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Summary 
Serum amyloid A (SAA) is an acute phase protein that in the blood is bound to high density 
lipoproteins; SAA is secreted mainly by hepatocytes, and its concentration increases in the blood 
up to 1000 times during an inflammatory response. At present, its biological function is unclear. 
Since some forms of secondary amyloidosis are caused by deposition in tissues of peptides derived 
from the SAA and leukocytes seem to be involved in this process, we investigated the effect of 
human SAA on human monocytes and polymorphonuclear cells (PMN). When recombinant 
human SAA (rSAA) was used at concentrations corresponding to those found during the acute 
phase (>0.8 /zM), it induced directional migration of monocytes and polymorphonuclear 
leukocytes. Preincubation of rSAA with high density lipoproteins blocked this chemoattractant 
activity for both monocytes and PMN. rSAA also regulated the expression of the adhesion proteins 
CD11b and leukocyte cell adhesion molecule I and induced the adhesion of PMN and monocytes 
to umbilical cord vein endothelial cell monolayers. When subcutaneously injected into mice, 
rSAA recruited PMN and monocytes at the injection site. On the basis of these data, we suggest 
that SAA may participate in enhancing the migration ofmonocytes and PMN to inflamed tissues 
during an acute phase response. 

W ithin hours after initiation of an inflammatory response, 
the serum concentrations of acute phase proteins such 

as serum amyloid A (SAA) 1 and C-reactive protein increase 
up to 1,000-fold (1-3). Each of these proteins has unique func- 
tions during the acute phase response. The complement pro- 
teins enhance the immune reaction of the host, proteinase 
inhibitors regulate enzyme activities, and C-reactive protein 
is an opsonizing factor for cellular breakdown products and 
many bacterial antigens and regulates some immune func- 
tions (4, 5). However, the function of SAA remains unclear. 

Prolonged or repeated inflammatory conditions associated 
with high serum levels of SAA can cause a reactive form of 
amyloidosis, a condition characterized by deposition of Congo- 

1 Abbreviations used in thispaper: HDL, high density lipoprotein; HUVEC, 
human umbilical cord vein endothelial cells; LECAM-1, leukocyte cell 
adhesion molecule 1; PMN, polymorphonudear cells; SAA, serum amyloid 
A; rSAA; recombinant SAA. 

red birefringent nonbranching fibrils in peripheral tissues with 
progressive loss of organ function. SAA fragments (such as 
the 8-kD AA fragment), that result from the enzymatic degra- 
dation of the 12.5-kD SAA protein precipitate to form the 
amorphous amyloid fibril deposits (6, 7). Since monocytes 
and polymorphonuclear cells are a source of enzymes that 
can convert SAA into the AA fragment (8, 9) and since these 
inflammatory cells have been reported to be present at sites 
of amyloid deposits (10), we decided to investigate whether 
SAA could modulate the migration of monocytes and poly- 
morphonuclear cells (PMN) to tissues. 

Materials and Methods 
Cells. Peripheral blood leukocytes enriched for mononudear 

cells or for PMN were obtained from normal healthy volunteers 
at the National Institutes of Health Clinical Center Transfusion 
Medicine Department (Bethesda, MD) by leukapheresis. PBMCs 
were purified by Ficoll-Hypaque (Lymphoprep; Sigma Chemical 
Co., St. Louis, MO) gradient centrifugation (11). Monocytes con- 
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stituted 30-40% of PBMCs as determined by a direct immuno- 
fluorescence assay using the mAb CD14-PE (Amac, Westbrook, 
ME). PMN were purified essentially as described (11). The prepa- 
rations contained at least 95% PMN as judged by morphological 
criteria; the remaining cells were typically lymphocytes. 

Mice. BALB/c mice were obtained from the Animal Produc- 
tion Area, National Cancer Institute-Frederick Cancer Research 
and Development Center (Frederick, MD). 

Recombinant (r)SAA. Human rSAA was a kind gift of Dr. 
Robert Goldman of Peprotech (Princeton, NJ). Its primary struc- 
ture corresponds to that of SAA-lc~ except the addition ofa methi- 
onine at the NH2 terminus, the substitution of aspartic acid for 
asparagine at position 60, and histidine for arginine at position 71. 
These substitutions have been previously reported to occur in nat- 
ural SAA variants (12). The gene was expressed in Escherichia coli 

and the protein was purifed from bacterial extracts by precipitation 
with 1 M acetic acid at pH 5 followed by several steps of extraction 
with 40% acetonitrile in 0.1% trifluoroacetic acid/water. The rSAA 
in the supernatant was isolated by preparative reverse phase HPLC 
and lyophilized. Before being used, lyophilized rSAA was recon- 
stituted in water. The rSAA was >99% pure as shown by reverse 
phase HPLC and SDS-PAGE. Western blotting analysis with 
anti-human SAA antibodies (Calbiochem-Novabiochem Corp., La 
Jolla, CA) specifically revealed a band of 12 kD in reducing condi- 
tions that is the size predicted by the nucleotide sequence. When 
nonreducing conditions were used, we could also detect polymeric 
forms of the protein; however, for the calculation of molar concen- 
tration we used the molecular weight of the monomeric form (12.5 
kD). Phospholipids were not detectable (<10 nmoles) in 4/~M rSAA 
as assessed according to the molybdate assay (13). Aliquots of 4 

Figure 1. rSAA exerts chemo- 
attractant activity for PMN (A) 
and monocytes (C). Different con- 
centrations of rSAA were placed in 
the lower wells of microchemotaxis 
chamber. PMN (A) or monocytes 
(C) (1.5 x 106 cells/ml in RPMI 
1640 containing 1% BSA) were 
added in the upper wells. The two 
wells were separated by a 5-/xm pore- 
size polycarbonate filter. After in- 
cubation at 37~ in air with 5% 
COs (60 rain for PMN and 90 min 
for monocytes), filters were re- 
moved, fixed, and stained as de- 
scribed (11). The results are ex- 
pressed as the mean (_+ SD) number 
of cells that migrated across the filter 
in five high power fields (HPF) 
counted in triplicate. In each experi- 
ment FMLP (10 nM) was used as 
positive control. In B and D, rSAA 
(4 #M), FMLP (10 nM), or medium 
were incubated for 5 h at 37~ with 
freshly prepared HDL and then 
tested for chemoattractant activity 
on PMN (/3) and monoeytes (/9) (1.5 
x 106 cells/m1). 
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Figure 2. Modulation of expression of adhesion molecules by rSAA in PMN (A-C) and monocytes (D-F). Whole blood was incubated with medium 
alone or rSAA (4/zM) for 15 min at 37~ After washing, cells were stained with control mouse-IgG (+4 and D), or CDllb (B and E), or LECAM-1 
(C and F) monoclonal antibodies. Neutrophils (A-C) or monocytes (D-F) were gated on the basis of physical parameters (forward and side scatter). 
The x-axis represents the intensity of fluorescence expressed in a log scale as mean channel and the y-axis the number of cells/channel. 

#M rSAA were negative for endotoxin in Limulus Amebocyte ly- 
sate assay (sensitivity 0.06 IU/ml) (BioWhittaker, Walkersville, 
MD). 

High Density Lipoprotein (HDL) Purification. HDL was isolated 
from human plasma by floatation on discontinuous NaBr gradients 
by the method of Havel et al. (14). Before being used, HDL prepa- 
rations were dialysed against two changes of PBS and then against 
RPMI. The protein concentration was determined using a protein 
assay (Bio-Rad Laboratories, Inc., Richmond, CA). The purity of 
HDL was verified by SDS-PAGE. 

Migration Assays. Migration ofmonocytes and PMN, was evalu- 

ated by a microchamber technique as described (15). For PBMC, 
5-/zm pore-size polycarbonate falters were employed. Under the assay 
condition employed, only monocytes, in PBMC preparation, mi- 
grated across the filter. Polyvinylpyrrolidone (PVP)-free polycar- 
bonate filters were used for PMN. At  the end of the incubation, 
filters were removed, fixed, and stained by Diff-Quik (Harleco, 
Gibbstown, NJ), and five oil immersion fields were counted after 
coding samples. In each assay N-formylmethionyl-leucyl-phenylal- 
anine (FMLP; Sigma Chemical Co.) at a concentration of 10 nM 
was used as a standard chemoattractant for monocytes and PMN. 

FACS | Analysis. Whole  blood treated with rSAA was pre- 
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Figure 3. Expression of CDllb and LECAM-1 on PMN: dose-response 
relationship. PMN were incubated for 15 min at 37~ with medium or 
rSAA. Cells were washed and stained with control mouse-IgG, CDllb, 
or LECAM-1 monoclonal antibodies as described in Materials and Methods 
section. The expression of adhesion molecules on PMN was evaluated by 
FACS | anlaysis using linear units converted from log fluorescence inten- 
sity of the peak. 

Figure 4. Induction of cells adhesion to endothelial cells, slCr-labeleed 
PBMC or PMN (106 cells/ml) were incubated with rSAA, FMLP (10 
nM), or medium alone for 15 min at 37~ Cells were washed and left 
for 30 min at 37~ to adhere to endothelial monolayers cultured in 24-flat- 
bottomed well plates. After three careful washings, the cells adherent to 
endothelial monolayer were determined by measuring the radioactivity in 
the cell lysates. 

205 Badolato et al. 



Figure 5. Cellular infiltration in subcutaneous tissues after injections of rSAA in BALB/c mice. BALB/c mice were injected subcutaneously daily 
with either 500 #g of HDL (in 0.2 ml of buffer) or 0.8 nmol of rSAA (in 0.2 ml of buffer) for a total of three injections. The injection site was 
biopsied at 72 h and fixed in formalin. The coded slides were then examined for the extent of cellular infiltrate and evaluated by a histopathologist. 
(A) Subcutaneous tissue of a mouse injected with HDL for 3 d (33 x ). No evidence of significant infiltration is present. (B) Site of subcutaneous injections 
with SAA for 3 d. (50x). Note the infiltration by mononuclear cells and PMN (arrow). (C) Higher magnification of the infiltrate noted in Fig. 5 
B (132x). Kepresentative of three experiments with three to four mice/group. 
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incubated with buffer (RPMI and 1% BSA) containing 1 mg/ml 
of rabbit ~/-globulins. Each sample of 100/~1 of blood was washed 
and incubated with saturating concentrations of CD11a, CD11b, 
CDllc  (Amac Inc., Westbrook, ME), leukocyte cell adhesion mol- 
ecule 1 (LECAM-1; Endogen Inc., Boston, MA), or control mouse- 
IgG (Coulter Corp., Hialeah, FL) for 30 min at 4~ Cells were 
washed two times with PBS, resuspended in 100/tl of PBS, and 
incubated at 4oC for 30 min with 4/~1 of FITC-conjugated goat 
anti-mouse IgG (Tago Inc., Camarillo, CA). Red blood cells were 
then lysed by incubating the blood with 4 ml ACK buffer (Quality 
Biological Inc., Gaithersburg, MD) for 5 min at room tempera- 
ture. Cells were washed three times with PBS, resuspended in PBS 
plus 1% paraformaldehyde, and analysed by a FACS | (Epics Profile; 
Coulter Corp.). At least 10,000 events were acquired, and on the 
basis of forward and side scatter the window for monocyte or neu- 
trophil gated cells was set. The following formula was used to con- 
vert log units: linear units = 10 ([4/255] . . . . . .  hannel). 

For each sample we evaluated the total mean channel value after 
subtracting the mean channel value of the control Ig sample which 
had less than 1% background staining. 

Adhesion Assay. Human umbilical cord (courtesy of the Ob- 
stetric Department, Frederick Memorial Hospital, Frederick, MD) 
vein endothelial cells (HUVEC) were prepared as described previ- 
ously (16) and were used from the first to the third passage. PBMCs 
or PMN were resuspended in 250/~1 of RPMI 1640 with 5% FCS 
and incubated for 60 min with 50-100 #Ci SlCr (Amersham 
Corp., Arlington Heights, IL). Cells were washed twice with RPMI 
containing 5% FCS and resuspended in this medium at 106 
cells/ml. Confluent endothelial cell monolayers in 24-well flat 
bottom plates were washed twice with RPMI 1640 before the ad- 
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dition of leukocytes in the adhesion assay. 0.5 x 106 leukocytes 
were added in a volume of 500 #l/well and incubated at 37~ for 
30 min. On completion of the incubation period, the endothelial 
cell monolayers were washed three times with prewarmed RPMI 
containing 5% FCS and cells remaining in the wells were lysed 
by the addition of 1 N NaOH. Lysates were transferred to tubes 
and counted in a gamma counter. The radioactivity incorporated 
by 0.5 x 106 leukocytes was counted as total cpm. An aliquot of 
0.5 • 106 leukocytes after incubation for 30 min at 37~ in the 
absence of endothelial monolayer, was centrifuged and the radioac- 
tivity measured in the supernatant was taken as spontaneous re- 
lease. Percentage adhesion was calculated as following: Percent adhe- 
sion ~ (cpm obtained from leukocytes adherent to HUVEC/total 
cpm - cpm of spontaneous release) x 100. 

Histology. Injection sites from three adult BALB/c mice/ex- 
perimental group were biopsied and fixed in 10% neutral buffered 
formalin, embedded in paraffin, sectioned at 5 ttm, and stained with 
hematoxylin and eosin. Coded slides were read by a histopathologist. 

Results and Discussion 

Various doses of  rSAA were placed in the lower wells of  
a microchemotaxis chamber and P M N  or PBMC were placed 
in the upper wells, rSAA induced cell migration in a dose- 
dependent manner (0.08-8/~M) of P M N  and monocytes (Fig. 
1, A and C). To distinguish between chemokinetic and 
chemotactic effects of  rSAA on monocytes or PMN,  we per- 
formed checkerboard assays by placing different concentra- 
tions of  rSAA in the upper and/or lower wells. Under  nega- 



tive gradient conditions (higher SAA concentration in the 
upper wells) no significant migration was observed. With 
equal SAA concentration in the upper and lower wells, only 
a small increase in migration by PMN occurred, indicating 
a minor but significant chemokinetic effect on PMN (data 
no~ shown). 

Since in the blood, SAA is almost exclusively associated 
with HDL (17), we investigated whether the binding of SAA 
to HDL could affect the chemoattractant activity of SAA. 
HDLs rich in natural human SAA (Calbiochem-Novabiochem) 
at concentrations containing 0.008-8/~M of SAA had no 
chemoattractant activity on monocytes or PMN cells (data 
not shown). To address the effect of HDLs on the chemotactic 
activity of rSAA, we preincubated rSAA (4/~M), FMLP (10 
nM), or medium with purified HDL (at concentrations from 
10 to 1000 #g/ml) for 5 h at 37~ Whereas the FMLP 
chemoattractant activity was only minimally affected by prein- 
cubation with HDLs, the chemotactic effect of rSAA on 
monocytes and PMN was inhibited in a dose-dependent 
manner by HDLs (Fig. 1, B and D). At concentrations above 
100/~g/ml, HDLs almost completely blocked the activity 
of rSAA (4/~M), suggesting that HDLs may function as a 
natural inhibitor of SAA. A time course showed that SAA 
chemoattractant activity is inhibited by 70% after at least 
1 h of preincubation of rSAA with HDLs at 37~ (data not 
shown). Conversely, a natural SAA preparation biochemi- 
cally separated from HDLs (18) also exerted chemotactic ac- 
tivity with a dose response curve similar to rSAA (data not 
shown). 

Cell surface adhesion proteins such as integrins and leu- 
kocyte selectin (LECAM-1) are crucial in mediating the 
adhesion of leukocytes to blood vessel walls and extravasa- 
tion into tissues. Chemotactic factors like IL-8, FMLP and 
CSa are able to modulate the expression of CD18/CD11b, 
CD18/CD11c, LECAM-1 and induce leukocyte adhesion (19). 
We therefore examined the effect of rSAA on the expression 
of adhesion molecules (CDlla, CDllb,  CD11c, LECAM-1) 
on leukocytes. Since in many cases, monocytes, after 
purification from blood have already lost LECAM-1 from 
the cell surface and express considerable CD18/CDllb, whole 
blood was used in these assays. PMN incubated with rSAA 
showed a remarkable enhancement of expression of 
CD18/CD11b (Fig. 2, A and B), a minor increase of CD18 
/CD11c (data not shown), and the loss of LECAM-1 from 
the cell surface (Fig. 2, A and C), while CD18/CDlla  was 
not affected (data not shown). The effects of rSAA on ex- 
pression of CD18/CDllb  and LECAM-1 were dose depen- 
dent as shown in Fig. 3 A. rSAA induced similar changes 
in the expression of adhesion molecules on monocytes (Fig. 
2, D-F). 

We next investigated whether the modulation of the ex- 
pression of the adhesion antigens CD11b and LECAM-1 by 
rSAA could affect the ability of PMN and PBMCs to adhere 
to endothelial cell monolayer. SlCr labeled PMN or PBMCs 
were preincubated for 15 min with medium, FMLP (10 riM) 
or rSAA at various concentrations. The cells were washed 
and incubated with endothelial monolayers for 30 rain as de- 
scribed in Fig. 4. rSAA at concentrations above 0.08 #M was 

as active as an optimal concentration of FMLP (10 nM) in 
inducing the adhesion of PBMC or PMN to endothelial cell 
monolayer (Fig. 4). The bell shaped dose-response curves were 
similar to that observed in chemotaxis assays. However, the 
concentration required to induce optimal adhesion is slightly 
lower than that required in chemotaxis. Although in adhe- 
sion molecule expression and HUVEC monolayer adhesion 
experiments whole blood or FCS was used, the HDL present 
in the blood or in the FCS failed to show inhibitory effect. 
This could be due to the relatively short interaction time of 
rSAA with HDLs, since, in chemotaxis experiments, a 
minimum of 60 min preincubation time was required for 
HDLs to inhibit the activity of rSAA. 

Human rSAA, 0.8 nmol in 0.2 ml of buffer, HDL, 500 
#g in 0.2 ml of buffer, or buffer alone, were injected sub- 
cutaneously daily into normal adult BALB/C mice. After three 
doses, the animals were sacrificed at 72 h and histological 
examination of injected areas was performed, rSAA induced 
infiltration of monocytes and PMN in the dermis and adi- 
pose tissues at 72 h (Fig. 5, B and C) that could not be de- 
tected in the animals injected with HDL (Fig. 5 A) or buffer 
alone (data not shown). This was consistently observed in 
three separate experiments. With 8 nmol of rSAA injected, 
a multifocal accumulation of monocytes and PMN was also 
observed in the panniculus (data not shown). No lympho- 
cytic infiltration was detected at these time points and this 
dose range as determined by immunohistology (data not 
shown). The inhibitory effect of HDL on in vitro chemotactic 
activity ofrSAA is currently being examined in vivo. Prelim- 
inary evidence suggests that preincubation of rSAA with HDL 
for 6-12 h reduces the ability of rSAA to induce leukocyte 
infiltration in subcutaneous tissue. 

The optimal concentrations at which rSAA induces leu- 
kocyte migration, adhesion and tissue infiltration range be- 
tween 0.8-4/~M. These concentrations are higher than the 
normal serum level of 0.08 #M, but are characteristic of levels 
of rSAA reached during the acute phase when the serum con- 
centration of SAA exceeds 40/zM (2). However, most of the 
plasma SAA is bound to HDL, which acts as an inhibitor 
suggesting that SAA, to be active, needs to be released from 
the HDL complexes, spontaneously or perhaps by enzymatic 
cleavage. It has been reported that leukocyte-derived enzymes 
can degrade SAA to an 8-kD fragment and other small pep- 
tides (8, 9, 20). At sites of inflammation where proteolytic 
enzymes are released by leukocytes and proteinase inhibitors 
are inactivated, SAA may be released from HDL in a free 
form and create a concentration gradient to allow recruit- 
ment of inflammatory cells. 

Since SAA is an amphipatic protein and interacts with phos- 
pholipids (13, 21) we wondered if lipids, bound to recom- 
binant SAA, could account for its chemoattractant activity. 
However, we could not detect phospholipids associated with 
the rSAA. Treatment with trypsin at increasing ratios of tryp- 
sin/SAA caused degradation of the protein (as assessed by 
SDS-PAGE) together with loss of the corresponding che- 
motactic activity (data not shown). Furthermore, prepara- 
tions of HDL which are rich in lipids, were not chemoat- 
tractants, but inhibited rSAA chemotactic activity (Fig. 2, 
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B and D). On the basis of these data we believe that the 
chemotactic activities of rSAA are attributable to the protein 
itself. 

In Familial Mediterranean Fever, intermittent attacks of 
fever are associated with aseptic arthritis and serositis with 
accumulation of leukocytes in joints and in serosal surfaces. 
During these attacks, the levels of SAA in the blood increases 

and after many years, some patients develop systemic amy- 
loidosis with deposits of amyloid fibrils in several organs (22). 
The fact that leukocytes accumulate in the synovial fluid and 
colchicine, an inhibitor of leukocyte chemotaxis and degran- 
ulation (23), decreases the frequency and the severity of these 
attacks implies a potential role of SAA in this inflammatory 
disease. 
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