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B cells control lupus autoimmunity by inhibiting
Th17 and promoting Th22 cells

Ji Yang', Xue Yang®®, Luman Wang" and Ming Li'

Abstract

B cells exert immunosuppressive effects and offer therapeutic potential for systemic lupus erythematosus (SLE), but the
mechanism remains unclear. Here we analyzed the B cell regulation of Th17/Th22 cell differentiation in lupus and
found that a-IgM- and a-CD40-activated B cells could inhibit Th17 and promote Th22 cell differentiation from naive
T cells under Th17 cell culture conditions. B cell-induced Th22 cells demonstrated immunosuppressive effects and
could decrease renal endothelial cell apoptosis in vitro. Moreover, activated B cell infusion relieved lupus injuries via IL-
22 production in vivo. Mechanically, activated B cells affected Th17/Th22 cell differentiation by non-contact TNF-a
secretion and mTOR activation. Finally, activated B cells could affect Th17/Th22 cell differentiation in human peripheral
blood T cells. These data suggest that activated B cells might attenuate lupus autoimmunity by inhibiting Th17 but
promoting Th22 cell differentiation, supporting B cell activation as a promising therapeutic for the treatment of lupus.

Introduction

Systemic lupus erythematosus (SLE) is a common
autoimmune disease that involves multiple organ systems,
occurring in 20-150 for every 100,000 people’. The
pathogenesis of SLE remains unclear, although an
imbalance within the immune system has been impli-
cated. Therefore, it is necessary to investigate the
immunological mechanisms of lupus to provide greater
clarity and knowledge toward viable treatments.

In the disease microenvironment, B cells can be acti-
vated and induced into regulatory immune cells that affect
disease progression’~>. Activated B cells produce cyto-
kines such as interleukin (IL)-10, transforming growth
factor (TGF)-pB, and tumor necrosis factor (TNF)-a®7, and
the absence of B cells exacerbated disease symptoms in
models of lupus, experimental autoimmune encephalo-
myelitis, and collagen-induced arthritis>**'°. Previous
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studies have shown B cell dysregulation in SLE patients
and MRL/lpr mice'®™*?, especially with immunosuppres-
sive functions'®. These immunosuppressive effects could
exert therapeutic benefits against lupus'®, but how B cells
are regulated is not fully understood.

The T helper 17 (Th17) cell lineage, a lineage of effector
CD4" T cells characterized by IL-17 production'>', is
associated with the pathogenesis of autoimmune diseases,
including SLE'"*°. Our studies, as well as others, have
shown that Th17 cells were expanded in SLE similar to
inflammatory tissue injuries and autoantibody produc-
tion'”?%*!, Thus Th17 cell inhibition could help to relieve
lupus autoimmune injuries. I1L-22-producing CD4" T
(Th22) cells are a new subset of CD4" T cells with
immunosuppressive capabilities and differentiated from
naive T cells through TNF-a and IL-6°>**, Although IL-
22 can be produced during Th17 cell differentiation®**?,
the reciprocal differentiation of Th17 by Th22 cells in
lupus autoimmunity is not clear.

Because the potential for B cells to affect Th17 and
Th22 cell differentiation has not been reported, we have
analyzed the mechanisms and potential therapeutic role
through which B cells affect Th17 and Th22 cell differ-
entiation in the treatment of lupus.
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Materials and methods
Mice treatment

CD45.27C57BL/6 (B6) and lupus-prone MRL/lpr mice
were purchased from the Shanghai Laboratory Animal
Center (Chinese Academy of Sciences). CD45.1" mice
were purchased from The Jackson Laboratory (Bar Har-
bor, ME). Animal studies were approved by the Institu-
tional Animal Care and Use Committee of Zhongshan
Hospital, Fudan University. Mice were maintained under
pathogen-free conditions. Twelve-week-old MRL/lpr
mice were randomized into four groups, and the mice
were injected intravenously with 10x10° ex vivo-
expanded B cells or phosphate-buffered saline (PBS)
control with or without 2.5pg/g anti-IL-22 antibody
(Thermo Fisher Scientific, Waltham, MA, USA) weekly
for 4 weeks. The animal study is not blinding. Urine was
collected for the first 24 h and assayed to detect protein by
Coomassie brilliant blue according to the manufacturer’s
instructions (Nanjing Jiancheng, China). Four weeks after
treatment, MRL/lpr mice were sacrificed and the spleens
and inguinal lymph nodes were collected and weighed.
The percentages of CD4"1L-17" Th17 cells and CD4"IL-
22" Th22 cells in the spleens were analyzed by flow
cytometry, including retinoic acid—related orphan recep-
tor yt (RORyt) and c-Maf intracellular expression. Kidney
tissues were fixed for assessment.

Naive CD4™" T and B cell isolation and differentiation

For Th17 cell differentiation, naive CD4" T cells were
purified from the spleens of B6 mice using the naive
Mouse CD4 Cell Kit (StemCell Technologies, Vancouver,
BC, Canada). Sorted naive CD4" T cells were cultured
under Th17 cell culture conditions with 2 pug/mL anti-
CD3, 2 pg/mL anti-CD28, 1 ng/mL TGF-p, 50 ng/mL IL-
6, 10 ng/mL IL-1B, 5ng/mL IL-23, 10 ug/mL anti-IL-4,
10 pg/mL anti-IEN-y, and 10 pg/mL anti-IL-2 (all from
Thermo Fisher Scientific) for 5 days.

For Thl cell differentiation, naive CD4" T cells were
purified from the spleens of B6 mice using the naive
Mouse CD4 Cell Kit (StemCell Technologies, Vancouver,
BC, Canada). Sorted naive CD4" T cells were cultured
under Th1 cell culture conditions with 2 pg/mL anti-CD3,
2 pg/mL anti-CD28, 20 ng/mL IL-2, 20 ng/mL IL-12, and
10 pg/mL anti-IL-4 (all from Thermo Fisher Scientific) for
5 days.

For regulatory T (Treg) cell differentiation, naive CD4 ™"
T cells were purified from the spleens of B6 mice using
the naive Mouse CD4 Cell Kit (StemCell Technologies,
Vancouver, BC, Canada). Sorted naive CD4" T cells were
cultured under Treg cell culture conditions with 2 pug/mL
anti-CD3, 2 pg/mL anti-CD28, 5ng/mL IL-2, and 5ng/
mL recombinant human TGF-f1 for 5 days.

For B cell differentiation, naive B cells were purified
from the spleens of B6 mice using the Mouse B Cell Kit
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(StemCell Technologies). Sorted naive B cells were sti-
mulated for 2 days with 2 ug/mL anti-CD40L and 2 pg/
mL anti-IgM (BD Pharmingen, San Diego, CA, USA).

For some experiments, sorted naive B cells were sti-
mulated with 2 pg/mL anti-CD40L and 2 pg/mL anti-IgM
(BD Pharmingen) for 2 days and then co-cultured with
naive T cells under Th1l7 cell culture conditions for
5 days. For some experiments, induced B cells were co-
cultured with pre-Th17 cells (naive T cells stimulated in
Th17 culture conditions for 3 days) for an additional
5 days, after which Th17 and Th22 cell differentiation was
analyzed.

For some experiments, sorted naive B cells were sti-
mulated with 2 ug/mL anti-CD40L and 2 pg/mL anti-IgM
(BD Pharmingen) for 2 days and then co-cultured with
naive T cells under Th1 cell culture condition or Treg for
5 days.

For some experiments, sorted naive B cells were sti-
mulated with 2 pg/mL anti-CD40L and 2 pg/mL anti-IgM
(BD Pharmingen) for 2 days, then co-cultured with naive
T cells in different transwell chambers under Th17 cell
culture conditions with or without 1 pg/mL anti-TNF-«
antibody or 5ng/mL TNF-a (Thermo Fisher Scientific)
for 5 days, after which Th17 and Th22 cell differentiation
was analyzed.

For some experiments, naive B cells sorted from
CD45.1" mice were stimulated with 2 pug/mL anti-CD40L
and 2 pg/mL anti-IgM (BD Pharmingen) for 2 days, then
co-cultured with naive T cells sorted from CD45.1" mice
under Th17 cell culture conditions for 5 days. These
induced CD45.1" T cells were sorted and co-cultured
with primary renal endothelial cells or naive T or B cells
sorted from CD452" mice for 3 days under different
culture conditions. Renal endothelial cell apoptosis was
analyzed by flow cytometry, and T and B cell differ-
entiation was analyzed.

For some experiments, sorted naive B cells were sti-
mulated with 2 ug/mL anti-CD40L and 2 pg/mL anti-IgM
(BD Pharmingen) for 2 days, then co-cultured with naive
T cells under Th17 cell culture conditions with or without
1 pg/mL anti-TNF-a antibody, 5 ng/mL TNF-a (Thermo
Fisher Scientific), 10 uM mammalian target of rapamycin
(mTOR) agonist (MHY1485; MedChem Express, USA),
or 200 ng/mL rapamycin. mTOR phosphorylation and IL-
17 and IL-22 production were then analyzed.

For some experiments, sorted naive B cells from the
peripheral blood mononuclear cells (PBMCs) of 3 healthy
human donors were stimulated with 2 pg/mL anti-CD40L
and 2 pg/mL anti-IgM (BD Pharmingen) for 2 days, then
co-cultured with naive T cells sorted from healthy human
donor PMBCs under Th17 cell culture conditions for
5 days. Th17 and Th22 cell differentiation was then
analyzed. The study protocol was reviewed and approved
by the ZhongShan Hospital Research Ethics Committee.
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Flow cytometric analysis

To detect Th17 and Th22 cells, cells were incubated for
5h with 50ng/mL phorbol myristate acetate (PMA;
Sigma-Aldrich, USA) and 750 ng/mL ionomycin (Sigma-
Aldrich) in the presence of 20 pg/mL brefeldin A (Sigma-
Aldrich) and then stained with fluorescein isothiocyanate
(FITC)-conjugated anti-CD4 for 15 min. Cells were then
resuspended in a fixation/permeabilization solution and
stained intracellularly with phycoerythrin (PE)-conjugated
anti-IL-17, PE-conjugated anti-IL-22, PE-conjugated anti-
RORyt, or PE-conjugated anti-c-Maf for 30 min according
to the manufacturer’s instructions (Thermo Fisher Sci-
entific). After staining, IL-17", IL-22", RORyt *, and c-
Maf*t cells were analyzed with a CD4" gate by flow
cytometry.

For Thl cell-related cytokine detection, cells were
incubated for 5h with 50 ng/mL PMA and 750 ng/mL
ionomycin in the presence of 20 ug/mL brefeldin A, then
stained with FITC-conjugated anti-CD4 for 15 min. Cells
were then resuspended in a fixation/permeabilization
solution and stained intracellularly with PE-conjugated
anti-TNF-a, PE-conjugated anti-IFN-y, or PE-conjugated
anti-TGF-B for 30 min according to the manufacturer’s
instructions (Thermo Fisher Scientific). After staining,
TNF-a, IFN-y", and TGF-B" cells were analyzed with a
CD4" gate by flow cytometry.

For IL-10 and TGEF-P detection in B cells, cells were
incubated for 5h with 50 ng/mL PMA and 750 ng/mL
ionomycin in the presence of 20 ug/mL brefeldin A, then
surface-stained with FITC-conjugated anti-CD19 for
15 min. Cells were then re-suspended in Fixation/Per-
meabilization solution (Invitrogen, USA) and stained
intracellularly with PE-conjugated anti-IL-10 or PE-
conjugated anti-TGF-B for 30 min according to the
manufacturer’s protocol (Thermo Fisher Scientific). After
staining, IL-10" and TGE-B* cells were analyzed with a
CD19" gate by flow cytometry.

For renal endothelial cell apoptosis detection, C57BL/6
mouse primary kidney endothelial cells purchased from
Cell Biologics (Chicago, IL, USA) were co-cultured with B
cell-induced CD45.1" T cells for 3 days. Then endothelial
cell apoptosis was analyzed by the Annexin V Apoptosis
Detection Kit (BD Pharmingen). The expression levels of
IL-22R (Novus Biologicals, Littleton, CO, USA), CD31,
CD45, and ICAM (eBioscience) were detected by flow

cytometry.

Cytokine detection

Sorted T or B cells from mice were cultured with or
without B cells, then IL-17, IL-22, TNF-q«, interferon
(IEN)-y, TGF-B, IL-10, immunoglobulin M (IgM), and
IgG levels in supernatants were determined by enzyme-
linked immunosorbent assay (ELISA; all from Thermo
Fisher Scientific). Serum double-stranded DNA (ds-DNA)
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antibody levels in MRL/Ipr mice were detected by ELISA
(Thermo Fisher Scientific). Sorted T or B cells from
healthy human donor PBMCs were cultured with or
without B cells, then IL-17 and IL-22 levels in super-
natants were determined by ELISA (all from Thermo
Fisher Scientific).

Histopathological assessment

Mouse kidneys were fixed with formaldehyde, embed-
ded in paraffin, and stained with hematoxylin and eosin
(H&E). H&E-stained kidney slides were read and inter-
preted in a blind fashion in which kidneys were graded for
glomerular inflammation, proliferation, crescent forma-
tion, and necrosis. Interstitial changes and vasculitis were
also noted. Scores from 0 to 3 were assigned for each
feature, and scores were added to yield a final renal score.
For example, glomerular inflammation was graded as
follows: 0, normal; 1, few inflammatory cells; 2, moderate
inflammation; and 3, severe inflammation.

Statistical analysis

Quantitative data were expressed as mean + standard
deviation (SD). Differences were determined by unpaired
two-tailed ¢ test for comparing two groups. For comparing
two group values that did not follow Gaussian distribu-
tion, the two-tailed Mann—Whitney U test was used. All
p values < 0.05 were considered significant.

Results
Activated B cells inhibit Th17 but promote Th22 cell
differentiation in vitro

B cells are potent negative regulators of inflammation
and autoimmunity when activated in vivo and in vitro”*°.
Here a-IgM- and o-CD40-activated B cells were co-
cultured with naive T cells under Th17 cell culture con-
ditions. Compared with the T cell only group, activated B
cells inhibited IL-17 production and RORyt expression (a
transcription factor of Th17 cells®’) (Fig. 1la—c). Interest-
ingly, activated B cells promoted CD4"IL-22" T cell dif-
ferentiation and IL-22 secretion even under Th17 cell
culture conditions (Fig. 1d, e). In addition, c-Maf, repor-
ted as a negative regulator of Th22 cell differentiation®,
was inhibited by activated B cells (Fig. 1f). These data
indicated that activated B cells could inhibit Th17 but
promote Th22 cell differentiation. To further analyze
whether B cells could reverse Th22 cell differentiation
from Th17 cells, activated B cells were co-cultured with
established Th17 cells (naive T cells pre-cultured under
Th17 culture conditions for 3 days). B cells could neither
affect the differentiation of Th17 and Th22 cells nor
regulate RORyt and c-Maf expression (Fig. 1g-1). We also
determined the effects of activated B cells on other
effector T and Treg cell subsets. As Supplementary
Fig. la—c shows, activated B cells did not affect Thl or
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Fig. 1 B cells inhibit Th17 but promote Th22 cell differentiation in vitro. Naive B cells isolated from B6 mice were cultured in the presence of a-
IgM and a-CD40 for 2 days, then co-cultured with sorted naive T cells under Th17 cell culture conditions (TGF-B, IL-6, IL-18, IL-23, etc,) for 5 days.
a CD4TIL-177 cells were analyzed by flow cytometry using a CD4 " gate (left). The statistics for flow cytometry of CD4FIL-177 cells (right). b IL-17 in
supernatants was analyzed by ELISA. ¢ CD4TRORyt™ cells were analyzed by flow cytometry (left). The statistics for flow cytometry of CD4"RORyt ™"
cells (right). d CD4TIL-22" cells were analyzed by flow cytometry (left). The statistics for flow cytometry of CD4™IL-22" cells (right). e IL-22 in
supernatants was analyzed by ELISA. f CD4"c-Maf* cells were analyzed by flow cytometry (left). The statistics for flow cytometry of CD4*c-Maf"cells
(right). Sorted naive T cells were pre-cultured in Th17 cell culture conditions for 3 days, then co-cultured with B cells (naive B cells stimulated with a-
IgM and a-CD40 for 2 days) for 5 days. g CD4"IL-17" cells were analyzed by flow cytometry (left). The statistics for flow cytometry of CD4"IL-177 cells
(right). h IL-17 in supernatants was analyzed by ELISA. i CD4"RORyt™ cells were analyzed by flow cytometry (left). The statistics for flow cytometry of
CD4"RORyt" cells (right). j CD4™IL-22" cells were analyzed by flow cytometry (left). The statistics for flow cytometry of CD41IL-22" cells (right).
k IL-22 in supernatants was analyzed by ELISA. I CD4"c-Maf™ cells were analyzed by flow cytometry (left). The statistics for flow cytometry of CD4 " c-
Maf* cells (right). Results shown are representative of three independent experiments. *p < 0.05; **p < 0.01; **p < 0.001.
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IL-10" and TGF-B" Treg cell differentiation. Collectively,
these data indicate that activated B cells might inhibit
Th17 and promote Th22 cell differentiation from naive
T cells but not differentiated Th17 cells.

Activated B cell-induced Th22 cells display
immunosuppressive effects in vitro

To analyze the function of activated B cell-induced
Th22 cells, induced Th22 cells from CD45.1 background
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mice were first sorted from the co-culture system on day
5, then co-cultured with naive T and naive B cells sorted
from CD45.2 background mice under different culture
conditions (Fig. 2a, b). Activated CD4" T cells had
increased expression of IL-22R (blue line) compared with
naive T cell (red line); B cells also had mildly increased
expression of IL-22R (blue line) compared with naive B
cell (red line) (Fig. 2c). Induced Th22 cells did not affect T
cell proliferation but significantly inhibited the TNF-«
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Fig. 2 B cell-induced T cells possess immunosuppressive effects via IL-22. a The schematic graph show that naive B cells sorted from CD45.1*
background B6 mice were cultured in the presence of a-IgM and a-CD40 for 2 days, then co-cultured with sorted naive T cells from CD45.17 B6 mice
under Th17 cell culture condition for 5 days. CD45.1" T cells were then sorted and co-cultured with naive T and B cells from CD45.2™ B6 mice with or
without anti-IL-22 antibodies for additional 5 days. b CD45.1% T and CD45.2" T cells were detected by flow cytometry. ¢ IL-22R expression in CD45.2"
T and CD45.2" B cells was analyzed by flow cytometry. d CD452" T cells were labeled with BrdU, then cell proliferation was analyzed by flow
cytometry. e The flow cytometric results of CD4TIFN-y™ cells. f The flow cytometric results of CD4TTNF-a™ cells. g CD45.2™ B cells were labeled with
BrdU, then analyzed by flow cytometry. h The flow cytometric results of CD19¥IL-10" cells. i The flow cytometric results of CD19+TGF-B™ cells. j IgM
in supernatants was analyzed by ELISA. k IgG in supernatants was analyzed by ELISA. Results shown are representative of three independent
experiments. *p < 0.05.
(.

production of activated T cells (Fig. 2d-f). Moreover,
induced Th22 cells did not affect CD19" B cell pro-
liferation or IL-10 and TGEF-fB production but inhibited
IgM and IgG production (Fig. 2g—k). These inhibitory
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effects could be reversed by supplementing culture media
with anti-IL-22 antibody. The findings suggest that B cell-
induced Th22 cells possess immunosuppressive effects via
IL-22.
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Th22 cells can also play a regulatory role in tissue and
cellular repair*®*®, To analyze B cell-induced Th22 cell
function, induced Th22 cells were sorted as described
above, then co-cultured with mouse primary renal endo-
thelial cells. Renal endothelial cells highly expressed IL-
22R and were gated by CD45~ CD31MICAM" (Fig. 3a—c).
After 3 days of co-culture, we detected endothelial cell
apoptosis, showing that early and late apoptosis were
increased when co-cultured with Thl7 cells and
decreased to control level when cultured with B cell-
induced Th22 cells. These effects could be reversed by
treatment with anti-IL-22 antibodies in culture media and
restored with recombinant mouse (rm) IL-22 (Fig. 3d).
These data suggest that activated B cell-induced Th22
cells have protective capabilities over renal endothelial
cells.

Activated B cell-induced Th22 cells rescue lupus in vivo
In all, 10 x 10° ex vivo-activated B cells or PBS control
was injected intravenously into MRL/Ipr mice weekly for
4 weeks. Mice injected with B cells displayed an obvious
reduction in serum titers of anti-ds-DNA antibody, IgM
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and IgG, and decreased 24-h urine protein levels (Fig. 4a—e).
Treatment with activated B cells relieved lupus auto-
immune injuries as observed through reduced kidney
inflammatory injuries, decreased renal scores, and the
depressed weights of spleens and lymph nodes (Fig. 4f-h),
whereas activated B cells injected with anti-IL-22 antibodies
abolished these therapeutic effects indicating that activated
B cells may exert therapeutic effects via IL-22 (Fig. 4a—h).

Furthermore, treatment with activated B cells inhibited
the percentage of CD4'IL-17" Th17 cells, decreased
intracellular RORyt expression in CD4" T cells of lupus
mice spleens, and reduced serum IL-17. However, it also
promoted the differentiation of CD4"IL-22" Th22 cells,
increased serum IL-22, and inhibited intracellular c-Maf
expression in CD4" T cells (Fig. 4i—n). Interestingly, anti-
IL-22 antibodies injected with B cells reversed B cell
regulatory effects on Th17 and Th22 cell differentiation
(Fig. 4i—n). These data show that activated B cells could
inhibit Th17 but promote Th22 cell differentiation in vivo
in lupus-prone mice, supporting the notion that activated
B cells could be a promising therapeutic method for
treating lupus autoimmunity via IL-22.
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g anti-IL-22 antibodies were injected intravenously into MRL/lpr mice weekly for 4 weeks. a Serum anti-ds-DNA antibody IgM level was analyzed by
ELISA. b Serum anti-ds-DNA antibody IgG level was analyzed by ELISA. ¢ Serum IgM level was analyzed by ELISA. d Serum IgG level was analyzed by
ELISA. e Twenty-four-hour urine protein level was analyzed by ELISA. f Kidney inflammation was analyzed by H&E staining (left) and the renal scores
of MRL/Ipr mice (right). g Spleen photographs of mice with different treatments (left). Spleen weight of mice with different treatments (right).
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Activated B cells regulate Th17/Th22 differentiation via
TNF-a

We next explored the mechanism through which acti-
vated B cells regulate Th22 differentiation. To identify key
factors, activated B cells were co-cultured with naive
T cells in different transwell chambers for 5 days. B cells
inhibited CD4*IL-17" Th17 cell differentiation, IL-17
secretion, and RORyt expression (Fig. 5a—d) while pro-
moting CD4'IL-22% Th22 cell differentiation, IL-22
secretion, and inhibiting c-Maf expression (Fig. 5e-g).
These data indicate that activated B cells likely inhibit
Th17 but promote Th22 cell differentiation without cell
contact. We then analyzed the production of cytokines
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and antibodies produced by activated B cells. Supple-
mentary Fig. 2 shows that a-IgM and «-CD40 induced B
cell production of large quantities of TNF-q, IL-10, TGF-
B, IFN-y, and IgM and small quantities of IL-4, IL-6, IgG,
and IgA (Fig. S2a—c). In addition to previous studies
showing that Th22 cells could be derived from naive
T cells in the presence of TNF-a and IL-6%2, our data
demonstrate that B cells also produce TNF-a and other
cytokines (Fig. S2a, b). Thus we speculate that B cells
might affect Th17/Th22 cell differentiation via TNF-a.
We next co-cultured B cells with naive T cells under Th17
cell culture conditions with or without anti-IL-4, anti-IL-
6, anti-IL-10, anti-TGF-f, anti-IFN-y, or anti-TNF-a
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J

antibodies or rmTNF-a. The results illustrate that only
rmTNF-«a and anti-TNF-a antibodies affected IL-17 and
IL-22 production (Fig. 5h). Furthermore, neutralization of
TNF-a by anti-TNF-a antibodies inhibited Th22 cell
differentiation and IL-22 production but promoted Th17
cell differentiation and IL-17 production. Supplementa-
tion with rmTNF-a reversed Th17/Th22 cell differentia-
tion and IL-17/IL-22 production, respectively (Fig. 5i-1).
All together, these data indicate that activated B cells may
affect Th17 and Th22 cell differentiation via non-contact
TNF-a secretion.
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Activated B cells regulate T cell differentiation through
activation of mTOR

Although B cells induced Th22 cell differentiation via
TNEF-a, the biological mechanism remained unclear. mTOR
activation has been associated with T cell differentiation®,
Exploring gene expression data in Gene Expression
Omnibus, GSE89133 showed that human Th17 cells
treated with TNF family member TL1A induced IL-22
secretion, with mTOR activator LAMTOR5 upregulated
in the TL1A treatment group after 72-h stimulation®*
(Supplementary Fig. 3). These data indicated that mTOR
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activation might be involved in Th22 cell differentiation.
To verify this, naive T cells were co-cultured with B cells
under Th17 culture conditions over time. Phosphoryla-
tion of mTOR was detected across multiple time points in
T cells co-cultured with B cells (Fig. 6a). To further
analyze the role of mTOR during T cell differentiation,
naive T cells were co-cultured with B cells under Th17
cell culture conditions with or without the mTOR agonist
MHY1485, mTOR inhibitor rapamycin, TNF-a, or anti-
TNF-a antibodies. B cells induced mTOR phosphoryla-
tion in T cells, TNF-a and MHY1485 promoted mTOR
phosphorylation, and anti-TNF-a antibodies and rapa-
mycin abolished B cell-mediated mTOR phosphorylation
(Fig. 6b). Furthermore, when naive T cells were co-
cultured with B cells under Th17 cell culture conditions,
MHY1485, together with TNF-«, promoted IL-22 pro-
duction but inhibited IL-17 production, whereas rapa-
mycin and anti-TNF-a antibodies abrogated TNF-a-
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mediated IL-22 production (Fig. 6¢). These data suggest
that B cells may promote Th22 cell differentiation
through TNF-a and mTOR activation.

Activated B cells regulate Th17/Th22 cell differentiation in
humans

To further verify the regulatory effects of B cells on
Th17 and Th22 cell differentiation in humans, naive
T cells isolated from PBMCs were co-cultured with B cells
for 5 days (naive B cells were prestimulated with a-IgM
and a-CD40 for 2 days). B cells inhibited CD4*1L-17"
Th17 cell differentiation and intracellular RORyt expres-
sion (Fig. 7a, b). Meanwhile, B cells promoted CD4"IL-
227 Th22 cell differentiation but inhibited c-Maf
expression (Fig. 7c, d). B cells also inhibited IL-17 secre-
tion but promoted IL-22 production (Fig. 7e, f). Activated
B cells also produced large amounts of TNF-a (Fig. 7g, h).
In addition, mTOR phosphorylation was upregulated in
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T cells co-cultured with B cells (Fig. 7i). These data
indicate that B cells could also affect Th17/Th22 cell
differentiation in humans.

Discussion

B cells possess important immunosuppressive effects
and play key negative regulatory roles in many auto-
immune diseases®*” ">, Previous studies suggest that B
cells play a protective role in the autoimmune inflam-
mation injuries of lupus mice'***, However, the
mechanisms of its immunosuppressive effects and how B
cells alleviate lupus were not clear. In this study, we found
that a-IgM- and «-CD40-activated B cells co-cultured
with Th17 cells in different transwell chambers and
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supplemented with rmTNF-a promoted IL-22 and
inhibited IL-17 secretion, while blocking TNF-a with
TNEF-a-neutralizing antibodies had the opposite effects.
However, blocking other cytokines did not achieve similar
results. Further investigation showed that TNF-a sup-
plementation promoted Th22 and inhibited Th17 cell
differentiation, while blocking TNF-a had the opposite
effect.

Th17 cells, under investigation for many years, have
proven to play important roles in the pathogenesis of
autoimmune diseases and become promising therapeutic
targets'’™'?. Antibodies against IL-17 secreted by Th17
cells are marketed clinically to treat psoriatic arthritis and
ankylosing spondylitis*>>®. Th17 cells also play key roles
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in the pathogenesis of lupus; therefore, Th17 cell inhibi-
tion may help to alleviate lupus injuries. Here our study
demonstrates that activated B cells effectively inhibited
Th17 cell differentiation and IL-17 secretion in vitro. In
addition, activated B cell infusion therapy also inhibited
Th17 cell expansion in lupus mice. Interestingly, the
activated B cells inhibited Th17 cell differentiation while
promoting Th22 cell differentiation. Activated B cells
regulated Th17 and Th22 cell differentiation only when
added to the primary culture stage of naive CD4" T cells;
they could not regulate Th17 and Th22 cells when naive
CD4" T cells were induced to Th17 cells for 3 days. These
results suggest that activated B cells can inhibit naive
CD4" T cell differentiation into Th17 cells and promote
the differentiation into Th22 cells.

mTOR activation plays an important role in lymphocyte
activation and proliferation®*~>. In this study, we found
that mTOR was activated in T cells co-cultured with B
cells. TNF-a further promoted mTOR activation and
induced IL-22 secretion, while TNF-a-neutralizing anti-
bodies inhibited these processes. Since it has been sug-
gested that mTOR activation could be involved in IL-22
secretion from T cells, we confirmed that an mTOR
agonist promoted IL-22 secretion, while rapamycin, an
mTOR inhibitor, inhibited IL-22 secretion. These data
suggest that mTOR activation might be involved in the
differentiation of T cells into Th22 cells.

Th22 cells are currently considered to have immuno-
suppressive effects and play negative regulatory roles in
psoriasis, arthritis, and hepatitis®**’. Studies have shown
that cytokines such as TGF-B, TNF-a, and IL-6 can
induce Th22 cell differentiation®>?. In this study, a large
number of TNF-a secreted by B cells and TGEF-f initially
added to the culture media might together induce T cells
to differentiate into Th22 cells. Although T cells induced
by B cells are not all Th22 cells, in vitro functional studies
showed that T cells induced by B cells protected endo-
thelial cells against apoptosis, inhibited Thl cell-related
cytokine secretion such as IFN-y and TNF-a, and also
inhibited the B cell secretion of IgM and IgG. Blocking IL-
22 with neutralizing IL-22 antibodies alleviated the inhi-
bitory effects of effector T and B cells. It is suggested that
T cells induced by activated B cells can play an immu-
nosuppressive role through the secretion of IL-22.

Additional in vivo experiments confirmed that activated
B cell infusion could alleviate lupus nephritis, reduce ds-
DNA antibody titer and 24-h urinary protein, and inhibit
Th17 cell differentiation while promoting Th22 cell dif-
ferentiation. However, co-injection of B cells with IL-22-
neutralizing antibodies significantly weakened the
immunosuppressive and therapeutic effects of B cells on
Th17 cells, and the percentage of Th22 cells in vivo were
also significantly reduced. These results suggest that B cell
infusions might exert therapeutic effects in the treatment
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of lupus mice by inhibiting Th17 cells and promoting
Th22 cell differentiation, along with IL-22 playing a key
role in B cell protection.

In summary, we define a novel immunoregulatory role
for B cells by inhibiting Th17 and promoting Th22 cell
differentiation. B cell infusions effectively relieved lupus
autoimmunity injuries, suggesting that B cells could be
used as an effective therapy in the treatment of lupus.
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