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Background Mathematical modelling may aid in understanding the complex interactions between injury and
immune response in critical illness.

Methods We utilize a system biology model of COVID-19 to analyze the effect of altering baseline patient character-
istics on the outcome of immunomodulatory therapies. We create example parameter sets meant to mimic diverse
patient types. For each patient type, we define the optimal treatment, identify biologic programs responsible for clin-
ical responses, and predict biomarkers of those programs.

Findings Model states representing older and hyperinflamed patients respond better to immunomodulation than those
representing obese and diabetic patients. The disparate clinical responses are driven by distinct biologic programs. Opti-
mal treatment initiation time is determined by neutrophil recruitment, systemic cytokine expression, systemic micro-
thrombosis and the renin-angiotensin system (RAS) in older patients, and by RAS, systemic microthrombosis and trans
IL6 signalling for hyperinflamed patients. For older and hyperinflamed patients, IL6 modulating therapy is predicted to
be optimal when initiated very early (<4th day of infection) and broad immunosuppression therapy (corticosteroids) is
predicted to be optimally initiated later in the disease (7th � 9th day of infection). We show that markers of biologic pro-
grams identified by the model correspond to clinically identified markers of disease severity.

Interpretation We demonstrate that modelling of COVID-19 pathobiology can suggest biomarkers that predict opti-
mal response to a given immunomodulatory treatment. Mathematical modelling thus constitutes a novel adjunct to
predictive enrichment and may aid in the reduction of heterogeneity in critical care trials.
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Research in context

Evidence before this study

Acute critical care syndromes are highly dynamic and
multifactorial. Clinical trials in critical care may lump
together patients at different stages of disease or with
qualitatively different pathophysiology. This makes it
challenging to assign a precise biological meaning to a
given clinical observation.

Added value of this study

Here, we use mathematical modelling to demonstrate
distinct biological pathways underlying differential
response of COVID-19 to immunomodulatory therapies
and outline an approach to prospective prediction of
biomarkers of optimal treatment.

Implications of all the available evidence

Systems biology approaches could enable investigators
to enrich a clinical trial with patients most likely to
respond by using predicted biomarkers in inclusion cri-
teria. Such ‘predictive enrichment’ based on prospec-
tively predicted biomarkers is a potential strategy for
speeding development of therapy.
Introduction
Major critical care diagnoses such as the Acute Respira-
tory Distress Syndrome (ARDS) are clinically defined1.
However, broad clinical definitions result in the applica-
tion of the same diagnosis to a population of patients
who may be heterogeneous in terms of individual char-
acteristics, aetiology of illness, severity of illness, patho-
physiology and outcome.2,3 Even in incidences where
initial aetiology is uniform, as in ARDS in the setting of
COVID-19, persistent heterogeneity results in a broad
spectrum of disease4 and response to therapy.5,6 Signifi-
cant efforts7-9 have been directed towards reducing het-
erogeneity by defining ARDS subtypes, which might be
expected to respond similarly to treatment. Retrospec-
tive analysis of clinical trial data may be used to define
subsets based on markers which are statistically likely to
be associated with common mechanisms - even if the
details of these underlying mechanisms are not known.
This effort has resulted in notable success.5,6,10-12 Appli-
cations of statistical inference of this sort, however, have
several limitations. Retrospective analyses are limited to
markers which have been reported in existing trials.
Moreover, it is not always possible to know if identified
markers reflect reproducible features of disease patho-
physiology or are influenced by time of observation, tim-
ing of treatment, and/or confounded by other aspects of
patient heterogeneity. Finally, given the complex and
non-linear interactions between injury and immune
response that characterizes critical illness such as
ARDS, it may be difficult to relate biomarkers to under-
lying cellular mechanism.

Improved precision requires more accurate determi-
nation of the association between patient characteristics,
biomarkers, and underlying biology. This may be
achieved over the course of multiple trials. However,
the number of possible associations/hypotheses is large,
and the trial process is time consuming and expensive.
In the physical sciences, mathematical models13 are
widely employed to guide the interpretation and design
of experiments. Mathematical modelling has a rich his-
tory in medicine as well,14-18 providing key insights into
the pathophysiology of conditions ranging from HIV19

to solid tumours.15,20 In the setting of critical care,
mathematical models can serve two related purposes.
First, they can simulate the effect of multiple sources of
heterogeneity on disease trajectory with a precision that
is not practical in the context of a trial. Secondly, by
identifying markers that are deterministically related to
known mechanisms in the model, they can aid in
hypothesizing the biologic meaning behind statistically
identified biomarkers or even suggest novel marker/
mechanism pairings which may be used to screen
patients for inclusion in future therapeutic trials.

As a first test of the utility of mathematical model-
ling for understanding heterogeneity in ARDS here we
employ our recently developed systems biology model
of SARS-CoV-2 infection.16 COVID-19, the syndrome
which results from SARS-CoV-2 infection, is a distinct
illness while ARDS is a syndrome which encompasses
diverse modes of injury. However, it is now well estab-
lished that severe COVID-19 is physiologically similar
to ARDS of other causes21,22 and is thus appropriate for
this proof-of-principle study. We consider three immu-
nomodulation strategies, applied at different times and
to varying patient types. We find that the optimal treat-
ment time differs between broad-based (corticosteroids)
and targeted (anti-IL6 and anti-IL6R) immunosuppres-
sion and identify specific biologic pathways that account
for these differences. We use this analysis to propose
biomarkers that identify an optimal treatment strategy
in a given patient and conclude by studying a subset of
those markers in a clinical dataset of COVID-19 patients
presenting to an emergency department (ED) within
the Massachusetts General Brigham (MGB) healthcare
system.
Immunomodulation in COVID-19
Since the start of the COVID-19 pandemic, it has been
noted23 that elevated markers of innate immunity such
as IL-6 are correlated with worse outcome.24,25 This
observation led to the suggestion of Tocilizumab, a
monoclonal antibody directed against the IL-6 recep-
tor,26 as a potential therapy. However, clinical trials of
anti-IL6 therapies are conflicting. Several smaller
www.thelancet.com Vol 75 Month January, 2022
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studies27-31 found no mortality benefit while two, large,
studies5,32 did report a mortality benefit. Notably, the
positive studies reported on somewhat different popula-
tions: Horby et al. found a benefit in patients on supple-
mental oxygen or more advanced respiratory support
(in contrast to earlier reports), while the REMAP-CAP
investigators reported a benefit in patients started on
therapy within 24 hours of transfer to the ICU. Subse-
quently, it was noted that IL6 levels are not dramatically
elevated in COVID-19 when compared to levels in pre-
COVID-19 ARDS33,34 - calling into question the ratio-
nale for anti-IL6 therapy. Separate trials of the related
anti-IL6R antibody Sarilumab showed no effect � even
in the more severe patients who appeared to benefit
from Tociluzimab.35 At the same time, the results of the
RECOVERY trial6 demonstrated a substantial mortality
benefit from the use of more broad-based immunosup-
pression with corticosteroids that mirrored results in
pre-COVID-19 ARDS.36 We sought to understand these
conflicting results by simulating both approaches in
diverse patient types with multiple treatment initiation
times.
Methods

System-Biology Modelling of COVID-19
The full details of the model are given in the supple-
mentary material. The model used here is based on a
previously validated version of our COVID-19 model.16

It expands on work by other groups by incorporating
additional features of SARS-CoV-2 infection and ARDS
pathology as well as novel methods of assessing patient
outcome.37,38 Briefly, the original model included
SARS-CoV-2 infection, the renin angiotensin system
(RAS), dynamics of innate and adaptive immune cells,
and the coagulation cascade. The model used here has
been extended to explicitly incorporate antigen
Table 1: Alterations in Model Parameters to Represent Different Patien
and red shading, respectively.

www.thelancet.com Vol 75 Month January, 2022
presenting cells, B cells and associated antibody produc-
tion, viral antigen control of T-cell activation, and modu-
lation of T-Cell activity by PD-L1/PD-1 inhibition. Values
of model parameters, initial values and changes to
model parameters made to simulate the effect of various
treatments are given in Tables S1-S3. Sensitivity analy-
sis, indicating robustness of current findings to changes
in relevant parameter values is presented in Table S4
and Figure S2-S5. Disease severity was quantified both
by viral load and oxygen saturation and followed until
day 20.39
Patient types
In an attempt to mirror known risk factors for severe
COVID-19,40 we modified model parameters in an
attempt to simulate disease course in the following dis-
tinct patient types: young (healthy), diabetic (but not
hyperinflamed), older, hyperinflamed, hypertensive and
obese based on known risk factors for severe COVID-
19.41 Alterations of model parameters to define each
patient type are listed in Table 1. Herein we use the
above specified clinical types to refer to the specific con-
stellations of parameter values indicated in the Table,
acknowledging that no single set of parameters will be
fully representative of the heterogeneity of patients with
the indicated co-morbidities, We employed the model to
simulate the effect of three immunomodulatory treat-
ments (corticosteroids, anti-IL6 and anti-IL6R), given
on each possible day between days 1 and 14 (with day 1
indicating first viral exposure).
Clustering and non-negative matrix factorization
analysis
The model output consists of the value of each of the
model variables, or features, on each of the 14 possible
days following infection, plus day 20 which is taken as
t Phenotypes.
16

Parameters increased and decreased are in green
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Figure 1. Schematic representation of the systems biology approach to predict COVID-19 disease outcome in various patient phe-
notypes, treatments and treatment initiation times.
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the endpoint. To gain insight into the 130 feature values
obtained at each of the 15 timepoints for each of the six
patient types, we performed unsupervised clustering,
with principal component analysis (PCA), for each dis-
tinct patient type. We then sought to compare the
untreated disease course with the day 20 outcome that
resulted from initiating treatment on each of the first
14 days for each patient type, as illustrated in Figure 1.
This large amount of data was then summarized by
means of the top two principal components.

As the model consists of equations describing the
time evolution of specific features of disease pathophysi-
ology, model features can directly specify the underlying
mechanism. We performed non-negative matrix factori-
zation (NMF) analysis on the N x M matrix (where N
represents features and M represent distinct patient
phenotype).42 We used the Brunet algorithm for matrix
factorization and selected the rank (k) based on cophe-
netic correlation.43 This results in the N x M matrix fac-
torized into a N x k matrix (where k is the number of
identified biologic programs), describing feature combi-
nations which determine each clinical program, and a k
x M matrix, describing clinical program usage per
patient type.

In order to quantify patient outcomes, we developed
a scoring system based on how closely the final model
state (day 20) resembles either the state on day 1 or
untreated day 20. Return to precisely the day 1 state
would represent full recovery to baseline while, in the
case of treatment, a model state more closely resem-
bling the untreated day 20 state would represent no
treatment effect. The score is defined as the ratio of the
Euclidean distance between model state on day 20 of
treated patients and untreated day 20, to the distance
between day 20 of treated patients and day 1.

Treatment Score ¼ d Rx D20; No Rx D20ð Þ
d Rx D20; No Rx D1ð Þ

Where

dðRx D20; No Rx D20Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

�
Programði;Rx D20Þ � Programði; No Rx D20Þ

�2� �
2

vuut ;

and

dðRx D20; No Rx D1Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

�
Programði;Rx D20Þ � Programði; No Rx D1Þ

�2� �
2

vuut :

Higher Treatment Score ratio indicates the specific
treatment returned the patient towards baseline status.
Biomarker validation
In order to assess the utility of our predicted bio-
markers, we developed a multinomial logistic regres-
sion model to predict ICU admission in a previously
studied population of patients presenting to the ED
with COVID-19.44 Patients from the Massachusetts
General Brigham (MGB) healthcare system who were
positive for SARS-CoV-2 between March and August of
2020 and had an ED encounter were included. We con-
structed separate models for older, obese, diabetic and
hypertensive patients (Older defined as > 65), with
www.thelancet.com Vol 75 Month January, 2022



Articles
diagnosis taken from the electronic medical record, and
adjusted for age, sex, BMI, and race. We considered
ICU admission as a surrogate for disease severity.
Ethics
This study was approved by the MGB Institutional
Review Board (IRB protocol # 2020P000964).
Role of funding source
C.V. received a Marie Sk»odowska Curie Actions Indi-
vidual Fellowship (MSCA-IF-GF-2020-101028945). R.
K.J.’s research is supported by R01-CA208205, and
U01-CA 224348, R35-CA197743 and grants from the
National Foundation for Cancer Research, Jane’s Trust
Foundation, Advanced Medical Research Foundation
Figure 2. Optimal treatment type and timing varies by patient ph
phenotypes. Each treatment is tested with initiation at each of the
dashed vertical line) indicates treatment resulted in a patient statu
than one indicates treatment resulted in patient status being close
one indicates treatment moved the patient closer to baseline by day
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and Harvard Ludwig Cancer Center. No funder had a
role in production or approval of this manuscript.
Results

Treatments are more effective in older,
hyperinflammed and hypertensive patients than other
types
We first compared the treatment scores for each of the
six patient types subjected to each of the three treat-
ments on each of the 14 possible days of treatment initi-
ation (Figure 2), where day 1 represents first virus
exposure. Each plotted bar is the outcome score evalu-
ated at day 20 in response to the listed treatment and
timing. For the young, healthy patient, all three immu-
nomodulatory treatments result in a day 20 state that is
enotype. Treatment score (see methods) for six distinct patient
first 14 days following viral exposure. A score of 1.0 (shown by
s midway between day 20 and baseline (day 1). A score of less
r to untreated day 20 than day 1, while a score of greater than
20.
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more similar to the untreated day 20 than to the base-
line state - indicating that in these healthy patients,
treatment had little effect on the course of disease
(Figure 2a). Note that these patients recover without
treatment, so their untreated day 20 status is closer to
day 1 baseline than the other patient groups. Diabetic
and obese patients (as defined in the model) also
received little benefit from any of the treatments
(Figures 2b,c). In contrast, the hypertensive type bene-
fits from any of the three treatments, with little depen-
dency on day of initiation (Figure 2d). More
interestingly, older and hyper-inflamed patients range
from no benefit to substantial benefit depending on the
type of treatment and day of initiation (Figures 2e,f).
Hyperinflammed patients benefit from corticosteroids
or anti-IL6 therapy (but not anti-IL6 receptor therapy)
anytime in the first 10 days after viral exposure, with
most benefit coming from very early initiation of anti-
IL6 therapy (between days 1-4 after virus infection) or
somewhat later initiation of corticosteroids (between
days 7-10). For older patients, the optimal window for
treatment is somewhat shorter. Corticosteroids are
Figure 3. Patient phenotype modifies treated and untreated diseas
the untreated (grey triangle), anti-IL6 treated (light pink circle), ant
diamond) cases depicted as principal component analysis (PCA) plo
over 20 days (days indicated by blue text). The other data points re
given on the day indicated in the colored text. In this depiction, be
treated (colored) data point and the untreated patient at Day 1
treated (colored) data point that lies close to untreated day 20 data
of variance of the feature matrix which is explained by each principa
most effective between days 7-9, and anti-IL6 and anti-
IL6 receptor therapy is most effective before day 3.

In order to examine a fuller disease trajectory, we
next performed principal component analysis of the
matrix of output variables. This is useful for visualizing
how the important parameters are affected by various
treatments and schedules. Figure 3 depicts the trajectory
in principal component space for each of the timepoints
of patient types with day 20 outcome of each of the
treatments initiated at each of the fourteen possible
days. In the case of the healthy, young patients
(Figure 3a), the data for day 1 and day 20-untreated lie
close to each other while other time points deviate,
tracking the course of illness and return towards base-
line over 20 days (gray triangles). For all except the
young, healthy patient type, the untreated day 1 and day
20 are not in close proximity, suggesting persistent
abnormalities on day 20 in the absence of treatment.
For diabetic and obese patients (Figs 3b,c), all treatment
outcomes at day 20 lie close to untreated day 20 status,
suggesting little change in disease course with treat-
ment irrespective of initiation day. Older and
e trajectory. Model output for each of six patient phenotypes in
i-IL6R treated (green square) and dexamethasone treated (blue
ts. The grey triangles show the trajectory of an untreated patient
present the status achieved on day 20, when that treatment is
tter treatment efficacy is indicated by less distance between the
(baseline condition). Less effective treatment is indicated by a
(grey) point. Percentages on the axis labels indicate the amount
l component.
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Program State on
day 1
(baseline)

State on day 20
(untreated)

Variation in
program
during untreated
disease course

State after anti-IL6
initiation on
optimal day

State after anti-IL6R
initiation on
optimal day

State after
dexamethasone
initiation
on optimal day

Older

Older P-1 Low Low High Moderately high Moderately high Moderately high

Older P-2 Low High Moderate Low Low Low

Hyperinflamed

Hyperinflamed P-1 Low Low High Low Low Low

Hyperinflamed P-2 Low High Moderate Low Moderately high Low

Hypertensive

Hypertensive P-1 Low Low Low Moderately high Moderately high Moderately high

Hypertensive P-2 Low Moderately high High Low Low Low

Diabetics

Diabetic P-1 Low Moderately high Low Moderately high Moderately high Moderately high

Diabetic P-2 Low Low High Low Low Low

Obese

Obese P-1 Low Moderately high Low Moderately high Moderately high Moderately high

Obese P-2 Low Low High Low Low Low

Healthy

Healthy P-1 Low Low Low Low Low Low

Healthy P-2 Low Low High Low Low Low

Table 2: Status and variation of clinical programs (P-1: Program-1, P-2: Program-2) based on usage by patient phenotypes (Information
extracted from heatmap shown in Fig. S1).
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hyperinflamed patients differ substantially in principal
component space when treatments are initiated on dif-
ferent days, confirming differential outcomes (Figs 3e,
f). The hypertensive type moves away from day 20
untreated and closer to baseline, irrespective of treat-
ment initiation day, suggesting most treatments are
favourable (Fig 3d).
Optimal treatment is determined by differential usage
of clinical programs in distinct patient phenotypes
A key advantage of a modelling approach is the ability to
move beyond the observation of differential outcomes
and determine exactly why such an outcome occurred.
To directly relate specific terms in the model to biologi-
cal programs and clinical outcomes, we next performed
non-negative matrix factorization and identified specific
biologic programs responsible for treatment response
in each patient type. Each output variable in the model
represents a biological value that can be measured (IL-6
level in the lung, for example). The biologic programs
defined here consist of combinations of such outputs
from the model that are strongly associated with a given
outcome. We sought to factor the N x M feature-patient
matrix into two primary biologic programs (k = 2) for
each patient type. We then separately identified domi-
nant programs for patient type/treatment timing pairs
that resulted in favourable outcomes versus those that
did not using the treatment score defined above.
www.thelancet.com Vol 75 Month January, 2022
For older patients, we identified a program (P-1) that
is low at baseline, becomes higher during disease pro-
gression, and then returns to baseline in untreated
patients (Table 2). Another program for this patient
type (P-2) is low at baseline, but increases over time,
becoming high at day 20. Program-1 includes the num-
ber of healthy (uninfected) endothelial cells, the amount
of Angiotensin1-7 bound to Mas receptor, and systemic
antibody transport, while Program-2 includes extra-pul-
monary cytokine production, systemic microthrombo-
sis, and pulmonary neutrophil recruitment (Figure 4a).
For hyperinflamed patients, Program-1 is defined by the
level of circulating virus, number of CD8+ T-cells, inter-
feron expression and the level of Angiotensin1-7.
(Figure 4B, Table 2). This program also returns to base-
line at day 20 in untreated patients, but Program-2 �
composed of terms governing ACE2 density, systemic
microthrombosis and trans IL6 signalling � remains
elevated. Note that each program is specific for a given
patient type (Figure 4).

We can next examine how treatments, applied at the
optimal time, affect the identified programs. For example,
for older patients, outcome with optimal treatment is
largely determined by Program-2 status being reduced to
baseline, which occurs for earlier timepoints of anti-IL6
and anti-IL6R therapy and later timepoints of corticoste-
roid (Figure S1e, Table 2). For hyperinflamed patients, Pro-
gram-2 is reduced to baseline by earlier treatment
initiation of anti-IL6 and later initiation of corticosteroid
7



Figure 4.Matrix factorization used to identify two biologic programs which determine outcome in older and hyperinflamed patients. For
older patients and hyperinflamed patients, optimal treatment consists of very early anti-IL6 therapy (<4th day) or delayed (day 7th-9th)
dexamethasone therapy. Matrix factorizations divides the patient-feature matrix into patient-program and program-feature matrices. The
plot here depicts the feature contribution to 2 clinical programs that were generated during factorization.
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(anti-IL6R is not able to alter Program-2) (Figure S1f,
Table 2).

We conducted a similar analysis for the patient types
that had little response to treatment (Figure 5). For dia-
betic and obese patients, Program-2 gets altered more
during the untreated course of infection, but unlike Pro-
gram-1, which remains moderately elevated, Program-2
returns to baseline on day 20 (Figure S1b and c, Table 2).
On the other hand, for hypertensive patients, Program-2
does not come back to baseline at the end of untreated
disease progression, indicating that it contains disease-
driving parameters (Figure S1d, Table 2). Treatment ini-
tiated on any day changes the Program-2 state and
brings it back toward baseline, but this change is accom-
panied by an increase in Program-1 as compared to
untreated day 20. Irrespective of day of treatment initia-
tion, the program states largely remain unchanged on
day 20 as compared to untreated day 20. Program-2 in
diabetic and obese individuals primarily consists of
terms governing interferon expression, anti-inflamma-
tory cytokines and PD-1/PDL-1 receptor signalling,
whereas Program-1 consists of terms governing ACE2
density and systemic microthrombosis (Figure 5a and
c). Based on components of Program-2, these data indi-
cate that features, such as interferon activity, anti-
inflammatory cytokine level and PD-1/PDL-1 receptor,
can be altered by treatment of hypertensive patients, but
Program-1 features, such as ACE2 density and systemic
microthrombosis are less impacted by treatment
(Figure 5b).

Clinical parameters corresponding to model features
As demonstrated in Figure 3 and Figure 4, model
parameters correspond to defined biologic pathways, so
it is possible to suggest clinically observable variables
which may correspond to major features of the pro-
grams implicated by the analysis. In Table 3, we identify
clinically observable biomarkers that may correspond to
model programs that determine outcome in each
patient type. In this way, the matrix factorization may
be used to predict biomarkers for treatment response -
even biomarkers which have not previously been mea-
sured in a clinical trial.

Finally, we sought to conduct a preliminary clinical
analysis of our proposed biomarkers by constructing a
multinomial logistic regression on two proposed bio-
markers (IL6, D-dimer) in each of four phenotypes
(older, obese, hypertensive, diabetic). Patient type in
this case was determined form the electronic health
record in a database of »5300 patients presenting to
emergency departments within the Mass General
Brigham healthcare system with COVID-19 and
thus, may not entirely correspond to the parameter
sets chosen in the model. Perhaps unsurprisingly (as
both markers have previously been identified as
prognostic in unselected populations of patients with
COVID-19), both biomarkers are predictive of
www.thelancet.com Vol 75 Month January, 2022



Figure 5. Biologic programs determining outcome in Diabetic, Hypertensive and Obese patients. Depicted are the primary biologic
programs (as determined by factorization of the feature matrix) responsible for outcome in the indicated patient phenotype. In the
case of diabetic, hypertensive and obese patients the outcome was relatively insensitive to treatment protocol.

Program Feature name Predicted biomarker

Older

Older P-1 Ang(1 - 7) bound to Mas receptor ACE2-Ang(1-7) ratios, ACE2 levels51,52

Older P-1 Oxygen saturation Oxygen saturation

Older P-2 Neutrophils Neutrophil elastase myeloperoxidase53

Hyperinflamed

Hyperinflamed P-1 Oxygen saturation Oxygen saturation

Hyperinflamed P-1 Angiotensin 1-9 Circulating Angiotensin 1-952

Hyperinflamed P-1 Free virus circulation SARS-CoV-2 PCR cycle threshold

Obese, diabetic, hypertensive

Obese/Diabetic/Hypertensive P-1s Micro thrombus in liver and cardiac vessels D-dimer

Obese/Diabetic/Hypertensive P-1s ACE2 density of upper body ACE2 levels52

Obese/Diabetic/Hypertensive P-2s Interferon IFN-g levels

Obese/Diabetic/Hypertensive P-2s Anti-inflammatory cytokines IL-6, IL1b

Table 3: Clinically relevant biomarkers based on important features from clinical programs (P-1: Program-1, P-2: Program-2).
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Patient phenotype Variable Odds Ratio 95% CI p-value

Older (n = 2187) First O2 saturation 0.9074 [0.8870;0.9283] <0.001

Neutrophils 1.0547 [1.0419;1.0677] <0.001

Diabetes (n = 886) D-dimer 1.0002 [1.0001;1.0003] < 0.001

IL-6 1.0085 [1.0055;1.0115] < 0.001

Obese (n = 2185) D-dimer 1.0001 [1.0000;1.0002] 0.00806

IL-6 1.0177 [1.0144;1.0210] < 0.001

Hypertensive (1992) D-dimer 1.0001 [1.0001;1.0002] <0.001

IL-6 1.017 [1.0135;1.0205] <0.001

Table 4: Logistic regression models showing the association of getting severe COVID-19 disease and comparable clinical variables (that
correspond to some features of clinical programs) among patients from the Massachusetts General Brigham healthcare system who were
positive for SARS-CoV-2 between March and August of 2020 and had an ED encounter. Logistic regression models developed using glm
function in R. Sample size (n) for each model mentioned in patient phenotype column.
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outcome in each of the clinical patient types
(Table 4). However, this result suggests that model
variables associated with prognosis are the same as
those identified in clinical subpopulations, increasing
confidence in the models ability to identify clinical
programs responsible for outcome.
Discussion
Efforts to deploy targeted treatments and personalized
medicine have already seen substantial success in fields
such as oncology, cardiology and rheumatology.45-48

Compared to the largely chronic conditions with well-
defined aetiology seen in these fields, acute critical care
syndromes, such as ARDS, are heterogenous, dynamic
and multifactorial. This makes it harder both to observe
a significant treatment effect in a clinical trial and, cru-
cially, to assign a precise biologic meaning to a given
observation. As a first effort at deploying mathematical
modelling to make sense of such an environment here,
we report a newly developed framework for analysing
patient trajectories and identifying key mechanistic pro-
grams that define patient subsets. We demonstrated the
use of this approach using data from our mathematical
model of COVID-19 (Figure 6), which predicts the
response to different immunomodulatory therapies ini-
tiated at different times. Identification of key programs
relies on a combination of principal component and
non-negative matrix factorization analyses of model
parameters, treatment modality, time of treatment, and
patient factors to determine which features of the model
determine treatment response in each type of
patient. It is important to note that the model output
features that characterize outcome are not the same
as the parameters which are altered to create the
phenotype in the model. In such a complex systems
biology model, the few parameters we changed to
specify each patient type have effects on many inter-
acting biological pathways. This potentially non-lin-
ear behaviour is biologically relevant and not
possible to account for without formal modelling of
interactions as in the present work.

The results suggest that targeted immunomodula-
tory treatment with anti-IL6 therapies is effective in cer-
tain patient types (hyperinflamed, older and
hypertensive) but not others (obese, diabetic) and in all
cases is most effective when given very early. Broad
based immunosuppression (represented here by corti-
costeroids) is effective in a similar range of patients
(and similarly ineffective in others) but is optimally pro-
vided later in the course of illness. For younger (healthy)
individuals, immunomodulatory therapies have mini-
mal impact on clinical outcome, which is characterized
by return to baseline even in the absence of treatment.

In addition to the ability to test a broader range of
treatment regimen/protocols than is practical in actual
patients, modelling approaches have the advantage of
providing information about the precise biologic origin
for a given model outcome. Knowledge of the responsi-
ble program in the model may then be used to predict
biomarkers that identify patients most likely to benefit
from a given treatment protocol. Such prediction may
be useful for enrichment of clinical trial populations.
For example, the analysis predicts that immunomodula-
tory therapies provide the most benefit to patients corre-
sponding to our type of older and hyperinflamed
patients. In the case of the hyperinflamed type, the treat-
ment is able to modulate the ACE2 density, micro-
thrombosis formation and IL6 level, leading to better
outcome. Based on these results, we speculate that IL-6,
d-dimer and Angiotensin1-7 levels may be biomarkers of
response to treatment in these phenotypes. IL-6 has pre-
viously been associated with outcome in severe COVID-
19, but d-dimer has not been proposed as a biomarker
specific to immunomodulatory treatment. In a clinical
population, we find that both are associated with poor
outcomes. While perhaps unsurprising, this result does
indicate that the model is potentially able to identify bio-
markers with real-world relevance. Indeed, using ran-
domized clinical trial data, Sinha et al. showed that IL-6
www.thelancet.com Vol 75 Month January, 2022



Figure 6. Schematic of the model. The model consists of a lung model which incorporates viral infection of epithelial and endothe-
lial cells and the innate immune response which includes classical and trans IL6 pathways, other inflammatory cytokines, activity of
neutrophils, and macrophages, as well as the formation of NETs, and the coagulation cascade and activation of the renin-angioten-
sin system (RAS). In addition the model contains terms describing the adaptive immune response including conversion of dendritic
cells to antigen presenting cells, formation of activated B-cells, antibody levels, T cell activation and immune checkpoints, The lung
model is coupled with a PK/PD model for the virus and thrombi dissemination through the body.
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was among the protein biomarkers that could lead to
identification of clusters of patients with heterogeneity
of treatment effects.12 Given the limitations of retro-
spective analysis, we were not able to investigate the pre-
dictive ability of infrequently measured markers such as
Angiotensin,1-7 but we note that Angiotensin1-7 levels
have recently been associated with poor prognosis in
severe COVID-1949 and markers of the RAS have been
associated with worse outcome in ARDS50 as well as
having been studied in cardiovascular disease.51,52
Model Assumptions and Limitations
There are definite limitations to the approach described
here. Chief among these is the fact that we have repre-
sented patient types with a single set of parameter
www.thelancet.com Vol 75 Month January, 2022
choices for each type. The analysis, and the predicted
response to treatment, is thus limited to those patients
plausibly represented by our particular parameter
choices. These particular parameter choices certainly do
not represent the full diversity of a clinical population
with COVID-19 ARDS, let alone non-COVID ARDS.
Jenner et. al have reported on an innovative virtual
patient cohort in which a computational model of
COVID-19 is parameterized by selection from a normal
distributions developed from clinical data38 (Table S5).
Such an approach is readily applied to the model
described here. Here we seek only to further demon-
strate the utility and feasibility of modelling complex
critical care syndromes such as COVID-19 ARDS by
including simulations of specific treatments, developing
a novel method of scoring outcomes and using the
11
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model outcomes to prospectively predict biomarkers. In
this context, we point out that clinical trial simulations
with more probabilistic parameter choices or iteration
of the model based on emerging biologic data/insights
and subsequent simulation is fast and inexpensive.
Identification of predicted markers and biologic pro-
grams via a model is thus likely to be quite cost-effective
when compared to retrospective analysis of clinical trial
data. Moreover, while no doubt imperfect, generation of
hypotheses regarding biologic mechanisms via a for-
mally specified model is certainly more rigorous than
unstructured speculation based on isolated clinical
observations such as the elevation of a particular
cytokine.

Here we have modelled COVID-19. The pathophysi-
ology of ARDS or septic shock from other etiologies will
certainly differ in important respects. However, there
are important common pathways in critical illness and
modelling can be a helpful framework for identifying
them.37 Finally, we note that there are obstacles to
experimentation based on model predictions, even if
they are completely correct. The results discussed here
suggest that anti-IL6 therapy is optimally provided very
close to initial viral exposure - likely before a patient is
symptomatic and certainly before they are likely to have
presented for treatment. However, given the ease of test-
ing new treatments in the model, it is imminently possi-
ble to conduct searches for optimized treatments that
are more clinically-feasible.

In conclusion, we note that retrospective data are
limited, and clinical trials are expensive. We believe that
the use of mathematical modelling of critical illness is
not only a powerful method for the generation and ini-
tial exploration of biologic hypotheses but holds great
promise for decreasing heterogeneity and enhancing
the precision of clinical trials in the ICU.
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