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COMMENTARIES
Targeting the Gut
Microbiota in
Coronavirus
Disease 2019:
Hype or Hope?
oronavirus disease 2019
C(COVID-19), an acute respira-
tory illness caused by novel severe
acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2), has been a terrible
worldwide pandemic since December
2019. As of late August 2021, over 210
million people have contracted COVID-
19, with over 4.4 million deaths glob-
ally (see https://coronavirus.jhu.edu/
map.html). Typical presentations of
this infection include fever, cough, fa-
tigue, pneumonia, and loss of taste or
smell.1 Although relatively less com-
mon than respiratory symptoms,
gastrointestinal symptoms including
anorexia, diarrhea, vomiting, and
abdominal discomfort occur in about
18% of COVID-19 patients.2 Detection of
virus RNA in fecal samples in up to 50%
of COVID-19 patients infers the impor-
tance of gastrointestinal tract infection.2

Gastrointestinal symptoms have also
occurred before the appearance of res-
piratory conditions, thus supporting
viral involvement in the gastrointestinal
tract in SARS-CoV-2 infection.3
Current Knowledge of
Interplay Between SARS-
CoV-2 Infection and Gut
Microbiota
Gut Dysbiosis and COVID-19
Severity

The human gastrointestinal tract
harbors trillions of microorganisms
that form an ecologic community
known as gut microbiota, of which its
alteration, termed “dysbiosis,” has
been associated with various human
diseases. Microbial diversity in fecal
samples of patients with COVID-19
was found to be decreased and
accompanied by enrichment of
opportunistic pathogens including
Clostridium hathewayi and Rumino-
coccus species.4–6 Data from 2 studies
that used metagenomic sequencing
showed that several beneficial com-
mensals such as Faecalibacterium
prausnitzii and Eubacterium rectale
were depleted in fecal samples of
COVID-19 cases.5,6 F prausnitzii, a
major producer of short-chain fatty
acids (SCFAs; crucial for maintaining
intestinal homeostasis) in the gut with
anti-inflammatory potential due to
induction of interleukin-10 produc-
tion,7 was found to be low in abun-
dance in feces of COVID-19 patients
and had an inverse correlation with
disease severity. In contrast, C hathe-
wayi and Clostridium ramosum, both
known to be associated with bacter-
emia and inflammation, were posi-
tively correlated with COVID-19
severity. In addition, fecal samples
with high SARS-CoV-2 infectivity had a
higher abundance of opportunistic
pathogenic bacteria (eg, Collinsella
species, Morganella morganii) and
lower abundance of SCFA-producing
bacteria (eg, Parabacteroides merdae,
Lachnspiraceae bacterium) compared
with samples with low SARS-CoV-2 viral
infectivity.8 Altogether these findings
imply that gut dysbiosis with enrich-
ment of pathogenic bacteria and deple-
tion of beneficial commensals is closely
related to disease severity in COVID-19.
Persistent Dysbiosis After
SARS-CoV-2 Clearance

SARS-CoV-2 infection not only
causes acute infection but also
lingering symptoms after the acute
episode. Over 80% of COVID-19 pa-
tients have persistent symptoms
known as post–acute COVID-19 syn-
drome and/or developed multisystem
inflammation after viral clearance.9

Multiple studies have reported a
marked difference in gut microbiota
between recovered patients and
healthy adults, and dysbiosis can
persist up to 30 days after disease
resolution.5,6 Infectious bacteria such
as Bifidobacterium dentium and Kleb-
siella pneumoniae were enriched in
recovered patients, whereas Bacter-
oides species including Bacteroides
dorei, Bacteroides thetaiotaomicron,
and Bacteroides massiliensis as well as
the anti-inflammatory F prausnitzii
were depleted.4,6,8 Prolonged dysbio-
sis in COVID-19 patients despite viral
clearance may contribute to persistent
illness of which secondary invasion of
bacterial pathogens and reduction of
beneficial commensals may become
paramount for complete disease
resolution.
Mechanistic Link Between
SARS-CoV-2 Infection and Gut
Microbiota

In SARS-CoV-2 infection, pathogen-
esis begins with interactions between
SARS-CoV-2 and the viral entry recep-
tor, angiotensin-converting enzyme
(ACE)-2. ACE-2, a membrane-bound
protein highly expressed in gut enter-
ocytes, works with its countering
opponent, ACE, to maintain balance of
the renin-angiotensin system (RAS;
mediator of fluid and electrolyte bal-
ance). ACE-2 is also a key regulator of
dietary amino acid homeostasis, mi-
crobial ecology, and innate immu-
nity.10 ACE-2 can be hijacked as a
receptor for SARS-CoV-2 to undergo
replication for promoting viral
infection.11–14 This viral-mediated
reduction of ACE-2 leads to accumula-
tion of its ligand angiotensin II and RAS
imbalance, resulting in enhanced in-
testinal permeability and leaky gut
syndrome.15 With a disrupted gut bar-
rier, bacteria and endotoxins (eg, lipo-
polysaccharides) can enter the systemic
circulation and contribute to the exag-
gerated production of cytokines and
eventually trigger endotoxemia and
inflammation. Both F prausnitzii and E
rectale were found to be negatively
associated with the proinflammatory
cytokines C-X-C motif chemokine ligand
10 (CXCL10) and tumor necrosis factor-
a,5 thus implicating their anti-
inflammatory potential against SARS-
CoV-2 infection. Interestingly, new evi-
dence reported that SARS-CoV-2 infec-
tion could reduce local inflammation in
the gut, whereas hospitalized COVID-19
patients presenting with gastrointes-
tinal symptoms benefited from signifi-
cant reduction in disease severity.16

These findings therefore implicate the
potential of the gastrointestinal tract
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and gut microbiota in attenuating
symptoms of COVID-19.

SARS-CoV-2 infection can also alter
the profile of gut metabolites (inter-
mediate or end products of microbial
metabolism). For instance, an inducer
of oxidative DNA damage and cytokine
production guanosine and its de-
rivatives 8-hydroxydeoxyguanosine
were reported to be enriched in
COVID-19 patients.8 Glycolysis and its
intermediate product L-serine were
found to be increased in patients’
samples, of which pathogenic bacteria
could catabolize L-serine to confer a
growth advantage against other bacte-
rial competitors in the inflamed gut.17

Moreover, depletion of SCFA-
producing bacteria, especially F praus-
nitzii, after viral infection led to
decreased synthesis of anti-
inflammatory SCFAs. Collectively,
SARS-CoV-2 invades gut enterocytes
through ACE-2 and causes alterations
in gut microbiota and their metabo-
lites, impaired barrier function, and
bacterial translocation into the circu-
lation, leading to aggravated systemic
inflammation and multiple-organ
involvement (Figure 1).
Microbiota Modulation as
Potential Therapeutics in
COVID-19
Dietary Intervention

Dietary nutrients are a convenient
and safe way to prevent disease and
reduce disease severity. In SARS-CoV-2
infection, excessive production of
proinflammatory cytokines and acute
inflammation occurred; hence, intake of
nutrients with anti-inflammatory and
antioxidant effects may be beneficial in
COVID-19 patients. These dietary com-
ponents involve omega-3 poly-
unsaturated fatty acids, vitamins, zinc,
plant-based polyphenols (eg, flavo-
noids and phenolic acids), poly-
saccharides, and a panoply of herbs
from traditional Chinese medicine.18

Dietary fiber is protective against gut
barrier disruption and can restrict
bacterial translocation into the sys-
temic circulation, whereas a high fat
and protein diet are correlated with
mucosal barrier dysfunction.19 A
multicenter retrospective study with
10
over 7300 subjects found that out-
comes of patients with COVID-19 with
pre-existing type 2 diabetes, who are
known to have a high mortality rate,
can be improved by well-controlled
blood glucose.20 These data highlight
the feasibility of a low glycemic index
diet with green vegetables and fruits to
improve outcome in hospitalized pa-
tients. Through appropriate dietary
intervention, COVID-19 patients can
potentially benefit from strengthened
immunity and reduced inflammation
and oxidative stress, thus alleviating
disease severity and speeding recovery.

Prebiotics
Specific dietary components can

serve as prebiotics (a group of dietary
fibers including fructans and galactans
that can only be digested by gut mi-
crobes but not the host) to stimulate an
abundance of probiotics. For instance,
plant-based fiber can promote the
growth of the probiotics Lactobacillus
and Bifidobacterium and reduce
opportunistic pathogenic bacteria (eg,
Clostridium).18 These prebiotic fibers
are degraded by gut microbes to
generate SCFAs (eg, acetate, propio-
nate, and butyrate) as end products.
SCFAs are immunomodulatory metab-
olites capable of enhancing effector ac-
tivities of B cells and CD8þ T cells21

and producing anti-inflammatory cyto-
kines.7 Dietary prebiotics serve as an
effective means to stimulate SCFA syn-
thesis through promoting growth of
SCFA-producing bacteria. F prausnitzii
is a key producer of SCFAs but is
consistently depleted in COVID-19 pa-
tients.5,6 To restore its abundance,
different nutrients derived from plant-
based fiber can stimulate the growth
of F prausnitzii,22 thereby rebalancing
gut microbiota and dysregulated me-
tabolites in the gut. There is a lack of
dietary interventional studies in
COVID-19, and it is likely that it may act
as an adjunct to current therapeutics.

Probiotics
Substantial interest has emerged to

develop therapeutic strategies against
COVID-19 by modulating gut micro-
biota. Administration of probiotics,
particularly Lactobacillus or Bifido-
bacterium, has long been associated
with health benefits such as improve-
ment of immunity and restoration of
microbial balance. For example,
commercially used probiotics Lacto-
bacillus rhamnosus enhanced the T
cell–mediated immune response in
pneumococcal-infected mice23 and
alleviated symptoms of acute respira-
tory infection in children.24 Although
no published studies have reported the
efficacy of probiotics for COVID-19
management, several clinical trials us-
ing a single strain or a cocktail of
probiotics to reduce COVID-19 severity
and/or improve treatment efficacy are
in progress (Table 1). Results of an
open-label pilot study (NCT04950803)
showed that 4-week oral supplemen-
tation of a probiotic formula (S1M01;
GenieBiome, Hong Kong; a probiotic
blend of 3 Bifidobacterium) targeted to
replenish bacteria species known to be
depleted in COVID-19 subjects has-
tened recovery, enhanced immunity,
and suppressed serum proin-
flammatory cytokines in hospitalized
patients. Enrichment of beneficial bac-
teria in feces of patients receiving the
formula were seen at 5 weeks after
therapy that was not seen in the stan-
dard arm group.25

Therapeutic approaches that target
ACE-2 to restore RAS balance including
ACE inhibitors or angiogenesis receptor
blockers are rapidly being developed
and tested in clinical trials.15 Gut mi-
crobes interacted with ACE-2, and mi-
crobial alterations in COVID-19
patients were shown to be correlated
with ACE-2,6 suggesting the feasibility
of combined pharmacologic agents with
probiotics against COVID-19. Caution is
needed, however, because these drugs
can also upregulate ACE-2 expression
and may enhance viral entry into host
cells.26 To address this concern, soluble
recombinant human ACE-2 has
emerged that can act as a competitive
interceptor by binding the viral spike
protein to neutralize SARS-CoV-2 and
also minimize organ injuries by reba-
lancing RAS and lowering circulatory
concentration of angiotensin II.15,27

Interestingly, bioengineering the pro-
biotic species Lactobacillus paracasei
into a live vector for oral delivery of
recombinant human ACE-2 showed
positive outcomes in mice, and this
approach may facilitate large-scale



Figure 1. Infection begins with the binding of SARS-CoV-2 to ACE-2 expressed in the membrane of intestinal epithelium cells.
Enrichment of opportunistic pathogens (eg, C hathewayi) and depletion of commensal probiotics (eg, F prausnitzii) occur after
viral infection. Reduction in functional ACE-2 leads to leaky gut syndrome with increased permeability of the gut barrier and an
impaired mucous layer. Pathogens and harmful metabolites (eg, guanosine, L-serine) can enter the systemic circulation and
contribute to inflammation with exaggerated production of proinflammatory cytokines (eg, CXCL10, tumor necrosis factor-a).
Dietary intervention, prebiotics, and probiotics can restore the balance of gut microbiota and replenish the loss of ACE-2 on
SARS-CoV-2 infection. These facilitate the repair of the gut barrier, thus reducing bacterial translocation and alleviating
inflammation. The growth of probiotics and synthesis of beneficial metabolites (eg, SCFAs) can also be stimulated, thereby
hastening recovery. (Figure was created with BioRender.com.)

COMMENTARIES
production of high-quality ACE-2 with
sufficient bioavailability in the future.28

Previous studies have reported
moderate efficacy of probiotics against
acute respiratory infection, whereas
probiotics as adjuvants may improve
clinical outcomes.29 Several clinical
studies are investigating the efficacy of
probiotics in patients with COVID-19.
Researchers in Austria are investi-
gating the efficacy of a probiotic
mixture to alleviate gastrointestinal
symptoms in hospitalized COVID-19
patients (NCT04420676) and compli-
cations after discharge
(NCT04813718). The combined use of
prebiotics and probiotics in hospital-
ized COVID-19 patients is being
studied by researchers in Spain
(NCT04666116) and Hong Kong
(NCT04730284). The use of probiotics
as adjuvant therapy for COVID-19
management is also of interest. A
phase II trial in Italy applied ozone
therapy plus a probiotic mixture to
COVID-19 patients to prevent deterio-
ration, need for hospitalization, or
intensive care unit admission
(NCT04366089). Studies are also
ongoing to investigate whether pro-
biotics can lower the risk of SARS-CoV-
2 infection by boosting immunity in
uninfected elderly subjects
(NCT04922918) and healthy in-
dividuals (NCT04734886). Clinical
studies targeting gut microbiota as
therapeutics in COVID-19 are summa-
rized in Table 1.

Fecal Microbiota
Transplantation

A case report on 2 subjects showed
that fecal microbiota transplantation was
safe in patients with recurrent Clos-
tridioides difficile infection and coexisting
COVID-1930 and might have a role in
hastening recovery. A larger clinical trial
to examine the role of fecal microbiota
transplantation in COVID-19 is in prog-
ress (NCT04824222). However, the
presence of SARS-CoV-2 in fecal samples
in asymptomatic individuals has had a
large impact on donor screening, and
vigilant SARS-CoV-2 testing should be
11
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Table 1.Ongoing Clinical Studies of Gut Microbiota Regarding COVID-19a

Study type
Trial identification

and phaseb Main aim Country
Estimated
participants

Observational NCT04770649
Phase: N/A

Influence of microbiota and its function on immune
system and efficacy of COVID-19 vaccine

United States 10,000

Observational NCT04359836
Phase: N/A

Change in faecal microbiota of COVID-19 patients United States 250

Observational NCT04980560
Phase: N/A

Microbiota difference among subjects receiving
different COVID-19 vaccines and recovered
patients

Hong Kong 200

Observational NCT04669938
Phase: N/A

Microbiota of COVID-19 patients in ICU for outcome
prediction of disease severity

France 200

Observational NCT04447144
Phase: N/A

Influence of dietary habits on outcomes of COVID-19
patients

Egypt 200

Observational NCT04497402
Phase: N/A

Sex difference in microbiota of COVID-19 patients Italy 88

Interventional NCT04366089
Phase: II

Efficacy of an ozone therapy-based intervention with a
probiotic mixture (SivoMixxc) in COVID-19 patients
and preventing the need for ICU hospitalization

Dose: 500 g azithromycin þ 2 � 109 CFU SivoMixxc

daily for 21 days

Italy 152

Interventional NCT04540406
Phase: II

Efficacy of a botanical-based fixed-combination drug
NBT-NM108 in early-stage suspected or confirmed
symptomatic COVID-19 patients

Dose: 4 times (30 g/sachet) daily for 28 days

United States 100

Interventional NCT04941703
Phase: I and II

Efficacy of combining magnesium citrate with
probiotics in hospitalized COVID-19 patients

Dose: 296 mL magnesium citrate þ probiotics twice
daily for 6 days or until discharge

United States 30

Interventional NCT04884776
Phase: N/A

Efficacy of a microbiome immunity formula to improve
immune functions, reduce adverse events
associated with COVID-19 vaccinations, and
reduce hospitalization in vulnerable subjects
(patients with underlying type 2 diabetes mellitus
and the elderly)

Dose: 1 � 109 CFU of 3 Bifidobacteria and 3 prebiotics
twice daily for 12 weeks

Hong Kong 484

Interventional NCT04950803
Phase: N/A

Efficacy of an oral microbiome immunity formula to
enhance immunity and reduce long-term
complications in patients recovered from
COVID-19

Dose: 1 � 109 CFU of 3 Bifidobacteria and 3 prebiotics
daily for 3 months

Hong Kong 280

Interventional NCT04730284
Phase: N/A

Efficacy of a synbiotic formula in hospitalized
COVID-19 patients

Dose: 4 g tailored-made synbiotics daily for 28 days

Hong Kong 20

Interventional NCT04420676
Phase: N/A

Efficacy of a probiotic mixture (Omni-Biotic 10 AADd)
to improve gastrointestinal symptoms of COVID-19
and disease severity

Dose: Omni-Biotic 10 AAD (Institut AllergoSan, Graz,
Austria) twice daily for 30 days

Austria 120

Interventional NCT04813718
Phase: N/A

Efficacy of a mixture of prebiotics and probiotics
Omni-Biotic Pro Vi 5 (Institut AllergoSan, Graz,
Austria) against post–COVID-19 syndrome

Dose: N/A

Austria 20
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Table 1.Continued

Study type
Trial identification

and phaseb Main aim Country
Estimated
participants

Interventional NCT04666116
Phase: N/A

Efficacy of nutritional supplement by nasopharyngeal
smear to decrease viral load in hospitalized
COVID-19 patients

Dose: Supplement of mixture of probiotics
(Bifidobacterium longum, Bifidobacterium animalis
ssp. lactis and Lactobacillus rhamnosus), vitamin D,
zinc, and selenium

Spain 96

Interventional NCT04922918
Phase: N/A

Impact of probiotics on preventing SARS-CoV-2
infection in elderly living in a nursing home

Dose: 1 � 109 CFU of Ligilactobacillus salivarius
MP101 daily for 4 months

Spain 25

Interventional NCT04621071
Phase: N/A

Efficacy of probiotics to reduce duration and
symptoms of COVID-19 patients with self-caring at
home

Dose: 1 � 109 CFU of 2 probiotic strains daily for 25
days or until hospitalized

Canada 84

Interventional NCT04486482
Phase: N/A

Efficacy of a glycan KB109 in COVID-19 patients in the
outpatient setting

Dose: KB109 (Kaleido Biosciences, Lexington, MA) for
35 days

United States 50

Interventional NCT04847349
Phase: N/A

Efficacy of a probiotic mixture (OL-1)e to boost
immunity of unvaccinated patients with previous
SARS-CoV-2 infection

Dose: OL-1 daily for 21 days

United States 45

Interventional NCT04734886
Phase: N/A

Impact of probiotics on SARS-CoV-2 antibody
response in healthy adults

Dose: 1 � 108 CFU of Lactobacillus reuteri DSM
17938 þ 10 mg vitamin D3 twice daily for 6 months

Sweden 400

CPU, colony-forming unit; ICU, intensive care unit; N/A, not applicable.
aThe search was conducted on clinicaltrials.gov in July 2021. Completed, not yet recruiting, suspended, or terminated trials
were excluded.
bUS Food and Drug Administration definitions of clinical trial phases were used.
cProbiotics in SivoMixx are Streptococcus thermophiles (DSM322245), Bifidobacterium lactis (DSM 32246), Bifidobacterium
lactis (DSM 32247), Lactobacillus acidophilus (DSM 32241), Lactobacillus helveticus (DSM 32242), Lactobacillus paracasei
(DSM 32243), Lactobacillus plantarum (DSM 32244), and Lactobacillus brevis (DSM 2796).
dProbiotics in Omni-Biotic 10 AAD include Bifidobacterium bifidum W23, Bifidobacterium lactis W51, Enterococcus faecium
W54, Lactobacillus acidophilus W37, Lactobacillus acidophilus W55, Lactobacillus paracasei W20, Lactobacillus plantarum
W1, Lactobacillus plantarum W62, Lactobacillus rhamnosus W71, and Lactobacillus salivarius W24.
eProbiotics in OL-1 include Bifidobacterium lactis Bl-04, Bifidobacterium longum subsp. infantis Bi-26, Lactobacillus rham-
nosus Lr-32, Lactobacillus paracasei Lpc-37, and Lactobacillus salivarius Ls-33.

COMMENTARIES
performed in all donors to ensure the
safety of fecal microbiota transplantation
during the COVID-19 pandemic.31
Future Directions
At the society level, the long-lasting

COVID-19 pandemic has dramatically
upended daily lives. Current pandemic
control measures and practices will
have substantial and potentially long-
term effects on the human microbiota
worldwide, given strict implementa-
tion of hygiene measures, physical
separation, travel barriers, and other
measures that influence overall mi-
crobial diversity and loss. Several
studies reported increased rates of
cesarean sections in COVID-
19–positive women, and initial rec-
ommendations discouraged COVID-
19–positive mothers from breastfeed-
ing and participating in skin-to-skin
care, all of which will impact early
microbiota development. Infection
control measures must be balanced
with strategies that promote microbial
diversity to impart optimal health
outcomes and potentially modulate
susceptibility of children to COVID-19.

At the individual level, the World
Health Organization has proposed a shift
from a Western-style diet with high-fat
and high-sugar content to a well-
balanced and diversified diet. This is
especially crucial in elderly subjects and
those with cardiovascular disease, type 2
diabetes, or other chronic diseases who
are known to have poorer outcomes
with SARS-CoV-2 infection. Intake of
adequate nutrients is recommended to
avoid malnutrition and maintain
13
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immune homeostasis in these high-risk
individuals.32 A diversified diet can also
beneficially impact gut microbiota with
enrichment of probiotics (eg, Lactoba-
cillus, Bifidobacterium, and Streptococcus
thermophilus) and SCFAs.33 Whether
modulating gut microbiota with dietary
intervention can reduce susceptibility of
SARS-CoV-2 infection and severity war-
rants prospective studies.

At the hospital level, the liberal use
of antibiotics in COVID-19 patients
could have a detrimental impact on gut
microbiota. Up to three-fourths of
COVID-19 patients received empirical
antibiotics to prevent bacterial infec-
tion, although coinfection was identi-
fied in less than 5% of patients.34

Studies have reported no difference
in outcomes with or without
antibiotics in hospitalized COVID-19
patients.5,6 Gut microbiota in
antibiotic-treated patients displayed
further dissimilarity to microbiota of
healthy individuals with greater
depletion of beneficial commensals
including F prausnitzii, E rectale, and L
bacterium compared with patients
treated without antibiotics. Hence,
caution is needed when prescribing
antibiotics because the unnecessary
use of antibiotics can cause more se-
vere gut dysbiosis and depletion of
beneficial bacteria and increased anti-
microbial resistance. In the latest
World Health Organization guidance
for COVID-19 clinical management (see
https://www.who.int/publications/i/
item/WHO-2019-nCoV-clinical-2021-
1), antibiotic therapyorprophylaxiswas
not recommended in patients with mild
or moderate COVID-19 unless there is
clinical suspicion of bacterial infection.
In addition, longer follow-up of patients
with COVID-19 up to 12 months after
recovery is needed to address questions
related to the duration of dysbiosis
postrecovery, the link betweendysbiosis
and post–acute COVID-19 syndrome,
and whether the dysbiosis or enrich-
ment/depletion of specific gut microor-
ganisms predisposes recovered
individuals to future health issues.

Although emerging evidence sup-
ports the importance of gut microbiota
in COVID-19 pathogenesis and
severity, data are mostly derived from
descriptive and associative human
studies. Extensive in-depth
14
mechanistic and murine studies are
required to decipher the causal rela-
tionship between gut microbiota and
SARS-CoV-2 infection. However,
although animal experiments are
necessary for mechanistic investiga-
tion, a mouse model that can accu-
rately mimic SARS-CoV-2 infection in
humans has been poorly established.
Although some preprint articles infec-
ted a transgenic mouse model with
expression of human ACE-2 (namely
K18-hACE2) with SARS-CoV-2 to
assess drug efficacy35 or dysbiosis-
associated bacteremia,36 to what
extent these mice can replicate viral
infection in humans requires further
validation. Moreover, to date published
clinical trial data supporting the use of
probiotics in COVID-19 are scarce, and
outstanding challenges include deter-
mination of an optimal strain(s),
dosing regimen, and duration of inter-
vention as well as selection of the
appropriate clinical and mechanistic
outcomes

At the global level, it is currently
unclear how long immunity lasts from
SARS-CoV-2 vaccines, and scientists
around the world are racing to deter-
mine what level of neutralizing anti-
bodies or immune marker is most
closely related with COVID-19 vac-
cine’s effectiveness. The surge in cases
caused by the delta variant worldwide
has caused some countries to consider
booster vaccines in at-risk groups
despite the lack of evidence.37 In 2019
gut microbiota was shown to influence
vaccine efficacy because a significant
impairment of antibody response was
observed in healthy subjects receiving
antibiotics before H1N1 influenza
vaccination.38 It is likely that the gut
microbiome equally plays an important
role in SARS-CoV-2 vaccine immune
response and vaccine-related adverse
effects. Preliminary results of an
ongoing clinical study showed that
subjects who took a probiotic formula
for 2 months had higher serum SARS-
CoV-2 IgG antibody levels and
decreased proinflammatory cytokines
(NCT04980560). A large population-
based study in the United States is
recruiting up to 10,000 participants to
decipher the correlation between gut
microbiota and efficacy of COVID-19
vaccine (NCT04770649).
Waning immunity and SARS-CoV-2
variants will likely be a long-term
challenge. In light of this, every
means to prolong immunity and
reduce complications are needed. The
central role of gut microbiota in im-
munity against SARS-CoV-2 infection
and microbiota modulation to improve
SARS-CoV-2 vaccine efficacy are low-
hanging fruit that should be seriously
considered.
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