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Abstract: Two previously undescribed polycyclic polyprenylated acylphloroglucinols, hyperacmosins
R-S (1–2), were obtained from the aerial parts of Hypericum acmosepalum. Their structures were
elucidated by extensive spectroscopic analysis and electronic circular dichroism calculation (ECD).
Compound 1 featured an unprecedented 5,8-spiroketal subunit as well as the loss of C-2′ carbonyl
in the phloroglucinol ring. In addition, compounds 1 and 4 showed weak hepatoprotective activity
against paracetamol-induced HepG2 cell damage at 10 µm. The plausible biosynthetic pathway of
1 was proposed via a retro-Clasisen reaction and decarboxylation.

Keywords: Hypericum acmosepalum; PPAPs; 5,8-spiroketal; hepatoprotective activity

1. Introduction

Polycyclic polyprenylated acylphloroglucinols (PPAPs), the prominent secondary
metabolites of the genus Hypericum, are a group of structurally fascinating and synthetically
challenging natural products, which possess highly oxygenated acylphloroglucinol-derived
cores decorated with isoprenyl, geranyl, or other substituted side chains [1,2]. To date,
more than 900 natural PPAPs with diverse carbon skeletons have been isolated. Apart from
their structures, these compounds exhibit a broad range of biological activities, such as
acetylcholinesterase inhibitory activity [3], cytotoxic activity [3–5], anti-inflammatory activ-
ity [6], phosphodiesterase-4 inhibitory activity [7], CYP3A4 enzyme inhibitory activity [8],
antiplasmodial activity [9], and anti-HIV activity [10].

Hypericum acmosepalum is distributed in Guangxi, Yunnan, Sichuan, and Guizhou
provinces in China. As a kind of traditional Chinese medicine, it has been used to treat
hepatitis and relieve swelling and inflammation [11]. Our previous chemical investigations
into this plant resulted in the isolation of many bioactive PPAPs with diverse carbon scaf-
folds, and some of them showed hepatoprotective and neuroprotective activities [12–16].
In order to obtain more of this type of molecules, our continuing study of this plant led to
the identification of two new PPAPs, hyperacmosins R-S (1–2), as well as nine known ones
(Figure 1). It is worth mentioning that compound 1 possesses a rare 5,8-spiroketal subunit,
together with the loss of C-2′ carbonyl in the phloroglucinol ring. Herein, the details of
the isolation, structural elucidation, and the plausible biosynthetic ways of compound
1 are reported.
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Figure 1. Chemical structures of compounds 1–11.

2. Results and Discussion

Hyperacmosin R (1) was obtained as colorless oil, [α]20
D -230.5 (c 0.1375, MeOH). HR-

ESI-MS spectrum (m/z 573.3786 [M+H]+, calcd. 573.3786) revealed its molecular formula to
be C34H52O7, indicating nine degrees of unsaturation, and its IR data implied the existence
of hydroxyl (3533 cm−1) and carbonyl (1716 cm−1). The 1H NMR spectrum of 1 (Table 1)
showed characteristic resonances for one isopropyl [δH 2.90 (1H, m), 1.07 (3H, d, J = 6.4 Hz),
1.41 (3H, d, J = 6.4 Hz) ], one hydroxyl [δH 2.66 (1H, brs)], two olefinic protons [δH 4.87 (1H,
brs) and 5.31 (1H, brs)], and nine singlet methyls (δH 0.88, 089, 1.15, 1.22, 1.33, 1.60, 1.62,
1.68, 1.78). Combined with its HSQC and HMBC spectra, the 13C NMR data of 1 (Table 1)
revealed 34 signals, including three nonconjugated carbonyls (δC 202.5, 206.2, 218.7) and
four olefinic carbons (δC 120.4, 124.7, 133.4, 136.0), accounting for five indices of hydrogen
deficiency. Apart from the aforementioned 7 carbons, the remaining 27 carbon signals were
assigned to two oxygenated tertiary carbons (δC 85.4 and 90.1), three oxygenated secondary
carbons (δC 113.1, 76.1, and 36.9), three quaternary carbons (δC 78.8, 58.2, and 67.1), five
methylenes (δC 36.3, 35.4, 27.5, 30.9, and 44.5), three methines (δC 39.3, 43.4, and 54.7), and
11 methyls (δC 18.1, 18.4, 18.6, 20.5, 22.9, 23.8 × 2, 26.1, 26.2, 26.5, and 28.0). Combined with
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the remaining four indices of hydrogen deficiency, the above data indicated that 1 might be
a tetracyclic PPAP analogue.

Table 1. 1H NMR and 13C NMR data for compounds 1–2.

No 1 a 2 b

δH (J in Hz) δC, Type δH (J in Hz) δC, Type

1 206.2, C 82.3, C
2 78.8, C 193.0, C
3 58.2, C 116.6, C
4 1.98, brs 39.3, CH 173.0, C
5 2.45, m; 1.25, m 36.3, CH2 59.7, C
6 67.1, C 2.03, m; 1.49, m 38.6, CH2
7 202.5, C 1.49, m 42.5, CH
8 113.1, C 46.6, C
9 204.7, C
10 218.7, C 208.7, C
11 2.90, m 43.4, CH 1.72, m 48.9, CH
12 1.07, d (6.4) 20.5, CH3 1.08, d (6.4) 16.7, CH3
13 1.41, d (6.4) 23.8, CH3 1.27, m; 1.63, m 27.6, CH2
14 0.88, s 18.6, CH3 0.77, t (7.4) 11.7, CH3

15 1.89, m; 1.34, m 35.4, CH2
3.16, dd (14.4, 7.4)
3.02, dd (14.4, 7.4) 22.3, CH2

16 2.10, m; 1.80, m 27.5, CH2 5.06, t (7.4) 121.3, CH
17 3.04, brs 54.7, CH 132.6, C
18 85.4, C 1.65, s 25.8, CH3
19 0.89, s 23.8, CH3 1.71, s 18.0, CH3

20 1.15, s 26.5, CH3
1.77, dd (13.0, 5.6)

2.67, dd (13.0, 11.0) 30.4, CH2

21 2.08, m; 1.70, m 30.9, CH2 4.55, dd (11.0, 5.6) 90.2, CH
22 5.31, brs 124.7, CH 71.0, C
23 133.4, C 1.39, s 27.1, CH3
24 1.62, s 18.1, CH3 1.22, s 24.2, CH3
25 1.78, s 26.1, CH3 1.52, m; 2.16, m 26.7, CH2
26 2.37, m 44.5, CH2 4.94, t (7.0) 122.4, CH
27 4.00, t (6.4) 76.1, CH 133.6, C
28 90.1, C 1.56, s 18.1, CH3
29 1.22, s 22.9, CH3 1.69, s 26.1, CH3
30 1.33, s 28.0, CH3 1.05, s 16.2, CH3
31 3.20, dd (14.4, 5.6) 36.9, CH 1.27, s 22.9, CH3
32 4.87, brs 120.4, CH
33 136.0, C
34 1.60, s 18.4, CH3
35 1.68, s 26.2, CH3

31-OH 2.66, brs
a Recorded in CD3OD (1H NMR 400 MHz, 13C NMR 125 MHz); b recorded in CDCl3 (1H NMR 400 MHz, 13C
NMR 125 MHz).

The polycyclic core structure of 1 was established by a comprehensive analysis of
the 2D NMR spectral data. The HMBC correlations (Figure 2) from H-4 (δH 1.98) to C-
2/C-3/C-5/C-6, from H2-5 (δH 1.25/2.45) to C-1/C-3/C-4/C-6, from H-17 (δH 3.04) to
C-1/C-2/C-3/C-15/C-16, and from H2-15 (δH 1.34/1.89) to C-2/C-3/C-4/C-16/C-17, along
with 1H-1H COSY correlations of H-4/H2-5, H2-15/H2-16, and H2-16/H-17, established
the cyclohexanone (B-ring) and cyclopentane moieties (A-ring), respectively. Moreover, the
HMBC correlations (Figure 2) from H-27 (δH 4.00) to C-8/C-26/C-28/C-29/C-30, from H3-
29 (δH 1.22)/H3-30 (δH 1.33) to C-27/C-28, and from H2-26 (δH 2.37) to C-7/C-8/C-27/C-28,
combined with the presence of two oxygen-bearing carbons C-8 (δC 113.1) and C-28 (δC
90.1), implied the presence of the 2,2-dimethyl-3-hydroxy-furan unit (D-ring). Considering
one remaining unsaturation as well as the diagnostic ketal carbon C-8 (δC 113.1), the
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fourth circle (C-ring) was formed via an oxygen connecting C-8 and C-18. Moreover, an
isobutyryl group and two isoprenyl groups were attached to C-2, C-4, and C-6, respectively,
supported by the HMBC cross-peaks from H-11 (δH 2.90) to C-2, from H2-21 (δH 1.70/2.08)
to C-3/C-4/C-5, and from H-31 (δH 3.20) to C-1/C-5/C-6/C-7. It is noteworthy that the
abnormal chemical shift of C-31 (δC 36.9) was much lower than the normal value. By
viewing the 3D model of compound 1, it might be attributed to the shielding effect of the
C-1 carbonyl group.
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Figure 2. Key 2D NMR correlations of hyperacmosin R (1).

The relative configuration of 1 was confirmed on the basis of the ROESY spectrum
(Figure 2). The ROESY correlations of H-5b/HO-31, H-31/H-5a, H-5a/H-4, Me-14/H2-21,
and Me-14/H-11 revealed that HO-31, Me-14, and the two isoprenyl groups were on the
same side and were assigned as β-orientation. In addition, the ROESY cross-peaks of
H-4/H-17 revealed that H-17 was α-oriented. Subsequently, the obvious correlation of
Me-29/H-31 and H-27/Me-30 demonstrated that Me-29 and Me-30 were at the upper side
of the C-ring. Thus, the structure of 1 was determined, as shown in Figure 2.

The absolute configuration of 1 was elucidated by electronic circular dichroism (ECD)
calculation, using the time-dependent density functional theory (TD-DFT). A pair of enan-
tiomers, (2R, 3R, 4S, 6R, 8R, 17S, 27R, 31S)-1a and (2S, 3S, 4R, 6S, 8S, 17R, 27S, 31R)-1b,
were calculated for the ECD spectra based on the known relative configuration of 1. The
ECD spectrum (Figure 3) of 1 was in sufficient agreement with 1a. Thus, the absolute
configuration of 1 was assigned as 2R, 3R, 4S, 6R, 8R, 17S, 27R, and 31S.

Hyperacmosin S (2) was obtained as a colorless oil. The molecular formula was
established as C31H46O5 according to its HRESIMS data (m/z 499.3417 [M+H]+, calcd.
499.3418), indicating nine degrees of unsaturation. The 1H NMR spectrum (Table 1) showed
characteristic signals assignable to two olefinic protons [δH 5.06 (1H, t, J = 7.4 Hz) and
4.94 (1H, t, J = 7.0 Hz)], a sec-butyl group [δH 1.71 (1H, m), 1.27 (1H, m), 1.63 (1H, m),
0.77 (3H, t, J = 7.4 Hz), 1.08 (3H, d, J = 6.4 Hz)], and eight singlet methyls (δH 1.71, 1.69,
1.65, 1.56, 1.39, 1.27, 1.22, 1.05). The 13C NMR spectrum (Table 1) of 2 displayed 31 carbon
resonances, including three carbonyl carbons (δC 208.7, 204.7, 193.0) and four olefinic
carbon (δC 133.6, 132.6, 122.4, 121.3). Detailed analysis of the 1D and 2D NMR (Figure 4)
of 2 indicated compound 2 shared the same structure with garsubellin B, except for the
values of optical rotation [2: [α]24

D +32.3 (c 0.52, EtOH); garsubellin B: [α]24
D -36 (c 0.6,
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EtOH)] [17]. This indicated that compound 2 is the enantiomer of garsubellin B. Finally, the
absolute configuration of 2 was established by comparing its experimental ECD spectrum
with that of hyperforatin E (Figure 3) [3].
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Based on the comparison of their NMR and MS data with the literature values, nine
known PPAPs were identified as furoadhyperforin isomer A (3) [18], furoadhyperforin
isomer B (4) [18], furohyperforin isomer 2a (5) [19], furohyperforin isomer 2b (6) [19],
furohyperforin isomer 2 (7) [8], furohyperforin (8) [8], furoadhyperforin (9) [8], hypercohin
E (10) [20], and hypercohin F(11) [20], respectively.

All of the isolated compounds were evaluated for their hepatoprotective activities
against paracetamol-induced HepG2 cell damage, and glutathione was used as the pos-
itive control. As shown in Table 2, hyperacmosin R (1) and furoadhyperforin isomer B
(4) exhibited weak hepatoprotective activity at 10 µm.
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Table 2. Hepatoprotective effects of compounds 1–11 (10µm) against paracetamol-induced HepG2 cell a.

Compound OD Value Cell Viability
(% of Control)

Inhibition
(% of Control)

Normal 1.717 ± 0.099 100.0
Control 1.001 ± 0.041 *** 58.3
GSH b 1.328 ± 0.020 ## 77.3 45.7

1 1.091 ± 0.017 # 63.6 12.6
2 0.982 ± 0.030 57.2 −2.7
3 1.028 ± 0.009 59.9 3.8
4 1.104 ± 0.053 64.3 14.4
5 1.033 ± 0.009 60.1 4.5
6 0.964 ± 0.010 56.1 −5.2
7 0.971 ± 0.002 56.6 −4.2
8 0.908 ± 0.037 # 52.9 −13.0
9 0.935 ± 0.015 54.5 −9.2
10 0.817 ± 0.027 ## 47.6 −25.7
11 0.945 ± 0.016 55.1 −7.8

a Results are expressed as the means ± SD (for samples, n = 3; for normal and control, n = 6; b positive control
(20 µm); *** p < 0.01 vs. normal; # p < 0.05, ## p < 0.01 vs. control.

Structurally, hyperacmosin R (1) possesses a rare 5,8-spiroketal subunit, together with
the loss of C-2′ carbonyl in the phloroglucinol ring. The plausible biogenetic pathway of
hyperacmosin R (1) was proposed in Figure 5. Starting from 2,4,6-trihydroxybenzophenone,
the intermediate (i), which possesses bicyclo [3.3.1] nonane-2,4,9 trione core, is formed
via a series of prenylation and cyclization reactions [1]. The carbonyl at C-2′ was likely
degenerated through a retro-Clasisen reaction and decarboxylation [21]. Moreover, the
5,8-spiroketal subunit might be formed, successively, via oxidation, aldol condensation,
epoxidation, and an intramolecular cyclization reaction.
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3. Materials and Methods
3.1. General Experimental Procedures

Optical rotations were measured on a JASCO P-2000 polarimeter (JASCO Inc. Tokyo,
Japan). UV spectra were measured on a JASCO V650 spectrophotometer (JASCO Inc.). The
CD spectra were measured on a JASCO J-815 CD spectrometer (JASCO Inc.). IR spectra were
recorded on a Nicolet 5700 FT-IR spectrometer (Thermo Nicolet, Waltham, MA, USA). NMR
spectra were acquired with VNS-400 spectrometers and VNS-500 spectrometers (Varian
Inc., Palo Alto, CA, USA). HRESI-MS spectra were collected on an Agilent 1100 series
LC/MSD ion trap mass spectrometer (Agilent Technologies Ltd, Santa Clara, CA, USA).
Preparative HPLC was performed on a Shimadzu LC-6AD (SHIMADZU Inc. Tokyo, Japan)
instrument with an SPD-20A detector, using an YMC-Pack ODS-A column (2 × 25 cm,
5 µm). Column chromatography was performed with silica gel (200–300 mesh, Qingdao
Marine Chemical Inc., Qingdao, China) and ODS (50 µm, YMC, Kyoto, Japan). Chiral
AD-H column (4.6 mm × 250 mm, 5 µm, Daicel, Osaka, Japan); TLC was carried out on
glass precoated silica gel GF254 plates. Spots were visualized under UV light or by spraying
with 10% sulfuric acid in EtOH, followed by heating.

3.2. Plant Materials

The air-dried aerial parts of H. acmosepalum were collected from Lijiang, Yunnan
Province (100◦11′ E; 26◦11′ N), People’s Republic of China, in July 2016. Lin Ma was
responsible for the identification of the plant, based on the comparison with the specimen
preserved in the Institute of Botany, Chinese Academy of Sciences. A voucher specimen
(No. ID-S-2764) was deposited in the Institute of Materia Medica, Chinese Academy of
Medical Sciences.

3.3. Extraction and Isolation

The air-dried aerial parts of H. acmosepalum (15.0 kg) were extracted by 95% ethanol
(150 L × 3 times) under reflux. The crude extract was suspended in H2O and parti-
tioned with petroleum ether. The petroleum ether extract (510.0 g) was separated on
a silica gel column with petroleum ether/EtOAc (100:0 to 0:100, v/v) to gain five frac-
tions (Fr.1–5). Fr.3 (95.2 g) was further purified by chromatography on a diol column,
eluting with petroleum ether/EtOAc (100:0 to 0:100, v/v) to yield fourteen fractions
(Fr.3.1–Fr.3.14). Fr.3.10 (11.5 g) was chromatographed over a C8 silica column eluted with a
gradient system of MeOH−H2O (85% to 100%, v/v) to give 7 fractions (Fr.3.10.1–Fr.3.10.7),
Fr.3.10.6 was sequentially purified by semi-preparative HPLC (MeOH-H2O, 90:10) to yield
3 (2.2 mg), 4 (25.0 mg), 6 (17.3 mg), and 7 (6.2 mg). Fr.3.11 (36.4 g) was fractionated us-
ing a silica column with CH2Cl2-EtOAc (100:0 to 0:100, v/v) as eluent to give 7 fractions
(Fr.3.11.1–Fr.3.11.7). Fr.3.11.5 was sequentially purified by semi-preparative HPLC (MeOH-
H2O, 90:10, v/v) to yield 2 (4.2 mg), 8 (10.1 mg), 9 (16.3 mg), 10 (12.5 mg), and 11 (5.1 mg).
Fr.3.11.6 was chromatographed over a C8 silica column eluted with MeOH−H2O (95:5,
v/v) to yield 1 (102.0 mg). Fr.3.11.7 was sequentially purified by semi-preparative HPLC
(MeOH-MeCN-H2O, 70:15:15) to yield 5 (10.3 mg) (flow chart, see Figure S21).

3.4. Structural Elucidation

Hyperacmosin R (1): colorless oil; [α]20
D -230.5 (c 0.14, MeOH); UV (MeOH) λmax

(log ε) 204 (4.05) nm; ECD (MeOH) λmax (∆ε) 212 (−9.02), 320 (9.18) nm; IR υmax 3533,
2977, 2929, 1716, 1687, 1450, 1380 cm−1; 1H and 13C NMR data, see Table 1; HRESIMS m/z
573.3786 [M + H]+ (calcd. for C34H53O7, 573.3786).

Hyperacmosin S (2): colorless oil; [α]20
D +92.3 (c 0.05, MeOH); UV (MeOH) λmax

(log ε) 203 (4.45), 271 (4.43) nm; ECD (MeOH) λmax (∆ε) 224 (17.32), 250 (−5.31), 274 (19.29),
304 (−10.79), 339 (0.93) nm; IR υmax 3446, 2975, 2930, 1730, 1626, 1452, 1369 cm−1; 1H and
13C NMR data, see Table 1; HRESIMS m/z 499.3417 [M + H]+ (calcd. for C31H47O5, 499.3418).
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3.5. Hepatoprotection Bioassays (In Vitro)

The hepatoprotective effects of compounds 1–11 were determined by a (MTT) col-
orimetric assay in HepG2 cells. Each cell suspension of 2 × 104 cells in 200 µL of RPMI
1640 containing fetal calf serum (10%), penicillin (100 U/mL), and streptomycin (100 µg/mL)
was placed in a 96-well microplate and precultured for 24 h at 37 °C under 5% CO2
atmosphere. Fresh medium (100 µL) containing bicyclol and test samples was added,
respectively, and the cells were cultured for 1 h. The cultured cells were exposed to 16 mM
paracetamol for 24 h. Then, 100 µL of 0.5 mg/mL MTT was added to each well, after
the withdrawal of the culture medium, and incubated for additional 4 h. The resulting
formazan was dissolved in 150 µL DMSO after aspiration of the culture medium. The
optical density (OD) of the formazan solution was measured on a microplate reader at
570 nm. Percentage inhibition was calculated as: inhibition (%) = [OD (sample) − OD
(control)]/[OD (normal) − OD (control)] × 100%.

4. Conclusions

In summary, a detailed chemistry investigation of H. acmosepalum led to the identi-
fication of 11 PPAPs, including 2 previously undescribed ones, hyperacmosins R-S (1–2).
Especially, hyperacmosin R (1) possesses a rare 5,8-spiroketal subunit, together with the
loss of C-2′ carbonyl in the phloroglucinol ring. All the isolates were evaluated for their
hepatoprotective activities. Among them, hyperacmosin R (1) and furoadhyperforin iso-
mer B (4) exhibited weak capabilities against paracetamol-induced HepG2 cell damage
at 10 µm. Furthermore, the plausible biosynthetic pathway of hyperacmosins R (1) was
proposed. This study enriched the members and the structural diversity of PPAPs from
H. acmosepalum.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27185932/s1, Figure S1: The HRESIMS spectrum of
compound 1, Figures S2 and S3: The UV/IR spectrum of compound 1, Figures S4–S10: The 1D and 2D
NMR spectra of compound 1 in CD3OD, Figure S11: The experimental ECD spectrum of compound
1, Figure S12: The HRESIMS spectrum of compound 2, Figures S13 and S14: The UV/IR spectrum of
compound 2, Figures S15–S19: The 1D and 2D NMR spectra of compound 2 in CDCl3, Figure S20:
The experimental ECD spectrum of compound 2, Figure S21: The flow chart for the separation of
compounds 1–11.
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