method over the existing approaches through dif-
ferent simulation studies.

2 Materials and methods

Suppose there are p markers and N subjects with the j-th subject
having nj cells. Let Xkij denote the expression of the k-th marker in
the i-th cell of j-th subject for k ¼ 1; 2; . . . ; p; i ¼ 1; 2; . . . ; nj, and
j ¼ 1;2; . . . ;N: Note that we focus on cell-level data in this article
but the framework is readily usable on pixel-level data as well. Let
Y ¼ ðY1;Y2; . . . ;YNÞT denote a subject-level outcome vector and C
be an N� S matrix of subject-level covariates. Next, we discuss the
existing and proposed methods and also summarize them in
Figure 1.

2.1 Traditional thresholding-based approach to study

co-expression of the markers
For every marker k, we choose a cutoff tk to define cell i of subject j
as positive for that marker if Xkij > tk: The choice of tk can be
guided by prior biological insight or by careful inspection of the
marker intensity profile. For example, extreme quantiles like (e.g.
the 90th or 95th percentiles) can serve as viable thresholds, as we
see in the simulations. However, in most real datasets, it requires
user-defined thresholds for achieving a meaningful and interpretable
conclusion. A cell can be positive for multiple markers. If a cell is
positive for a pair of markers (kr, ks), it would imply that these
markers have co-expressed in that particular cell. For every subject,
compute the proportion of such double-positive cells, denoted by
kþr kþs , the proportion of cells positive for only the first marker,
denoted by kþr k�s , and the proportion of cells positive for only the se-
cond marker, denoted by k�r kþs , for kr; ks 2 f1;2; . . . ; pg and kr 6¼
ks: Next, the subjects are classified into two or more groups based
on their vectors of proportions using hierarchical clustering. Note
that if it is biologically relevant, instead of a pairwise analysis, one
can also study multiple markers jointly, e.g. with four markers, one
can count the cells which are either kþr kþs kþt kþu or any of the possible
ð24 � 1Þ ¼ 15 combinations and group the subjects based on these
proportions.

Fig. 1. Comparison of the workflow of the proposed method with the traditional method. We used segmented cell-level data in this article but the method is applicable on a

pixel-level data as well
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Suppose that the subjects are grouped into M clusters. Let Z ¼
ðZ1; . . . ;ZNÞT be an N�M matrix of the cluster labels. Zj is a
vector corresponding to the subject j with Zjm ¼ 1 if the j-th
subject belongs to group m and 0 otherwise. In most common prac-
tices, M¼2 is considered. When Y is a continuous outcome, a stand-
ard multiple linear regression model with Z as a predictor can be
written as

Y ¼ CbþZcþ �;

where b; c are fixed effects and � is an N � 1 error vector following
multivariate normal distribution (MVN) with mean 0 and identity
covariance matrix r2

IN : The null hypothesis, H0 : c ¼ 0, can be
tested using the Wald test or likelihood ratio test (LRT) (Gourieroux
et al., 1982). Similarly, when Y is a categorical outcome, a logistic
or multinomial logistic regression model (Kwak and Clayton-
Matthews, 2002) can be considered.

Next, we consider the case of Y being a right-censored failure
time outcome. Let the outcome of the j-th individual be
Yj ¼ minðTj;UjÞ, where Tj is the time to event and Uj is the censor-
ing time. Let dj � IðTj � UjÞ be the corresponding censoring indica-
tor. Assuming that Tj and Uj are conditionally independent given
the covariates for j ¼ 1; 2; . . . ;N, the hazard function for the Cox
proportional hazards (PH) model (Andersen and Gill, 1982) with
fixed effects can be written as,

kjðtjCj;ZjÞ ¼ k0ðtÞ expðCT
j bþZjcÞ; j ¼ 1;2; . . . ;N (1)

where kjðtjCj;ZjÞ is the hazard of the j-th subject at time t, given the
vector of covariates Cj and the cluster label Zj and k0ðtÞ is an un-
specified baseline hazard at time t. To test the null hypothesis:
H0 : c ¼ 0, an LRT (Therneau, 1997) can be considered.

2.2 Proposed method: mutual information-based ana-

lysis of marker co-expression
2.2.1 Theory of mutual information

MI is an information theoretic measure of dependence between two
or more random variables (r.v.’s). In contrast to the linear correl-
ation coefficient, it captures dependences which do not manifest
themselves in the covariance (Kraskov et al., 2004). For two random
variables, R1 and R2 with sample space D, marginal PDFs, f1, f2 and
joint PDF f12, the MI is defined as the following:

MIðR1;R2Þ ¼
Ð Ð

f12ðr1; r2Þ log
f12ðr1; r2Þ

f1ðr1Þf2ðr2Þ
dr1dr2:

MI has been used as a tool for feature selection in many different
contexts (Hoque et al., 2014; Liu et al., 2009; Song et al., 2021;
Yang and Moody, 1999). The measure can be easily generalized for
more than two random variables. However, due to the curse of
dimensionality (Langrené and Warin, 2019), it becomes extremely
difficult to estimate the joint PDF and hence, the MI, as the number
of random variables increases.

Xu (1998) and Principe et al. (2000) looked into alternative defi-
nitions of MI that would remain conceptually similar but can be
computed efficiently. They discussed two measures, EQMI and
Cauchy–Schwarz quadratic mutual information (CSQMI), defined
as below,

EQMIðR1;R2Þ

¼
Ð Ð

f12ðr1; r2Þ2dr1dr2 � 2
Ð Ð

f12ðr1; r2Þf1ðr1Þf2ðr2Þdr1dr2

þ
Ð Ð

f1ðr1Þ2f2ðr2Þ2dr1dr2;

CSQMIðR1;R2Þ

¼ log
ð
Ð Ð

f12ðr1; r2Þ2dr1dr2Þð
Ð Ð

f1ðr1Þ2f2ðr2Þ2dr1dr2Þ
ð
Ð Ð

f12ðr1; r2Þf1ðr1Þf2ðr2Þdr1dr2Þ

(2)

It is trivial to verify that EQMIðR1;R2Þ � 0 with equality occur-
ring if and only if R1, R2 are independent, i.e. f12ðr1; r2Þ ¼
f1ðr1Þf2ðr2Þ for any r1, r2 2 R. Using the Cauchy–Schwarz inequality,
we have CSQMIðR1;R2Þ � 0 with equality happening if and only if

R1, R2 are independent. Xu (1998) argued that EQMI shares more
properties, such as convexity with respect to the PDF’s, of the trad-
itional MI compared to CSQMI and thus, is better suited as a de-
pendence measure. It should also be noticed that the form of EQMI
is very similar to the distance covariance measure proposed by
Székely et al. (2007). There is one more generalized measure of de-
pendence, known as kernel canonical correlation analysis (Huang
et al., 2006), which does not share forumlaic similarity with EQMI
but can potentially serve as an alternative for detecting non-linear
dependence patterns. In this article, we focus on EQMI and propose
its usage in the co-expression analysis of the markers in general
multiplex imaging datasets used in the study of spatial biology of
TME.

2.2.2 Formulation of EQMI

For every subject j, we assume that the expression of marker k is a
continuous random variable, denoted by Xkj, with sample space
D ¼ ½0;1�. Xkj is observed in nj cells as, Xk1j;Xk2j; . . . ;Xknjj.
Suppose there are p¼2 markers and for every subject j, denote their
joint PDF as f12jðx1; x2Þ and their marginal PDFs as f1jðx1Þ and
f2jðx2Þ, respectively. Following Equation (2), the EQMI between the
markers 1 and 2 for subject j can be defined as,

EQMIðX1j;X2jÞ ¼ VJ � 2VC þ VM; (3)

where VJ ¼
Ð Ð

f12jðx1;x2Þ2dx1dx2, VC ¼
Ð Ð

f12jðx1;x2Þf1jðx1Þf2jðx2Þ
dx1dx2, and VM ¼

Ð Ð
f1jðx1Þ2f2jðx2Þ2dx1dx2. EQMIðX1j;X2jÞ can

be interpreted as a generalized measure of co-expression of the
markers, capable of capturing non-linear dependences. A large value
of EQMIðX1j;X2jÞ will imply that the markers 1, 2 have significant-
ly co-expressed in the TME of subject j. EQMIðX1j;X2jÞ is bounded
below by 0 for every j but there is no common upper bound for dif-
ferent j’s. Therefore, to compare EQMIðX1j;X2jÞ’s across different
subjects, we need to appropriately standardize the values so that
they lie in the same scale. We define a new measure as,
EQMI�ðX1j;X2jÞ ¼ ðVJ þ VMÞ�1ðVJ � 2VC þ VMÞ: We observe that
EQMI�ðX1j;X2jÞ lies between ½0; 1� because VC � 0, and has a simi-
lar interpretation as EQMIðX1j;X2jÞ.

It is intuitive to generalize the measure for any p � 2 markers.
For subject j, letting f12...pjðx1; x2; . . . ; xpÞ to be the joint PDF and
f1jðxpÞ; f2jðxpÞ; . . . ; fpjðxpÞ to be the marginal PDFs, EQMI� can be
defined as,

EQMI�ðX1j;X2j; . . . ;XpjÞ ¼
VJ � 2VC þ VM

VJ þ VM

VJ ¼
Ð Ð

. . .
Ð

f12...pjðx1;x2; . . . ;xpÞ2dx1dx2 . . . dxp

VC ¼
Ð Ð

. . .
Ð

f12...pjðx1;x2; . . . ; xpÞf1jðx1Þf2jðx2Þ

. . . fpjðxpÞdx1dx2 . . . dxp

VM ¼
Ð Ð

. . .
Ð

f1jðx1Þ2f2jðx2Þ2 . . . fpjðxpÞ2dx1dx2 . . . dxp:

Notice that to estimate EQMI�ðX1j;X2j; . . . ;XpjÞ when the true
PDFs are unknown, a naive approach would be to estimate the PDFs
first by using a kernel density estimation approach (Silverman,
1981). Then, we use the estimated PDFs to compute the terms VJ,
VC and VM via numerical integration (Davis and Rabinowitz, 2007).
However, such an approach would be computationally infeasible
for a large p and will defeat the purpose of considering EQMI in-
stead of the standard form of MI.

EQMI�ðX1j;X2j; . . . ;XpjÞ can be estimated efficiently as,dEQMI
�
ðX1j;X2j; . . . ;XpjÞ ¼ ð bV J þ bVMÞ�1ð bV J � 2 bV C þ bVMÞ, where

bV J ¼
1

n2
j

Xnj

i¼1

Xnj

s¼1

Yp
k¼1

bVkði; sÞ

bV C ¼
1

nj

Xnj

i¼1

Yp
k¼1

bV kðiÞ; bV kðiÞ ¼
1

nj

Xnj

s¼1

bV kði; sÞ;

bV M ¼
Yp
k¼1

bV k; bVk ¼
1

n2
j

Xnj

i¼1

Xnj

s¼1

bV kði; sÞ;

(4)
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and bV kði; sÞ ¼ G ffiffi
2
p

hk
ðXkij �XksjÞ. Gh stands for a Gaussian kernel

with bandwidth parameter h. This clever way of estimating the
terms, bV J; bVC and bV M is described in Principe (2010) with a simpler
assumption that hk’s are equal for all k, i.e. hk ¼ h for k ¼
1; 2; . . . ; p: We provide the general derivation (i.e. hk 6¼ hk0 , for
k 6¼ k0) and other associated details in the Supplementary Material.
For choosing the optimal values of hk’s, we generally consider the di-
agonal multivariate plug-in bandwidth selection procedure (Chacón
and Duong, 2010; Wand et al., 1994). However, when p is large
(p>6), to avoid computational deadlock we suggest using
Silverman’s rule of thumb (Silverman, 1981) for choosing hk’s
individually.

2.2.3 Using mutual information in association analysis

Denote the vector of estimated values of EQMI� as
E � ðE1; . . . ;ENÞT , where Ej ¼ dEQMI

�
ðX1j;X2j; . . . ;XpjÞ. Our goal

is to test if E is associated with the clinical outcome Y. When Y is a
continuous outcome, a standard multiple linear regression model
with E as a predictor can be written as,

Y ¼ Cbþ Ecþ �;

where b; c are fixed effects and � is an N � 1 error vector following
MVN with mean 0 and identity covariance matrix r2

IN : After esti-
mating the parameters, the null hypothesis, H0 : c ¼ 0, can be tested
using the Wald test. Note that we can also add higher order terms of
Ej, such as E2

j ;E
3
j ; . . . as in a polynomial regression model

(Ostertagová, 2012) to account for non-linear relationship between
Y and Ej. Similarly, when Y is a categorical outcome, a logistic or
multinomial logistic regression model (Kwak and Clayton-
Matthews, 2002) can be considered.

Next, we consider the case of Y being a survival or recurrence
outcome. Using the same definitions and conditional independence
assumptions of Tj, Uj and covariates as in Section 2.1, the hazard
function for the Cox PH model can be written as,

kjðtjCj;EjÞ ¼ k0ðtÞ expðCT
j bþ EjcÞ; j ¼ 1; 2; . . . ;N (5)

where kjðtjCj;EjÞ is the hazard of the j-th subject at time t, given the
vector of covariates Cj and the predictor Ej and k0ðtÞ is an unspeci-
fied baseline hazard at time t. To test the null hypothesis:
H0 : c ¼ 0, an LRT can be considered.

In a two-marker scenario (i.e. p¼2), one can also treat the
absolute value of the Pearson correlation as a measure of marker co-
expression and use it as Ej in the earlier equations for testing associ-
ation with the outcome. However, as we later demonstrate, using
correlation instead of EQMI can be sub-optimal in many cases. It is
also difficult to generalize to more than two markers.

3 Real-data analysis

We applied our method to two real datasets, an mIHC lung cancer
dataset (Seal et al., 2022b) from Vectra 3.0 platform and a MIBI
TNBC dataset (Keren et al., 2018). We also applied the traditional
thresholding-based method on both the datasets. Since it was hard
to decide the optimal thresholds for binarizing the markers, we ran
the method for varying values of the thresholds. For every marker,
concatenating the intensity data of all the subjects, we computed the
median, 95% and 99% quantiles. Next, three different
thresholding-based methods using these quantiles were considered,
respectively referred to as Median-Thresholding, Threshold 1 and
Threshold 2. Note that Threshold 1 and 2 both captured the differ-
ence in the tails of the distributions, whereas Median-Thresholding
captured the difference in the centers. For the first dataset, we also
performed the correlation-based association analysis, referred to as
Corr.

3.1 Application to mIHC lung cancer data
In the lung cancer dataset, there were 153 subjects each with 3–5
images (in total, 761 images). Two subject-level covariates, age and

sex were available. For every subject, the images were non-
overlapping and from the same TME region. After segmenting the
images, the subjects had varying number of identified cells (from
3755 to 16 949). We worked directly with the cell-level data as
described next. The cells come from two different tissue regions:
tumor and stroma. They were classified into either of the six differ-
ent cell types: CD14þ, CD19þ, CD4þ, CD8þ, CKþ and Other,
based on the expression of the phenotypic markers, CD19, CD3,
CK, CD8 and CD14. These markers (and the cell-types) usually
have clinical meaning, e.g. CK is a type of a tumor cell marker and
CD4 and CD8 are T-cell or cytotoxic T-cell markers. Apart from
these, a functional marker HLA-DR (also known as MHCII), was
measured in each of the cells. Johnson et al. (2021) classified the
subjects into two groups, (a) MHCII: High and (b) MHCII: Low
based on the proportion of CKþ tumor cells that are also positive
for HLA-DR (i.e. CKþHLA�DRþ cells). They discovered that
group (a) had significantly higher 5-year overall rate of survival
(reported P-value of 0.046).

Note that having a large number of CKþHLADRþ tumor cells
implies that these two markers had co-expressed in a lot of the
tumor cells. In light of that, we studied if the degree of co-expression
of these markers in the tumor cells, as quantified by our method,
was associated with the survival. Considering the tumor cells of
every subject j, we first estimated EQMI�; Ej ¼ dEQMI

�
ðX1j;X2jÞ be-

tween the two markers, HLA-DR and CK. Next, we tested the asso-
ciation of Ej with 5-year overall survival using the Cox-PH model
from Equation (5). The coefficient c was �7.26 with the P-value of
the LRT being 0.0286. Thus, subjects with high co-expression of the
markers in the tumor cells were more likely to survive. The result
was thus consistent with Johnson et al. (2021)’s finding. The esti-
mated coefficient, hazard ratio (HR) and P-value of all the methods
are listed in Table 1 and further details such as confidence interval
of the HR, are provided in the Supplementary Material. The
correlation-based analysis (Corr) yielded a negative coefficient esti-
mate but was not statistically significant (at level 0.05). Out of the
thresholding-based methods, only Threshold 2 had a significant P-
value. It demonstrated that the traditional thresholding-based
method could vary heavily based on the choice of the thresholds
leading to utterly different conclusions. On the other hand, inference
using our method would be robust.

We should point out that CK was a phenotypic marker, and
studying its co-expression with a functional marker HLA-DR might
not have much clinical relevance. However, the goal was to demon-
strate that our method obviates the need to binarize the continuous-
valued marker expression profiles and is potentially applicable even
when one of the markers is a phenotypic marker.

3.2 Application to TNBC MIBI data
The TNBC MIBI dataset (Keren et al., 2018) had 38 subjects, each
with one image. There were 201 656 cells in total with each of the
images having varying numbers of cells (between 1217 and 8212).
There were 49 markers in total, the majority of which were lineage
or phenotypic markers, used primarily for cell-type identification.
We were interested in two sets of functional markers, (a) HLA-DR,
CD45RO, H3K27me3, H3K9ac and HLA-Class-1, and (b) PD1,
PD-L1, Lag3 and IDO, also known as IRP’s. The reason for concen-
trating on these two sets of markers was the findings of Patwa et al.

Table 1. Estimated coefficient, hazard ratio (HR) and LRT P-value

for testing association with 5-year overall survival using different

methods in the mIHC lung cancer dataset

Method Coefficient (HR) LRT P-value

EQMI� �7.26 (0.0007) 0.0286

Corr �1.38 (0.2512) 0.1838

Median-thresholding �0.48 (0.6189) 0.0495

Threshold 1 �0.58 (0.5585) 0.0575

Threshold 2 �1.03 (0.3555) 0.0098
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(2021). Employing the thresholding-based method with a set of very
carefully chosen thresholds, they concluded that the pair-wise co-ex-
pression of the functional markers from the sets (a) and (b) were
negatively associated with two clinical outcomes, namely disease re-
currence and time to death (survival). For set (a), they did not find
any statistical significance for either of the clinical outcomes (at level
0.05), whereas, for set (b), they were able to find statistical signifi-
cance in the association test with recurrence (reported P-value of
0.0058).

For the co-expression analysis with the five markers from the set
(a), we looked into all possible (25 � 5� 1 ¼ 26) two-way and
higher-order combinations of the markers. There were four different
types of combination, namely pair (10), triplet (10), quadruplet (5)
and quintuple (1). We computed EQMI� for each combination of
the markers and tested for association with recurrence and survival.
In Table 2, we list the results for five marker combinations for which
the lowest P-values were observed. We noticed that at a level of
0.05, several marker-combinations were found to be associated with
recurrence. All the estimated coefficients were negative, implying
that higher co-expression of the markers decreased the chance of dis-
ease recurrence. However, once we adjusted the P-values for mul-
tiple testing correction using Bonferroni’s method (Bonferroni,
1936), only the combinations ‘HLA-DR, CD45RO’ and ‘HLA-DR,
CD45RO, H3K9ac’ remained significant. Note that, we compared
the P-values of every type of combination separately, meaning that
for marker pairs and triplets, we compared the P-values at level
0.05/10 since the numbers of pairs and triplets were both 10, and
for quadruplets, at level 0.05/5 since the number of quadruplets was
5. The marker-combinations were not independent and thus, a
Bonferroni correction probably has been overly conservative in this
case. For the survival outcome, we did not detect any statistical sig-
nificance. But, the negative coefficient estimates hinted at a possible
association of better rate of survival with higher co-expression.

For the co-expression analysis with the four IRP’s from the set
(b), we looked into all possible (24 � 4� 1 ¼ 11) two-way and
higher order combinations. There were four different types of com-
bination, namely pair (6), triplet (4) and quadruplet (1). In Table 2,
we list the results for five marker combinations for which the lowest
P-values were observed. At a level of 0.05, many of the marker-
combinations were found to be associated with both recurrence and

survival. Again, all the estimated coefficients were negative, imply-
ing that higher co-expression of the markers decreased the chance of
disease recurrence. Upon correcting the P-values for multiple testing
using Bonferroni’s method, all of the marker combinations listed in
Table 2 remained significant for recurrence while for survival, none
of them remained significant. We compared the P-values of every
type of combination separately, meaning that for marker pairs we
compared the P-values at level 0.05/6 since the number of pairs was
6, for triplets we compared the P-values at level 0.05/4 since the
number of triplets was 4, and for quadruplet, at level 0.05 since
there was just a single quadruplet. Thus, we also arrived at a similar
conclusion as Patwa et al. (2021) that the inter-play or co-
expression of the IRP’s were significantly associated with recurrence
and possibly also with survival. One added novelty of our method
was that one could easily pinpoint which of the combinations of the
IRP’s had the most impact.

It should be kept in mind that the sample-size for this dataset
was quite small with only 16 events for recurrence and 15 for sur-
vival. It might have affected the overall inference which was based
on asymptotic distributional properties of the test statistics. For the
same reason, we mainly focused on the sign of the coefficient esti-
mates but not their CI’s in this particular case. We also applied the
simple thresholding-based methods, Median-Thresholding,
Threshold 1 and Threshold 2 as described earlier using both the sets
of markers. We found only a single statistically significant result
which was for Median-Thresholding using set (b) in the association
test with recurrence. Associated tables are provided in the
Supplementary Material.

4 Simulation

Next, we compared the performance of the EQMI�-based associ-
ation analysis with the correlation-based association analysis and
the thresholding-based methods in different simulation setups. We
assumed that there were two groups of subjects, one with subjects
having high marker co-expression and the other with subjects
having low or almost zero marker co-expression. In Section 4.1, we
considered two markers sharing linear and non-linear patterns of
co-expression relationship. In Section 4.2, we considered three
markers sharing varying degree of linear co-expression relationship.

4.1 Simulation with two markers
4.1.1 Simulation using Gaussian copula

We replicated the characteristics of the lung cancer dataset in this
simulation. The mean marginal distribution of the markers HLA-
DR and CK across the subjects could be approximated by Beta dis-
tribution respectively with parameters, ð1:5; 170Þ and ð1:6; 35Þ
(refer to the Supplementary Material). We used a Gaussian copula
(Masarotto and Varin, 2012) to simulate correlated intensity data
for two markers which had the above marginal Beta distributions.
The simulation strategy was as follows,

1. A random number Ij between 0 and 1 was chosen with probabil-

ity 0.5 each, respectively standing for group (1), whose subjects

had high co-expression of the markers and group (2), whose sub-

jects had mild to none co-expression of the markers. It assigned

j-th subject to either of the two groups.

2. The intensity vector of two markers, ðX1ij;X2ijÞT for every indi-

vidual j was simulated as follows,

a. If Ij ¼ 0, simulate a correlation parameter qj from

Unifð0:75;0:9Þ, or else simulate qj from Unifð0; 0:15Þ.
b. Consider a correlation matrix, Rj ¼ ½ 1 qj

qj 1 � and simulate

ðu1ij; u2ijÞT 	 N2ð0;RjÞ for i ¼ 1; . . . ; nj:

c. Compute ðv1ij; v2ijÞT ¼ ðUðu1ijÞ;Uðu2ijÞÞT , where UðÞ denotes

the cumulative distribution function of the standard normal

distribution.

d. Perform inverse transformation as,

Table 2. Estimated coefficient and LRT P-value for testing associ-

ation with recurrence and survival for five combinations of the

markers from sets (a) and (b) with the lowest P-values, obtained by

the proposed method in the MIBI dataset

Clinical Marker Coefficient LRT

Outcome Combination P-value

Recurrence HLA-DR, CD45RO �32.97 0.0022

HLA-DR, CD45RO, H3K9ac �12.48 0.0051

HLA-DR, CD45RO, H3K27me3 �6.73 0.0245

CD45RO, H3K9ac �41.53 0.0329

HLA-DR, CD45RO, HLA-Class-1 �7.20 0.0421

Survival HLA-Class-1, H3K27me3 �12.75 0.1010

HLA-DR, H3K9ac �8.27 0.1542

HLA-DR, CD45RO �8.35 0.1583

HLA-DR, HLA-Class-1 �29.69 0.1630

HLA-DR, CD45RO, H3K9ac �0.74 0.3158

Recurrence PD1, PD-L1 �9.61eþ 03 0.0046

PD1, PD-L1, IDO �5.54eþ 02 0.0065

PD1, PD-L1, Lag3, IDO �4.37eþ 02 0.0069

PD-L1, Lag3, IDO �8.94eþ 02 0.0084

PD1, PD-L1, Lag3 �1.91eþ 02 0.0090

Survival PD-L1, Lag3 �1.20eþ 02 0.0103

Lag3, IDO �1.14eþ 02 0.0302

PD-L1, Lag3, IDO �5.67eþ 02 0.0449

PD-L1, IDO �6.85eþ 02 0.0490

PD1, PD-L1, Lag3, IDO �2.15eþ 02 0.0586
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e. ðX1ij;X2ijÞT ¼ ðF�1
1 ðv1ijÞ; F�1

2 ðv2ijÞÞT , where F1 and F2 are

Beta distributions with parameters ð1:5;170Þ and ð1:6;35Þ.
Refer to the Supplementary Material for plots of the true

joint densities of the markers for two groups of subjects.

3. The clinical outcome of j-th subject is simulated as, Yj ¼ Ijbþ �j,
where �j 	 Nð0; r2Þ: This step is repeated 100 times to generate

100 different datasets having different Y vectors but the same in-

tensity vectors, X1 and X2. All the methods are applied on these

100 datasets and empirical power is computed.

Steps 1� 3 were repeated 20 times and the mean empirical
power of different methods were displayed for varying values of the
number of cells ðncellsÞ and the number of individuals (N) in
Figure 2. The EQMI�-based association analysis (EQMI) and the
correlation-based association analysis (Corr) achieved comparable
performance in all the cases. This particular simulation strategy in-
herently assumed that the dependence between the markers was lin-
ear. Thus, the estimated values of the EQMI� and the correlation
shared an almost one-to-one relationship making the association
analysis using either of them equivalent. Median-Tresholding and
Threshold 1 showed similar performance, whereas Threshold 2 had
consistently lower power. It showed the importance of choosing a
proper threshold in the traditional thresholding-based method for
achieving a reasonable performance. All the methods expectedly had
the least power when N was the smallest, whereas the value of ncells

did not have any major impact. It implied if the co-expression pat-
tern was well captured even through a smaller number of cells, most
of the methods would perform well.

4.1.2 Simulation with squared marker co-expression relationship

The last simulation strategy essentially assumed a linear pattern of co-
expression between the markers. Next, we simulated a non-linear pat-
tern of co-expression between the markers where we would expect
the correlation-based association analysis (Corr) to perform worse
since it could only capture a linear dependence pattern. Steps 1 and 3
of the last simulation strategy were kept the same here and the
marker-intensity simulation step, i.e. step 2 was changed as follows,

2a. If Ij ¼ 0, simulate X1ij from Unifð0; 0:1Þ, and eij from

Unifð0; 0:0005Þ. Construct X2ij as,

X2ij ¼ ðX1ij � 0:05Þ2 þ eij:

2b. If Ij ¼ 1, independently simulate x1ij; x2ij both from

Unifð0; 0:1Þ.

From Figure 2, we noticed that the EQMI�-based association
analysis performed the best in all the cases. Threshold 1 and 2
achieved comparable performance for large value of ncells, whereas
Median-Thresholding mostly yielded poor performance. Note that
for both the groups of subjects, the correlation between the markers
were close to zero as the dependence pattern was non-linear,
squared to be specific. Expectedly, the correlation-based association
analysis (Corr) had almost no power in every case. The simulation
strategy demonstrated why using a generalized measure of co-
expression such as EQMI� would be more optimal in many cases.

4.1.3 Simulation with circular marker co-expression relationship

In the last simulation setup, the thresholding-based methods per-
formed well despite the marker co-expression pattern being non-
linear. Next, we looked into a slightly more complicated co-
expression relationship for which the thresholding-based approach
would suffer. Steps 1 and 3 of the last two simulation strategies
were kept the same here and the Step 2 was changed as follows,

2a. If Ij ¼ 0, simulate X1ij from Unifð0; 0:1Þ, eij from

Unifð0; 0:0005Þ and a random number sij between �1 and 1.

Construct X2ij as,

X2ij ¼ 0:05þ sij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:052 � ðX1ij � 0:05Þ2

q
þ eij:

2b. If Ij ¼ 1, independently simulate X1ij;X2ij both from

Unifð0; 0:1Þ.

From Figure 2, we noticed that the EQMI�-based association
analysis performed the best in all the cases. The correlation-based
association analysis (Corr) expectedly performed the worst.
Threshold 1, unlike the last simulation, performed significantly
worse. In this simulation setup, the subjects of one group had a cir-
cular pattern of marker co-expression and the others had almost
zero co-expression. Recall that in a two-marker scenario, the
thresholding-based methods depended on computing the propor-
tions of the cells positive for both the markers and of the cells posi-
tive for only one of the markers (Section 2.1). The difference
between these proportions across the two groups of subjects became
negligible under this setup which made it difficult distinguishing be-
tween them. This explained the overall poor performance of all the
thresholding-based methods.

4.2 Simulation with three markers
Next, we considered three markers and simulated varied degree of
linear dependence between them using Gaussian copula. We only
performed the EQMI�-based association analysis and the
thresholding-based methods in this case. There were again two
groups of subjects respectively with high and low co-expression. The
simulation strategy was as follows,

1. A random number Ij between 0 and 1 was chosen with probabil-

ity 0.5 each, respectively standing for groups (1) and (2).

2. The intensity vector of three markers, ðX1ij;X2ij;X3ijÞT for every

individual j was simulated as follows,

i. Consider a correlation matrix, Rj ¼
1 q12j q13j

q12j 1 q23j

q13j q23j 1

2
64

3
75.

For the subjects in group (1), the off-diagonal elements of

the correlation matrix would have high values, whereas

they would have low values for the subjects in group (2).

We considered three different cases with varying differences

between the correlation matrices of the two groups.

Case (a): If Ij ¼ 0, the correlation parameters q12j; q23j and q13j were
independently simulated from Unifð0:4;0:6Þ. Otherwise,
they were independently simulated from Unifð0:2; 0:4Þ.

Case (b): Regardless of the value of Ij, q13j was kept to be 0. If Ij ¼
0, q12j and q23j were independently simulated from
Unifð0:4; 0:6Þ. Otherwise, these two were independently
simulated from Unifð0:2;0:4Þ.

Case (c): Regardless of the value of Ij, q13j and q23j were kept to be
0. If Ij ¼ 0, q12j was simulated from Unifð0:4; 0:6Þ.
Otherwise, it was simulated from Unifð0:2; 0:4Þ.

ii. Simulate ðu1ij; u2ij; u3ijÞT 	 N3ð0;RjÞ and compute ðv1ij;

v2ij; v3ijÞT ¼ ðUðu1ijÞ;Uðu2ijÞ;Uðu3ijÞÞT .

iii. Perform inverse transformation as, ðX1ij;X2ij;X3ijÞT ¼
ðF�1

1 ðv1ijÞ; F�1
2 ðv2ijÞ;F�1

3 ðv3ijÞÞT , where F1, F2 and F3 are the

Beta distributions respectively with parameters ð1:5; 170Þ;
ð1:6;35Þ and ð1:6;35Þ.

3. The clinical outcome of j-th subject was simulated as,

Yj ¼ Ijbþ �j, where �j 	 Nð0;r2Þ: This step was repeated 100

times to generate 100 different datasets having different Y vec-

tors but the same intensity data, X1, X2 and X3. All the methods

were applied on these 100 datasets and empirical power was

computed.

Steps 1–3 were repeated 20 times and in Figure 3, the mean em-
pirical power of the methods were displayed. The power of the
methods were quite low when N was small. The EQMI�-based
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method outperformed both the thresholding-based methods,
Threshold 1 and 2 in every case. Threshold 2 had little to no power
in most of the cases. Note that, the cases (a), (b) and (c) differed in
how different the marker co-expression pattern of the two groups
were. The difference between the marker co-expression pattern of
the two groups was the largest in case (a) since all the three

correlation parameters, q12j;q23j and q13j were different across the
groups. The difference was the smallest in case (c) as two of the
three correlation parameters, q23j and q13j were kept to be 0 in both
the groups. Quite expectedly, the power of the methods decreased
going from case (a) to case (c), as the difference between the groups
of subjects reduced. The decrease was more prominent with
Threshold 1 suggesting the method’s lack of robustness.

5 Discussion

In multiplex imaging data, studying the interaction or co-expression
of multiple functional markers in the cells of the TME can be crucial
for subject-specific assessment of risks. The traditional approach
requires a complex step of binarizing the continuous valued marker
expression profiles which is prone to subjectivity and can be sub-
optimal in many scenarios. The complexity gets exacerbated as the
number of markers increases. In this article, we propose a method
for studying interaction or co-expression of multiple markers based
on the theory of mutual information (MI). We treat the subject-
specific intensity or expression of every marker as a continuous ran-
dom variable. We determine how much the markers have co-
expressed in the TME of a particular subject by computing a meas-
ure known as EQMI, comparing the estimated marginal and joint
PDFs of the markers. The formula of EQMI has a similar interpret-
ation as the standard formula of MI but allows a more efficient com-
putation. We adopt and generalize an existing algorithm for
computing EQMI that does not require explicitly estimating the
joint PDF of the markers, a step which becomes increasingly intract-
able as the number of markers increases. Next, the subject-level
EQMI values are tested for association with the clinical outcomes.
The proposed method is free from the subjectivity bias of the trad-
itional thresholding-based method and is readily applicable with any
number of markers.

We applied the proposed method to two real datasets, one
mIHC lung cancer dataset and one MIBI triple negative breast can-
cer dataset. In the former, we found high co-expression of the
markers, HLA-DR and CK to be associated with the 5-year overall

Fig. 2. The figure displays the power of different methods under different simulation scenarios from Section 4.1 with two markers for varying numbers of subjects (N) and cells

(ncells). On the x-axis, the fixed effect size b was varied from low to high

Fig. 3. The figure displays the power of different methods under different cases from

Section 4.2 with three markers for varying numbers of subjects (N) and cells (ncells).

On the x-axis, the fixed effect size b was varied from low to high
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survival of the subjects. In the latter, we found high co-expression of
the proteins, PD1, PD-L1, IDO and Lag3 to be associated with dis-
ease recurrence. We evaluated the performance of our method
through several simulation scenarios with two and three markers. In
the scenarios with two markers, we showed that all the methods per-
form well and close to each other if the pattern of dependence (co-
expression) between the markers is linear. However, with a more
complex non-linear dependence pattern, only the proposed method
could achieve respectable power. In the scenarios with three
markers, we found that the proposed method performed consistently
better than the thresholding-based method and showed superior
robustness.

As we have shown in the simulation studies, EQMI can capture
both linear and non-linear patterns of co-expression between the
markers very well. However, the measure is not well suited for cap-
turing the differences between the patterns. For example, it may
happen that one subject has a linear pattern of co-expression, where-
as some other subject has a non-linear pattern. The EQMI for both
the subjects can be very similar, making it hard to distinguish
between them. As a part of our future direction, we would like to
improve the method by detecting and incorporating the type of the
co-expression pattern. With more than two markers, we studied the
co-expression patterns of all possible combinations of the markers
and declared significance based on P-values corrected by
Bonferroni’s method. However, in future, we would like to explore
the causal direction between the markers which can then be used to
determine a smaller and optimal set of markers and would obviate
the need of exploring all possible marker-combinations. In this art-
icle, we have not used any information on the spatial locations of
the TME cells. As a future direction, we would like to study the MI
between the spatial information and the marker expression profiles
with a goal to detect spatially variable markers and their spatial
patterns.

Our method is available as an R package named MIAMI at this
link, https://github.com/sealx017/MIAMI. The package is readily
applicable to any multiplex imaging dataset which has cell-level in-
tensity data on two or more markers. In future, we would like to fur-
ther augment the package’s capability by incorporating a pixel-level
analysis as well.
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Székely,G.J. et al. (2007) Measuring and testing dependence by correlation of

distances. Ann. Stat., 35, 2769–2794.

Tan,W.C.C. et al. (2020) Overview of multiplex immunohistochemistry/im-

munofluorescence techniques in the era of cancer immunotherapy. Cancer

Commun. (Lond.), 40, 135–153.

Therneau,T.M. (1997) Extending the cox model. In: Proceedings of the First

Seattle Symposium in Biostatistics. Springer, New York, NY, pp. 51–84.

Wand,M.P. et al. (1994) Multivariate plug-in bandwidth selection. Comput.

Stat., 9, 97–116.

Wong,J.Y. et al. (1997) Direct measurement of a tethered ligand-receptor

interaction potential. Science, 275, 820–822.

Xu,D. (1998) Energy, Entropy and Information Potential for Neural

Computation. University of Florida.

Yang,H. and Moody,J. (1999) Feature selection based on joint mutual infor-

mation. In: Proceedings of International ICSC Symposium on Advances in

Intelligent Data Analysis, Vol. 23. Citeseer, Rochester, NY.

Zola,H. et al. (2007) Leukocyte and Stromal Cell Molecules: The CD

Markers. John Wiley & Sons, New Jersey.

3826 S.Seal and D.Ghosh


