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Integration of Omics Data Sources to Inform  
Mechanistic Modeling of Immune-Oncology  
Therapies: A Tutorial for Clinical 
Pharmacologists
Georgia Lazarou1,†, Vijayalakshmi Chelliah1,†, Ben G. Small1, Michael Walker1, Piet H. van der Graaf1 and 
Andrzej M. Kierzek1,*

Application of contemporary molecular biology techniques to clinical samples in oncology resulted in the 
accumulation of unprecedented experimental data. These “omics” data are mined for discovery of therapeutic 
target combinations and diagnostic biomarkers. It is less appreciated that omics resources could also revolutionize 
development of the mechanistic models informing clinical pharmacology quantitative decisions about dose amount, 
timing, and sequence. We discuss the integration of omics data to inform mechanistic models supporting drug 
development in immuno-oncology. To illustrate our arguments, we present a minimal clinical model of the Cancer 
Immunity Cycle (CIC), calibrated for non-small cell lung carcinoma using tumor microenvironment composition 
inferred from transcriptomics of clinical samples. We review omics data resources, which can be integrated to 
parameterize mechanistic models of the CIC. We propose that virtual trial simulations with clinical Quantitative 
Systems Pharmacology platforms informed by omics data will be making increasing impact in the development of 
cancer immunotherapies.

Cancer was the second leading cause of death in 2018, remaining 
one of the major medical challenges attracting substantial invest-
ment both in academic research and drug development. Given 
that cancer originates from molecular changes of DNA in a single 
cell of an individual patient, oncology has always been at the fore-
front of the application of molecular and cell biology. The advent 
of next-generation sequencing (NGS) has provided experimental 
capability for determining DNA and RNA sequences of individ-
ual tumors in clinical samples obtained from individual patients.1 
Remarkably, the full genome and transcriptome sequencing of 
tens of thousands of single cells from individual tumor biopsies 
has recently become available as well.2 Intensive effort over the last 
decade has led to the establishment of data resources of an unprec-
edented scale and molecular detail. The Cancer Genome Atlas 
(TCGA)1 alone contains genome and transcriptome sequences of 
over 20,000 primary cancer and matched normal samples span-
ning 33 cancer types, amounting to about 1 petabyte of data.

Immunotherapy, where treatments mobilize the patient’s own 
immune system to fight cancer and provide lasting therapeutic 
benefit, is currently a hot topic in oncology.3 Although the concept 
of immuno-oncology (IO) is not new, recent success stories with 
immune checkpoint inhibitors have brought it to the forefront of 
drug discovery and development, and IO is now one of the most 
competitive and fast-growing areas of pharmaceutical research and 
development. Unsurprisingly, this precipitated a lot of recent effort 

in application of high-throughput experimental techniques and a 
corpus of omics data specific to IO is quickly growing. In particu-
lar, the “Immune Landscape of Cancer”4 resource integrates mul-
tiple omics data (genome, transcriptome and miRNA sequencing, 
methylation arrays, DNA copy number, and mutation calls) col-
lected and analyzed to characterize immune-cell composition and 
gene expression in the tumor microenvironment of 11,080 TCGA 
samples from 33 cancer types. Figure 1 shows example charts that 
can be generated through the Shiny App interface accompanying 
this resource. The DNA sample purity was used to infer the fraction 
of leukocytes, stroma, and proliferating tumor cells (Figure 1a); 
this was followed by deconvolution of transcriptome data to derive 
fractions of 22 immune cell types (Figure 1b). These data can be 
extracted for a particular cancer type (e.g., lung adenocarcinoma), 
providing unprecedented insight into immune cell infiltration of 
the tumor microenvironment. Given that IO explores interactions 
between the immune system and tumor, the datasets describing 
a baseline state of the immune system in an individual without a 
tumor are also of great relevance. Figure 1c shows plots obtained 
by querying “The Milieu Intérieur”5 resource, which contains re-
sults of high-throughput flow cytometry of 166 immune cell types 
in peripheral blood and full genome sequencing of 1,000 individ-
uals. These data provide unique insight into baseline numbers of 
immune system cell types involved in the response to cancer, as a 
function of age and infection.
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The wealth of omics data is currently analyzed by statistical and 
machine-learning techniques to discover combinations of ther-
apeutic targets and to formulate complex multivariate diagnostic 
techniques supporting risk assessment and diagnostics in individual 
patients. For example, the Immune Landscape of Cancer4 data were 
subjected to multivariate cluster analysis, which led to stratification 
of tumor samples into six immune subtypes (Figure 1a,b). The im-
mune response patterns are hypothesized to impact prognosis and 
may be used in the future to formulate diagnostic tests assigning 
individual subjects to the group most likely to respond to a par-
ticular combination immunotherapy. Likewise, the gene expression 

program features—which are unique to these clusters—may lead 
to the discovery of new combination therapy targets. However, 
when the identity of pharmacological targets is established, omics 
data find much lesser utility in target validation and prediction of 
efficacious doses, timings, and sequences. Quantitative Systems 
Pharmacology (QSP)6 integrates pharmacokinetic (PK) and phar-
macodynamic (PD) models—which are widely used in the phar-
maceutical industry to simulate dynamic (longitudinal) responses 
of clinical biomarkers to different dosing regimens—with mecha-
nistic models of molecular and cellular biology developed over the 
last 2 decades in the field of systems biology. Thus, QSP provides 

Figure 1  Examples of recent, state-of-the-art molecular and cell biology datasets relevant to immune-oncology. (a, b) Data on the tumor 
microenvironment (TME) composition in lung adenocarcinoma (LUAD) extracted from the Immune Landscape of Cancer resource. Distributions 
are plotted separately for each of the six immune subtypes identified by cluster analysis of all data. a Leukocyte, proliferating tumor, and 
stroma fractions of the TME, derived from sample purity of full genome sequencing of tumor biopsies. b Fractions of 22 leukocyte types 
inferred from transcriptome sequencing of tumor biopsies and gene expression signatures. (c) High-throughput flow cytometry of peripheral 
blood in healthy volunteers from “The Milieu Intérieur” study, reflecting the state of the immune system as a function of age and infection. All 
plots were made with Shiny app web interfaces to “Immune Landscape of Cancer” and “The Milieu Intérieur” databases.
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an ideal quantitative framework for integration of diverse omics 
data sources and translation of molecular data to clinical outcomes. 
Moreover, mechanistic models provide insight into the dynamics 
of the complex network of molecular and cellular interactions be-
tween the immune system and cancer, frequently referred to as the 
Cancer Immunity Cycle (CIC).3 After low-hanging fruits of check-
point inhibitors were exploited, validation of new combination 
targets increasingly requires in-depth quantitative understanding 
of the intricate network of feedbacks that lead to counterintuitive, 
nonlinear dynamic responses to drug doses. This necessitates the 
use of mathematical models of sufficient scale and detail to inform 
drug development decisions with virtual trial simulations predict-
ing the effects of dose combinations on clinical outcomes.

Although modeling of the interaction between the immune sys-
tem and tumors is a longstanding topic in mathematical biology,7–9 
the new interest triggered by the success of IO has led to intensive 
development of large-scale QSP platform models to support de-
velopment of combination therapies.10,11 However, determination 
of the parameters of these models and their further calibration for 
specific compounds, cancers, and patient populations has been an 
enduring challenge, frequently addressed by the allometric scaling 
of models developed first for syngeneic mouse tumors. However, 
the translatability of such preclinical models and their utility for 
clinical pharmacologists remains controversial. Therefore, here, we 
argue that the recent availability of clinical omics data now enables 
direct parameterization of the clinical QSP models in the IO area, 
and calibration of these models for specific diseases and populations. 
Mechanistic models then allow “virtual trial” simulations, thus ex-
tending the use of molecular data to the prediction of longitudinal 

responses of clinical biomarkers to different dose amounts. Because 
many clinical pharmacologists are likely not familiar with this 
novel approach, we illustrate our arguments through a tutorial 
using a minimal QSP model of the CIC calibrated with immune 
landscape data for non-small cell lung carcinoma (NSCLC) and 
simulate a virtual trial for anti-PD1 treatment. We then demon-
strate that different types of high-throughput molecular and cell 
biology data cover all stages of the cancer immunity cycle, allowing 
parameterization of large-scale QSP IO platform models.

A MINIMAL MODEL OF CANCER IMMUNITY CYCLE
The minimal QSP model of the CIC is shown in Figure 2 and 
described in detail in the Supplementary Material. Although 
the model allows realistic simulation of CIC dynamics and an im-
mune checkpoint inhibitor treatment, it has been built for illus-
tration purposes only. We believe that an example showing how 
specific “omics” data can be integrated with a fully functional 
mechanistic model and translated to clinical biomarkers will help 
clinical pharmacologists to appreciate the potential of this novel 
approach.

Briefly, we have built an ordinary differential equation model de-
scribing the dynamics of the fundamental CIC stages (Figure 2a): 
(i) tumor growth inhibition and neoantigen release, (ii) neoanti-
gens captured by antigen-presenting cells (APCs) for processing 
and presentation to T-cells, (iii) cytotoxic T-cell priming and ac-
tivation by APCs, (iv) trafficking of T-cells to the tumor micro-
environment (TME), (v) infiltration of T-cells into tumors, (vi) 
recognition of cancer cells by T-cells, and (vii) killing of cancer 
cells. This model of basic biology is integrated with a PK and PD 

Figure 2  Minimal Cancer Immunity Cycle (CIC) model. (a) Schematic representation of the CIC. (b) Biological process map of the minimal 
CIC model. TME, lymph_node, tumor microenvironment (TME) and lymph node compartments; TGI, tumor growth inhibition module; antigens, 
cancer neoantigens; antigen-presenting cell (APC)_tme, APC_ln, antigen-presenting cells in the TME and lymph node compartments; Tc_ln,  
Tc_tme, cytotoxic T-cells in the lymph node and TME compartments; anti-PD1_IS, anti-PD1_Central, anti-PD1_Peripheral, anti-PD1, variables of 
the pharmacokinetic (PK) model representing anti-PD1 antibody in injection site, central, peripheral, and TME compartments. The map shows 
modules enclosing model variables, rate laws, and parameters. A detailed map with expanded modules is available in the Supplementary 
Material.
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model of an anti-PD1 antibody. The whole model consists of 11 
variables, 17 rate laws (interactions), and 49 parameters. Only two 
compartments are included: TME and lymph node. We do not 
explicitly model dynamics of immune system cells in peripheral 
blood. Circulation and migration of leukocytes is implicitly ac-
counted for in rate laws that describe the transition of APCs to the 
lymph node and infiltration of the TME by T-cells.

Definitions of model variables and rate laws represent litera-
ture knowledge on the cancer immunity cycle. The granularity 
of variables in the QSP model reflects its context of use. Our aim 
here is to show how certain types of omics data can be used to in-
form virtual trial simulations of the dynamic behavior of clinical 
biomarkers. A full-scale QSP IO platform allowing discovery and 
validation of combination targets would require many more vari-
ables. The integration of multiple omics datasets in such a plat-
form is discussed below. Our example model was built using our 
in-house QSP platform software, which allows visualization of the 
full model structure in a modular biological process map as well 
as model code export in MATLAB and R. Figure 2b shows an 
overview of the biology; modules are used to hide details of model 
variables, parameters, rate laws, and algebraic assignments. A map 
showing the full model structure is available in the Supplementary 
Material Figure S1. We also provide executable model code in 
MATLAB and R, as well as a full list of variable names, rate laws, 
assignments, compartments, and literature references.

MINIMAL MODEL CALIBRATION USING OMICS DATA
Having formulated the biological process map of the minimal 
CIC model and rate laws quantitatively describing the interac-
tions, we proceeded to parameterize the model for a particular 
disease and therapy of interest. As our example application, we 
chose NSCLC treatment with pembrolizumab, an anti-PD1 
monoclonal antibody. The aim was to calibrate the minimal CIC 
model to describe particular patients with NSCLC from the 
KEYNOTE-001 clinical trial for which tumor growth was mea-
sured during treatment with 10 mg/kg pembrolizumab adminis-
tered every 3 weeks (10 mg/kg q3w).12 The calibrated QSP model 
could be used to predict the effects of other dosing regimens and 
to identify biological processes, which can be pharmacologically 
targeted to enhance the effect of anti-PD1 treatment. We note 
that the purpose of our study is to demonstrate how omics data 
can be used to calibrate a QSP model, rather than to qualify a 
model for application in drug development.

Figure 3 shows the constraints on state variables in the minimal 
CIC model based on data from “Immune Landscape of Cancer” 
(Figure 1a,b), high-throughput flow cytometry of human donor 
tissues,13–15 T-cell repertoire sequencing,16 and the established lit-
erature of basic cellular composition of the immune system. State 
variables describing cell populations in most QSP models in IO—
including the minimal model presented here—are expressed as 
absolute cell numbers rather than relative amounts. Given the so-
phistication of experimental methods used to obtain relative data, 
it is surprising that data on reference absolute leukocyte counts in 
human tissues are still sparse. Here, we used the estimates of abso-
lute numbers of leukocytes in human tissues presented by Trepel in 
1974,17 which have also been accepted as a reference in other work 

in quantitative immunology.18 We combined this information 
with data reported by Scott et al.19 on the fraction of CD8 events 
in T-cells isolated from excised healthy human lymph nodes.

Finally, we used clinical data for the individual growth trajec-
tories of NSCLC tumors of 4 patients treated with 10  mg/kg 
pembrolizumab q3w (shown in Figure 3) to calibrate parameters 
in the model that could not be defined using omics data.12 These 
parameters correspond to the processes of tumor growth, its killing 
by cytotoxic T-cells, and drug action via the PD1 checkpoint. Our 
model describes, rather than predicts, the behavior of the system 
for these four tumors subjected to this dosing regimen, and could 
be used to predict the behavior of other tumors, the effects of other 
dose regimens applied in the clinical trial (10 mg/kg q2w, 2 mg/kg 
q3w), as well as sensitivity of dose response to perturbation of indi-
vidual steps of the CIC, thus informing the discovery of combina-
tion targets. However, we emphasize that the model presented here 
has been built for the purpose of demonstrating data sources that 
can inform mechanistic modeling of immune-oncology therapies.

A comprehensive description of the model calibration proce-
dure that uses the latest corpus of omics data is provided in the 
Supplementary Material.

VIRTUAL TRIAL SIMULATION
In a virtual trial simulation, a mechanistic model is used to predict 
variability in clinical biomarker responses to treatment resulting 
from biological variability in the patient population. Following 
industry-standard methodology established in the physiological-
ly-based pharmacokinetic modeling field,20 the parameters and 
initial states (inputs) of an ordinary differential equation model 
are randomly generated following distributions derived from liter-
ature data. Each configuration of model inputs represents a virtual 
patient (VP). The virtual trial is a collection of simulation results 
obtained for a number of VPs. Because a mechanistic model sim-
ulates clinical biomarkers quantitatively, simulation results can 
be analyzed and plotted in the same way as experimental data. 
Figure 4 shows an example of a virtual trial simulation for a co-
hort of 489 subjects treated with 19 doses of 10 mg/kg anti-PD1 
pembrolizumab administered every 3 weeks. We chose the num-
ber of VPs to be equal to the total number of patients enrolled in 
the KEYNOTE-001 clinical trial and the duration of treatment 
to be representative of a typical length of treatment. A detailed 
description of the parameters, which were varied to generate the 
population of VPs is available in the Supplementary Material, 
which also includes the code used for the simulation.

As demonstrated in Figure 4, simulation outputs can be di-
rectly compared with clinical biomarker data. The individual time 
profiles of tumor growth is within the range of longitudinal mea-
surements available for four clinical subjects. Because no data are 
available for untreated subjects, we can only conclude that tumor 
growth in treated subjects is much slower than in the case of one 
clinical subject who did not respond to treatment, and within the 
range of observations collected for three treatment-responsive sub-
jects. Simulation results can also be visualized as a clinical waterfall 
plot, as shown in Figure 4c, and compared to clinical biomarker 
measurements, such as the waterfall plot in Figure 4d (reproduced 
from the original source) that illustrates the responses of 118 
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patients in the KEYNOTE-001 trial that received treatment with 
pembrolizumab 10 mg/kg q3w. We note that the virtual trial simu-
lation for which results are shown in Figure 4c could not be set up 
to reproduce the clinical configuration for which data are shown in 
Figure 4d, primarily because the minimal CIC model that we pres-
ent here does not attempt to simulate clinical subjects dropping out 
of a study for reasons other than disease progression. We have only 
applied the criterion that virtual subjects whose tumor volumes 
double is removed from the trial and, therefore, their response is 
not recorded in the waterfall plot. Congruence of the clinical trial 
data and the virtual trial simulation could be further improved by 
introducing statistical models relating model variables to dropout 
probability (hazard functions) and calibrating these functions 
with existing clinical data on other compounds. The inclusion of 
adverse event modeling would likely lead to increases in dropout 
rates and waterfall plots more congruent with clinical outcomes. 
Alternatively, we could calibrate the model against the particular 
cohort’s waterfall plot data in addition to the four individual tumor 
trajectories, whereas acknowledging that doing so would restrict 
the predictive applicability of the model. We believe that our ex-
ample virtual trial simulation is sufficient to demonstrate that QSP 

models of the CIC can be informed by multiple omics datasets 
and that these unique data can be translated to predictions directly 
comparable with measurements of clinical biomarkers.

THE OMICS DATA COVERAGE OF CANCER IMMUNITY CYCLE
A mature QSP platform model, applicable to drug development 
in IO, requires much more detailed coverage of the biological 
processes involved in CIC than the minimal example model 
presented above. This is because the major application of such a 
platform is in validation of combination targets—prediction of 
clinical trial results for different combinations of drugs admin-
istered at specific doses, timings, and sequences. This requires a 
large number of variables representing alternative biological pro-
cesses that can be potentially targeted, as well as variables repre-
senting molecular targets of individual compounds. In order to 
make useful predictions, all these variables need to be connected 
into one comprehensive system model. Therefore, the QSP plat-
form model of CIC requires a large number of immune system 
cell types to be explicitly accounted for, such as CD8, CD4, T-reg 
T-cells, dendritic cells, M1 and M2 macrophages, myeloid-derived 
suppressor cells, NK cells, and possibly many others. The T-cells 

Figure 3  Example integration of omics and clinical biomarker data. Figure shows the constraints on state variables in a minimal Cancer 
Immunity Cycle model based on omics data. Baseline, log-normal distributions of the fractions of cytotoxic T-cells and antigen presenting cells 
were derived from Immune Landscape of Cancer data. Insets show histograms of cell frequencies inferred from genomes and transcriptomes 
of individual lung cancer biopsies (N = 1156). The baseline number of neo-antigen specific T-cells was calculated based on data from high-
throughput flow cytometry of human tissues, T-cell repertoire sequencing, and the established literature of basic cellular composition of the 
immune system. Mechanistic model allows integration of these diverse datasets with longitudinal measurements of clinical biomarkers (tumor 
growth). APC, antigen-presenting cell; PK, pharmacokinetic; TGI, tumor growth inhibition; TME, tumor microenvironment.
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need to be modeled separately as naïve, memory, and effector 
types. Migration of cells among physiological compartments, such 
as the TME, lymph, blood, and possibly other tissues, needs to be 
modeled as well, especially to allow interpretation of biomarkers 
collected in peripheral blood, which is most experimentally ac-
cessible. Expression of targets, such as PD-1, PD-L1, and major 
histocompatibility complex (MHC) receptors, needs to be taken 
into account and more information about the molecular nature 
of antigens is needed to account for variability in antigenicity of 
individual patient tumors. Depending on the molecular nature 
of new targets that are of interest, this basic platform may need 
to be extended to include detailed representation of intracellular 
pathways (e.g., TGF signaling). Mechanistic modeling at this scale 
and detail seems to be overwhelming and a major limitation is the 
availability of quantitative experimental data required to param-
eterize and validate the models. Here, we argue that recently cre-
ated clinical omics data resources introduce a step change in data 
availability and thereby enable development of QSP platforms  
of previously unachievable scale, granularity, and predictive power 
in IO.

Figure 5 shows different types of omics data that can be used 
to inform detailed mechanistic modeling of different stages of 
the CIC. Further references to data resources are provided in 
Table 1. The Immune Landscape of Cancer4 is arguably the most 
prominent recently published high-throughput data resource in 
IO, which epitomizes the groundbreaking insight delivered by 

NGS technology. As described above, combination of sample 
purity analysis of full genome sequences and deconvolution of 
transcriptome sequencing data to infer the relative contribution 
of up to 22 distinct gene expression patterns provides quantita-
tive information about TME composition. An example query to 
the Immune Landscape of Cancer resource, shown in Figure 1b, 
demonstrates that quantitative information is available for most 
of the cell types that are relevant to IO. Perhaps the only major 
omission are myeloid-derived suppressor cells, which are a very 
heterogeneous population of myeloid cells difficult to separate 
from M2 macrophages and DCs.21 We demonstrate above how 
this information can be used to parameterize two cellular popula-
tion variables in an example mechanistic IO model, and a similar 
procedure could be applied to calibrate a much larger number of 
cell types in a full scale platform. Moreover, the > 10,000 individ-
ual clinical biopsies of 33 tumor types provide a sufficient body 
of data to allow statistical analysis of the biological variability of 
TME composition in particular cancers (e.g., lung adenocarci-
noma and lung squamous cell). The distributions of cell numbers 
resulting from this analysis will provide essential input to virtual 
trial simulations.

Another fundamental change to mechanistic modeling in IO 
comes from the knowledge of the molecular nature of cancer neo-
antigens. Treatment with immune checkpoint blockade agents 
such anti-P1, anti-PD-L1, or anti-CTLA4 can result in impres-
sive response rates and durable disease remission; however, it is 

Figure 4  Virtual trial simulation. Four hundred eighty-nine virtual subjects were generated by randomly varying selected model inputs. (a, b) 
Comparison of tumor growth curves with clinical data for a untreated subjects and b subjects treated with 19 doses of 10 mg/kg anti-PD1 
pembrolizumab administered every 3 weeks. Simulated data are plotted in blue for all subjects. Red lines and symbols show four treated 
clinical subjects, and three showing response to therapy. A nonresponding subject was assumed to represent an untreated tumor. (c) 
Simulated % change of final tumor size from baseline for each simulated subject (sorted in descending order; waterfall plot). Virtual subjects 
whose tumor doubled in size were removed from the trial (dropout rate 35%). (d) A waterfall plot from the KEYNOTE-001 clinical study.12
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successful only to a subset of patients. High tumor mutation bur-
den (TMB) is consistently associated with improved response rates 
of patients treated with checkpoint therapies;22–24 hence, several 
ongoing clinical trials are using TMB as a key stratification factor 
for checkpoint therapies.25 However, not all mutations give rise to 
immune-stimulating neoantigens. In other words, although ele-
vated TMB increases the chance of generating immunogenic neo-
antigens, it may not directly reflect the number of neoantigens that 
will actually be targeted by T-cells. Application of NGS to tumor 
samples has facilitated the generation of bioinformatics tools and 
databases that predict neoantigen burden in different tumor types, 
which can directly be used to parametrize antigenicity in mechanis-
tic models. The Tumor-Specific NeoAntigen database26 provides 
neoantigens specific to 16 tumor types derived from 7,748 tumor 
samples from TCGA and The Cancer Immunome Atlas.27 The da-
tabase provides predicted binding affinities between mutant and 
wild-type peptides and HLA class I molecules by NetMHCpan.28 

Therefore, a tumor antigenicity parameter that is empirically cali-
brated against clinical data—for example, by adjusting the rate of 
T-cell recruitment or scaling the amount of “effective” antigens 
produced by dying tumor cells—can now be parametrized by the 
above mechanistic approach. Remarkably, synthetic peptides de-
signed by translation of altered DNA sequence have been used 
to create antitumor CAR-T cells in a landmark example of per-
sonalized treatment.29 We note that this strategy has been already 
applied in QSP platform models of therapeutic protein antigenic-
ity, where well-established bioinformatics approaches were used 
to predict T-cell epitopes and MHCII receptor binding affini-
ties.30–33 Quantitative assessment of antigenicity can be further 
informed by high-throughput ex vivo assays16 used to determine 
naïve T-cell precursor frequencies, as demonstrated in our exam-
ple. Single-cell sequencing of T-cell receptors may contribute fur-
ther insight. Integration of all these data will allow prediction of 
antigenicity and its biological variability for a particular cancer, 

Figure 5  Coverage of Cancer Immunity Cycle (CIC) by clinical omics datasets. The type of datasets obtained from high-throughput 
experimental analysis of clinical samples, which can be integrated with observation of tumor growth in responding and nonresponding 
subjects to parameterize a full-scale Quantitative Systems Pharmacology platform model of the CIC. MHC, major histocompatibility complex; 
TME, tumor microenvironment.
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Table 1  High-throughput, clinical data relevant to mechanistic modeling of CIC

Type of data Data resource References

TME composition inferred from DNA 
sample purity and transcriptomics

https​://isb-cgc.shiny​apps.io/shiny-iatla​s/ 4

  https​://www.jci.org/artic​les/view/91190​#top 39

  https​://www.ncbi.nlm.nih.gov/pmc/artic​les/PMC67​18162/​ 40

  https​://github.com/riazn/​bms038_analysis 41

  https​://clinc​ancer​res.aacrj​ourna​ls.org/conte​nt/23/16/4897.figur​es-only 42

Bioinformatics prediction of neoantigen/ 
 MHCII binding

Review 43

  NNAlign: http://www.cbs.dtu.dk/servi​ces/NNAli​gn-2.0/ 44

  MultiRTA: http://bordn​erlab.org/MultiRTA (Dead link) 45

  NetMHCII(2.3) and NetMHCIIpan(3.2): www.cbs.dtu.dk/servi​ces/NetMH​CII-2.3 www.
cbs.dtu.dk/servi​ces/NetMH​CIIpan-3.2

46

  SMM-align: https​://doi.org/10.1186/1471-2105-8-238 47

  RANKPEP: http://imed.med.ucm.es/Tools/​rankp​ep.html 48

  OWA-PSSM: https​://doi.org/10.1186/1477-5956-11-S1-S15 49

  ProPred: http://www.imtech.res.in/ragha​va/propr​ed/ 50

  TEPITOPE 51

  TEPITOPEpan: http://datam​ining-iip.fudan.edu.cn/servi​ce/TEPIT​OPEpa​n/TEPIT​
OPEpan.html

52

Baseline lymph node composition 
from high throughput flow cytometry 
of healthy organ donors

http://dx.doi.org/10.1016/j.immuni.2017.02.019 14

  http://dx.doi.org/10.1016/j.cell.2014.10.026 13

  https​://onlin​elibr​ary.wiley.com/doi/full/10.1111/ajt.14434​ 15

  https​://immun​ology.scien​cemag.org/conte​nt/suppl/​2016/11/29/1.6.eaah6​506.
DC1

53

  http://dx.doi.org/10.1016/j.immuni.2012.09.020 54

Baseline blood composition from 
high throughput flow cytometry of 
healthy volunteers

http://milieu-inter​ieur.cytog​was.paste​ur.fr/ 5

  http://dx.doi.org/10.1016/j.immuni.2012.09.020 55

  https​://immun​ology.scien​cemag.org/conte​nt/suppl/​2016/11/29/1.6.eaah6​506.
DC1

53

  https​://onlin​elibr​ary.wiley.com/doi/full/10.1111/ajt.14434​ 15

  http://dx.doi.org/10.1016/j.cell.2014.10.026 13

  http://dx.doi.org/10.1016/j.immuni.2017.02.019 14
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  MHCflurry: https​://github.com/openv​ax/mhcfl​urry 59

  MHCSeqNet: https​://github.com/cmbcu/​MHCSe​qNet 60

  EDGE: https​://grits​toneo​ncolo​gy.com/scien​tific-platf​orm/ (proprietary) 61

T-cell receptor repertoire determined 
by single cell genome sequencing

MiXCR: https​://github.com/milab​orato​ry/mixcr​ 62

  MIGEC: https​://milab​orato​ry.com/softw​are/migec/​ 63
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informing prospective simulation of a virtual trial before any clini-
cal data for a therapy of interest are available.

A QSP model of the cancer immunity cycle simulates the re-
sponse of a healthy immune system to a growing tumor. Therefore, 
information about the baseline state of the immune system and its 
biological variability in a healthy-individual population is key for 
model parameterization. Obviously, the white blood cell count 
in peripheral blood is one of the most frequently conducted diag-
nostics and reference ranges based on very large sample sizes are 
available. However, the resolution of these data is very limited, 
with all lymphocytes (T-cells and B-cells) and monocytes (macro-
phages and dendritic cells) pooled together. Recent high-through-
put flow cytometry studies provided unprecedented insight into 
cellular composition of peripheral blood in healthy individuals. 
In particular, “The Milieu Intérieur” resource contains results of 
high-throughput flow cytometry of 166 immune cell types in pe-
ripheral blood of 1,000 individuals.5 The sample size is sufficient 
to compile baseline distributions of cell numbers at different age 
groups, as well as in individuals subject to infection and healthy 
individuals (Figure 1c). Other high-resolution flow cytometry 
studies of peripheral blood have also recently become available 
(Table 1).

Because of immune system cell proliferation, peripheral blood 
measurements may poorly reflect the state of the healthy immune 
system in tissues. The lymph node compartment, where recruit-
ment of neoantigen-specific T-cells by APCs takes place, is of 
particular interest. In a series of recent studies, Farber’s group ap-
plied high-throughput flow cytometry to organ donor tissues to 
quantitatively describe the state of the immune system in healthy 
individuals.13–15 These unique data provide insight into relative 
distributions of multiple T-cell types and dendritic cells among 
different tissues, including lymph nodes. Thome et al.13 studied 
tissues from 56 donors and determined the distribution of CD4 
and CD8 T-cells in peripheral blood, spleen, inguinal lymph 
node (draining the peripheral skin and muscle), lung-draining 
lymph node, lungs, mesenteric lymph node (draining the in-
testines), small intestine (jejunum and ileum), and colon. Both 
CD4 and CD8 T-cells were separated into naïve cells, terminally 

differentiated effector cells, central memory cells, and effector 
memory cells. The dataset was sufficiently large to analyze dis-
tributions specific to age groups. In another contribution,14 tis-
sues from 78 donors were analyzed to determine the distribution 
of two dendritic cell subsets in peripheral blood, bone marrow, 
tracheal lymph node, lung lymph node, pancreatic lymph node, 
mesenteric lymph node, lungs, jejunum, ileum, colon, and ap-
pendix. Crucially, mature and immature dendritic cells were 
separated. We note that a QSP model relevant to IO is unlikely 
to require calibration of baseline immune system at this level 
of tissue resolution. A more likely scenario would entail using 
data obtained for lymph nodes with the full resolution of cell 
types. The difference between clinical omics data and classical 
measurements of clinical biomarkers is that the latter contain 
observations at the whole system scale, rather than specific bio-
markers relevant to a particular clinical question. This, in our 
view, maximizes the use of precious clinical material for collec-
tion of baseline data—largest possible number of biomarkers are 
recorded in each sample to subsequently allow scientists working 
on many different projects to query these data and find baseline 
reference biomarker values relevant to their investigation. For 
example, the baseline composition of jejunum is unlikely to be 
relevant for an IO QSP model, but may be relevant for the mod-
els of other diseases.

As demonstrated in our example calibration of the minimal 
CIC model and indicated in Figure 5, we recommend using clini-
cal data on patients’ response to treatment to calibrate parameters 
describing tumor killing by T-cells and the influence of the drug 
target occupancy on checkpoint action. This requirement will not 
limit prospective QSP platform application in its major context of 
use, which is discovery and validation of combination targets. For 
many, if not most, of the targets, which are considered for combi-
nations, clinical data are already available from a study where the 
target was part of a single drug therapy or a combination. Thus, 
the model calibrated with the use of publically available clinical 
data can be used to predict efficacy of novel combinations of drugs 
doses, timings, and sequences, which were previously not tested in 
the clinic. This addresses the major challenge of a combinatorial 

Type of data Data resource References

  TraCeR: 64

Molecular identity of antigens  
determined by sequencing of cancer 
and healthy tissue genomes

https​://doi.org/10.1016/j.cell.2017.11.043 65

  https​://github.com/ylab-hi/ScanNeo 66

  https​://jitc.biome​dcent​ral.com/artic​les/10.1186/s40425-019-0629-6#avail​abili​
ty-of-data-and-mater​ials

67

  https​://www.jci.org/artic​les/view/99538/​sd/1 68

  https​://github.com/Balti​more-Lab/nat-metho​ds-SABR-trogo​ 69

  https​://doi.org/10.1038/s41590-019-0335-z 70

  https​://www.nature.com/artic​les/s41598-018-36840-z#Sec16​ 71

  https​://journ​als.plos.org/ploso​ne/artic​le?xml:id=10.1371/journ​al.pone.01415​
61#sec024

72

CIC, Cancer Immunity Cycle; TME, tumor microenvironment.

Table 1  (Continued)
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explosion of possible combination therapies, which cannot all be 
evaluated by clinical trials. Apart of prohibitive costs of a large 
number of trials, it would not be possible to recruit sufficient num-
ber of subjects to test all possible combinations. The virtual trial 
simulation could inform decisions on which compounds, dose 
amounts, timings, and sequences are most promising in combi-
nation and, thus, should be taken forward to the trial. Moreover, 
the QSP platform model could also be used to discover identities 
of potential targets to be combined with the drug for which sin-
gle-drug treatment data are available. This could be achieved by 
sensitivity analysis for highlighting model variables and parameters 
(potential targets) perturbation of which would increase efficacy 
of a single-drug treatment.

DISCUSSION
In this tutorial, we discuss how recent, high-throughput, mo-
lecular and cell biology datasets can be integrated within the 
framework of mechanistic QSP platform models. We illustrate 
our discussion by an example calibration of the minimal QSP 
model of the CIC for NSCLC treatment with pembrolizumab. 
We argue that integration with mechanistic modeling expands 
the applicability of these data, which are obtained from unique 
clinical material, such as clinical tumor biopsies or organ-donor 
tissue samples.

First, the mechanistic model connects the wealth of omics data 
to PKs and PDs and, thus, to the determination of the optimal 
dose, timing, and sequence of drugs for combination therapy. So 
far, these data have been analyzed mostly by statistics and machine 
learning and the words “dose” and “amount” usually do not fea-
ture in the analysis protocol. Thus, mechanistic QSP platform 
models have great potential for fully capitalizing on invaluable 
data resources to inform decisions on which amount of which 
substances should be given to whom and with what dosing reg-
imen. Second, mechanistic models use extensive high-resolution 
snapshots of the state of tumor biopsies and the healthy immune 
system to make predictions of systems dynamics and, as a con-
sequence, longitudinal clinical efficacy biomarker information 
(e.g., tumor size). Given the intricate network of feedbacks in-
volved in the CIC, biomarker responses to drug doses are non-
linear, counterintuitive, subject to complex delays, and sensitive 
to administration timing and sequence in combination therapy. 
Mathematical models of the complex immune system and tumor 
growth dynamics are, therefore, key for making full use of exper-
imental data. Finally, we show that a mechanistic model of the 
CIC cannot only integrate data collected from tumor biopsies, 
but also capitalize on the wealth of data collected on the healthy 
immune system. We show how unique high-resolution flow cy-
tometry studies of healthy organ-donor tissues can be used in the 
context of IO, despite this not being a primary reason why such 
data were collected. In general, mechanistic models have a unique 
capability of extrapolating from data collected in different clin-
ical circumstances and, thus, capitalizing on a whole corpus of 
available knowledge and data for the benefit of a particular drug 
development project.

Our example QSP model of the CIC, although limited in scope 
and applicability, already illustrates a type of important prediction 

for which integration of omics data with mechanistic model is, in 
our opinion, the method of choice. We present a virtual trial sim-
ulation describing the variability of patients’ responses to therapy 
of a specific human disease: NSCLC. Differences in individual 
patient outcomes, ranging from long-term benefit to no response 
at all, are the major challenges in IO. Because clinical determi-
nation of response variability requires a large number of subjects, 
and the ability to predict variability for a new dosing regimen or 
combination before a trial is conducted, would make a big impact 
on drug development. Differences in the TME infiltration in in-
dividual patients are a major cause of different clinical outcomes. 
The Immune Landscape of Cancer for the first time provides a 
resource allowing determination of the baseline population dis-
tribution of leukocyte frequencies in a specific tumor. There is 
no other resource, which clinical team designing new trial could 
query for baseline population distributions of 22 leukocyte types 
in 33 human diseases. Even in the case of just two cell types in-
cluded in our model, it would be very difficult to identify pub-
lished datasets, where cytotoxic T-cells and antigen presenting 
cells were quantified simultaneously in a large enough number of 
patients with NSCLC to provide distributions shown in Figure 3. 
Although this information could be valuable to the team in its 
own right, the QSP model adds further value by extrapolating 
from these unique baseline data to the time profiles of clinical 
biomarkers and, thus, variability of patient responses. Whereas 
in our example, we used clinical tumor size time profiles from 4 
subjects to refine parameters describing cytotoxic T-cell action, 
we would still provide extrapolation to much larger population 
of 489 subjects before they entered the trial. In realistic applica-
tion of mature QSP platform to assess new combination therapy 
candidate, clinical data for individual compounds are very likely 
to be available from previous trials, where the compounds were 
already tested individually or in other combinations. In this sce-
nario, the QSP model calibrated by omics resources and clinical 
data from previous trials would be used to predict variability of 
patients’ responses to new combination therapy before it is tested 
in the clinic. The virtual trials could be simulated for a large num-
ber of possible combinations of compounds, doses, timings, and 
sequences that would arise in consideration of even a few com-
bination candidate drugs. Predicted outcomes would then in-
form decision on the selection of best possible combination to be 
clinically tested. This would be of great value to a clinical phar-
macology team as it would otherwise not be possible to test all 
alternative combination therapies due to the cost as well as limited 
availability of clinical subjects.

Because the Immune Landscape of Cancer was published only 
recently, we are not yet able to directly compare the benefits of 
using the modeling approach proposed here with traditional 
methods of dose selection. None of the programs currently using 
QSP models calibrated by these data to inform early stage deci-
sions have been completed yet. However, due to combinatorial 
explosion of candidate therapies, preventing clinical assessment 
of all plausible therapeutic options, modeling approaches are nec-
essary to support decisions. Otherwise, there is no other option 
but to make an educated guess. Modeling approaches currently es-
tablished in clinical drug development are based nonlinear mixed 
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effects methods, which statistically infer average behavior and ran-
dom effect from clinical data. This approach is well established for 
precise interpolation within the range of already recorded clinical 
data, but there is little scientific rationale that it performs well to 
extrapolate across biological systems. Extrapolation requires large-
scale mechanistic model capturing interactions between key vari-
ables and sufficient data to calibrate the model. The application of 
QSP as an approach of choice for extrapolation among different 
species, diseases, populations, and therapies is quickly gaining rec-
ognition.34 Here, we demonstrate how the applicability of QSP 
could be further extended by integration with omics data, which 
provide unprecedented insight into baseline patient variability. 
Despite astonishing recent developments of measurement capa-
bilities in the biological sciences, there are still areas where addi-
tional research could significantly improve our ability to make 
quantitative predictions of combination therapy efficacy in IO. 
Given the effort invested into high-resolution studies of the cel-
lular composition of the healthy immune system, it is surprising 
that only relative data are available for tissues and that it is very 
difficult to find any reference absolute cell numbers. Although we 
understand that absolute cell count measurement is much more 
difficult in tissues than in peripheral blood, absolute data would 
be invaluable for pharmacology. When the drug is dosed it is its 
absolute amount that is specified, and it is an absolute amount of 
drug at the site of action, and an absolute amount of its pharmaco-
logical target that determine efficacy. Therefore, a rational selec-
tion of doses—informed by quantitative modeling rather than a 
costly and risky trial-and-error process—requires absolute quanti-
tative data. In our example study, we have used the number of lym-
phocytes in tissues estimated by Trepel (1974) as a reference.17 We 
then multiply this reference absolute number by cell frequencies 
obtained in high-resolution studies. Thus, what is required is a 
contemporary estimation of a reference, total, absolute leukocyte 
count in tissues, in addition to high-throughput, high-resolution 
measurement of absolute counts of multiple cell types.

A possible weakness of a mechanistic model informed by 
omics data is that some of the quantities used for model calibra-
tion are results of bioinformatics predictions rather than direct 
measurement. In particular, the tumor microenvironment com-
position has been calculated by DNA sample purity analysis and 
deconvolution of bulk expression data to calculate the contri-
bution of 22 gene expression signature patterns.4 The methods, 
such as CIBERSORT,35 used for deconvolution are validated 
against immunohistochemistry data and their accuracy is 
known and acceptable. Moreover, the next generation of these 
approaches is currently under development, where improvement 
of predictive power is achieved by availability of new types of 
data.2 So far, gene expression signature patterns used for de-
convolution were obtained from transcriptome data of purified 
leukocyte fractions. Recently, single-cell sequencing enabled the 
definition of these patterns based on analysis of single cells in the 
tumor microenvironment.36 We agree with the authors of these 
approaches that using transcriptome data collected for single 
cells in the tumor microenvironment will increase the accuracy 
of the deconvolution of bulk transcriptomics data. Moreover, 
no experimental approach to cell-type determination is free of 

assumptions and data analysis. Immunohistochemistry and flow 
cytometry are subject to gating of fluorescent signals and limited 
to a small number of surface markers. One may argue that the 
behavior of an individual differentiated cell is determined by its 
gene expression state and that analysis of global gene expression 
programs directly may, in the future, allow better definition of 
the cell-type composition of the tumor microenvironment than 
currently accepted experimental methods.

Another area where we rely on bioinformatics analysis of 
NGS data is the determination of tumor antigenicity. Although 
the identity of DNA and protein sequences of neoantigens is di-
rectly determined by sequencing, the affinity of these peptides 
to MHCI and MHCII receptors is predicted by machine-learn-
ing approaches.26,37 In this way, mechanistic models could in-
tegrate not only big data but also an application of machine 
learning to their analysis. The algorithms used for affinity pre-
dictions are mature, validated by comparison with binding data, 
and commonly applied since the late 1990s.38 Still, we hope that 
increasing adoption of NGS as a diagnostic technique and de-
termination of neoantigenic peptides will also motivate experi-
mental determination of binding affinities and T-cell precursor 
pools in ex vivo and in vitro assays.

CONCLUSIONS
In summary, we show how mechanistic models of cancer immu-
notherapy in humans can be informed by state-of-the-art molec-
ular and cell biology data on clinical tumor biopsies and samples 
of healthy peripheral blood and tissue, which have recently become 
available. Mechanistic models expand the applicability of these data 
beyond target identification and biomarker discovery—they allow 
quantitative predictions of dose amount sequence and timing. 
Although there are still gaps in quantitative knowledge, which ne-
cessitate incorporation of machine-learning predictions and model 
assumptions, we expect that recent publication of landmark omics 
resources in IO will motivate further effort and that much more 
data will be available soon. We also hope that increasing adoption of 
mechanistic modeling to integrate these data will direct experimen-
tal work, especially in areas where absolute reference data are needed. 
We are convinced that, as new omics data accumulate, confidence 
in virtual trial simulations with clinical QSP models integrating 
these data will increase, and that these models will be making in-
creasing impact in development of new cancer immunotherapies.
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