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Abstract

As a performance measure for a prediction model, the area under the receiver operating characteristic curve (AUC) is
insensitive to the addition of strong markers. A number of measures sensitive to performance change have recently been
proposed; however, these relative-performance measures may lead to self-contradictory conclusions. This paper examines
alternative performance measures for prediction models: the Lorenz curve-based Gini and Pietra indices, and a standardized
version of the Brier score, the scaled Brier. Computer simulations are performed in order to study the sensitivity of these
measures to performance change when a new marker is added to a baseline model. When the discrimination power of the
added marker is concentrated in the gray zone of the baseline model, the AUC and the Gini show minimal performance
improvements. The Pietra and the scaled Brier show more significant improvements in the same situation, comparatively.
The Pietra and the scaled Brier indices are therefore recommended for prediction model performance measurement, in light
of their ease of interpretation, clinical relevance and sensitivity to gray-zone resolving markers.
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Introduction

Risk prediction models are important for both patients and

physicians alike. A prediction model can be used to integrate an

individual’s socio-demographic variables, medical histories and

biomarker values, etc., and to translate them into a disease risk,

upon which prognostication and/or treatment decision can be

based. Examples are the prediction models for cardiovascular

diseases [1], hypertension [2], diabetes [3] and different forms of

cancer [4–6]. Prediction model performance must be evaluated in

a scientific way. There are two aspects to model performance:

calibration and discrimination. Calibration is a measure of how

well predicted probability agrees with actual observed risk, while

discrimination is a measure of how well a model separates those

who do and do not have the disease of interest [7]. This study

focuses on evaluating the discrimination ability of a prediction

model.

The area under the receiver operating characteristic (ROC)

curve (AUC) (also referred to as the c statistic) is by far the most

popular index of discrimination ability [8]. AUC is defined as the

probability that the predicted probability of a randomly selected

diseased subject will exceed that of a randomly selected non-

diseased subject. AUC is a value between 0.5 and 1.0, with a

higher value indicating better prediction performance. A predic-

tion model with an AUC value of 0.5 is no better than tossing a

coin, and at the other extreme, a model with a 1.0 AUC value is a

perfect model, with 100% accurate predictions. However, AUC

has been criticized as insensitive to the addition of strong

marker(s), typically resulting in only small changes in value

[9,10]. A small change in AUC (DAUC), even though it is

statistically significant, can be difficult to interpret. For example,

the addition of C-reactive protein to a set of standard risk factors

predicting cardiovascular disease only increases the model AUC

from 0.72 to 0.74 [11], and the DAUC is a mere 0.001 (from

0.900 to 0.901) when a genotype score (derived from a total of 18

alleles) is added into the prediction model for type 2 diabetes [3].

One cannot help wondering whether this is because the C-reactive

protein and the genotype score (despite their strong associations

with the disease) are actually useless in disease prediction, or

whether the AUC’s insensitivity to model performance change is

entirely to blame.

Recently, a number of ‘relative-performance’ indices that are

sensitive to performance change have been proposed [12]. These

measures specifically compare models with and without new

markers, and include net reclassification improvement (NRI),

continuous NRI (cNRI) and integrated discrimination improve-

ment (IDI) [13,14]. NRI is defined as the difference between the

proportion of subjects ‘moving up’ (changing to higher risk

categories in the model with the new marker(s)) and the proportion

of subjects ‘moving down’ (changing to lower risk categories) for

diseased subjects, and the corresponding difference in proportions

for non-diseased subjects [13]. cNRI and IDI also hinge on such

up and down movement. In cNRI, any increase (decrease) in

predicted probability constitutes a movement up (down) [14]. In

IDI, the actual amount of increase/decrease in predicted

probability is counted [13]. However, a relative-performance

measure can sometimes lead to self-contradictory conclusions. For

example, a situation may occur in which the prediction

performances of models A, B and C are rated, using a relative

performance index, as A.B and B.C, yet paradoxically, A,C.

This paper describes and compares a number of alternative

performance measures for prediction models. These include

the Lorenz curve-based Gini and Pietra indices [15] and a
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standardized version of the Brier score, the scaled Brier (sBrier) [7].

All these are absolute measures, directly reflecting the prediction

performance of a specific model, and when used for model

comparisons they do not produce self-contradictory results. The

sensitivity of these measures to performance change when new

marker(s) are added to a baseline model will also be examined.

Methods

Formulas for Various Performance Measures
Assume that there are a total of n subjects (indexed i) in a

population, of which n1 (i~1,:::,n1) subjects are diseased (Di~1),

and n2 (i~n1z1,:::,n) subjects are non-diseased (Di~0). Assume

a prediction model which yields a predicted probability, p̂pi, for

each and every subject in the population. The prediction model is

well calibrated and unbiased such that the mean predicted

probability, �pp, is equal to disease prevalence in the population, that

is, �pp~n1=n : Figure 1 presents the computing formulas and

interpretations of various performance measures, including AUC,

Gini, Pietra and sBrier.

The formula for AUC is

AUC~

Pn1

i~1

Pn
j~n1z1

S p̂pi,p̂pj

� �

n1|n2

,

where S p̂pi,p̂pj

� �
is a scoring function comparing the predicted

probabilities for a pair of subjects: S p̂pi,p̂pj

� �
~1 if p̂piwp̂pj , 0.5 if

p̂pi~p̂pj , and 0 if otherwise. The formula clearly shows that AUC is

the probability that the predicted probability of a randomly

selected diseased subject exceeds that of a randomly selected non-

diseased subject.

It is of interest to compare the computing formulas for Gini,

Pietra and sBrier:

Gini~
mean separation for the current model

mean separation for an error-free model

~

1

n2
|
Xn

i~1

Xn

j~1

Dp̂pi{p̂pj D

1

n2
|
Xn

i~1

Xn

j~1

DDi{Dj D

~

Pn
j~1

Pn
i~1 Dp̂pi{p̂pj D

2|n2|p|(1{p)
,

Pietra~
mean gain for the current model

mean gain for an error-free model

~

1

n
|
Xn

i~1

Dp̂pi{�ppD

1

n
|
Xn

i~1

DDi{�ppD

~

Pn
i~1

Dp̂pi{�ppD

2|n|�pp|(1{�pp)
,

and

sBrier~1{
mean squared error for the current model

mean squared error for the null model

~1{

1

n
|
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i~1

Di{p̂pið Þ2

1

n
|
Xn

i~1

Di{�ppð Þ2

~

Pn
i~1

p̂pi{�ppð Þ2

n|p|(1{�pp)

~

1

n
|
Xn

i~1

p̂pi{�ppð Þ2

1

n
|
Xn

i~1

Di{�ppð Þ2

~
mean squared gain for the current model

mean squared gain for an error-free model
,

respectively. Note that initially, all subjects in the population are

on the same footing - the same a priori probability (�pp). When a

prediction model is used, however, they diverge (p̂pis are different

in general). Gini quantifies the ‘‘separation’’ (subject-to-subject

variation in the a posteriori probability) of a model, while Pietra and

sBrier quantify the ‘‘gain’’ (deviation of the a posteriori probability

from the a priori probability).

Simulation Schemes
Three variables are assumed to be predictive of a particular

disease (D): the baseline score (S) and two new markers

(M1 and M2). It is assumed that S is a composite of traditional

risk factors (age, smoking, systolic blood pressure, total and high

density lipoprotein cholesterol levels, etc.) standardized to a

normal distribution with a mean of 0 and a standard deviation

of 1. The new markers are assumed to be binary. In order to

acknowledge a correlation between S and the two new markers, let

the prevalence of M1 and M2 be 85% when S is above average

(Sw0), and 75%, when otherwise.

It is assumed that the discrimination power of M1 is

independent of the baseline score, whereas the discrimination

power of M2 is not uniform, but is concentrated in the gray zone

of the baseline model (where the predicted probability using the

baseline model is close to the a priori probability). Specifically, the

disease risk is assumed to follow a logistic model, as below:

logit Pr (D~1DB,M1,M2)

~{3z2|Bz1:5|M1z2:2|K(B)|M2,

where K(x) is a Gaussian kernel function centered at 0:

K(x)~ exp {x2=0:5
� �

. In this model, the disease odds ratio

per unit increase in the baseline score (disease odds ratio for one

standard deviation increase in the composite variable of traditional

risk factors) is exp (2)~7:4: To simulate new markers that are

strong predictors for the disease, we let the disease odds ratio for

M1 to be exp (1:5)~4:5 irrespective of the baseline score

(Figure 2), and the disease odds ratio for M2 to reach a peak

[exp (2:2)~9:0] when the baseline score is at its average value
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(S~0) and rapidly decay when the baseline score is above or

below average (Figure 2).

A total of 500 subjects were simulated as the training sample,

and another 500 subjects were simulated as the validation sample.

The performances of three prediction models were compared: (I)

the model with the baseline score only, (II) the model with the

baseline score plus M1 and (III) the model with the baseline score

plus M2. A total of 10000 simulations were performed.

Results

In Figure 3, it can be seen that there is almost no change in the

distributions of the predicted probabilities between the baseline

model (A) and the model with M1 added (B). Using the AUC

Figure 2. Disease odds ratios (discrimination powers) of the new markers (M1 and M2) (solid line: when the discrimination power of
the new marker (M1) is independent of the baseline score; dotted line: when the discrimination power of the new marker (M2) is
concentrated in the gray zone of the baseline model).
doi:10.1371/journal.pone.0091249.g002

Figure 1. Computing formulas and interpretations of various performance measures.
doi:10.1371/journal.pone.0091249.g001
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index, it can be seen that adding M1 increases the prediction

performance of the model from 0.822 to 0.841, an absolute

(relative) improvement of a mere +0.019 (+2.3%) (Table 1). Noted

that the absolute improvement gauged by the Gini index (+0.039)

is twice that by AUC (apart from the rounding error; in fact,

Gini~2|AUC{1, see [15]), and the relative improvement is

+6.1%. The Pietra [+0.036 (+7.4%)] and the sBrier [+0.038

(+12.4%)] also demonstrate more significant improvements than

that of AUC.

By contrast, the results are much more intriguing when M2 is

added. In Figure 3, the number of people (diseased or non-

diseased) in the gray zone (near the solid vertical bars) is drastically

reduced when M2 is added (C) to the baseline model (A); most

diseased individuals move to the right (higher predicted probabil-

ity), whereas most non-diseased individuals move to the left. An

informative marker like M2 certainly deserves a high rate;

however, the AUC credits it with an absolute (relative) improve-

ment in prediction performance of only +0.022 (+2.7%), and the

Gini, twice that value, but still only +0.043 (+6.7%) (Table 1).

Comparatively, the Pietra [+0.083 (+17.1%)] and the sBrier

[+0.057 (+18.6%)] indices more fittingly judge the value of the

marker.

It is also of interest to compare models ‘‘BzM1’’ and ‘‘BzM2’’

head to head. Figure 3 shows that the two models generate

predicted probabilities that are quite different in distribution (B vs.

C); however, AUC and Gini fail to set them apart (AUC: 0.841 vs.

0.844; Gini: 0.683 vs. 0.687). By contrast, Pietra and sBrier clearly

differentiate between the two models (Pietra: 0.521 vs. 0.568;

sBrier: 0.344 vs. 0.363).

Figure 3. Distribution of the predicted probabilities for a baseline model (A), and the model with the new marker M1 added (B), or
M2 added (C). The discrimination power of M1 is independent of the baseline score, and that of M2 is concentrated in the gray zone of the baseline
model. The solid vertical bar indicates the grand mean of the predicted probabilities, and the two dotted vertical bars, the means of the predicted
probabilities for the diseased subjects and the non-diseased subjects, respectively.
doi:10.1371/journal.pone.0091249.g003
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In addition, this study examined situations when a strong

continuous-scale marker (Exhibit S1) and multiple weak binary

markers (Exhibit S2; to simulate genetic markers that are by

themselves weak predictors for the disease but are strongly

predictive of the disease if used collectively as a genetic score)

were added to the baseline model, respectively. The conclusions

regarding the comparisons of the various performance indices

remain the same as when one strong binary marker is added, as

shown above.

Discussion

ROC curve analysis is the most widely used method for the

evaluation of diagnostic test or prediction model performance [16–

19]. For any subject to be diagnosed/predicted, a diagnostic test

yields a single test value which, depending on the test used, can be

in binary, ordinal or continuous scale, whereas a prediction model,

upon integrating the information of more than one predictor,

produces a probability, which is a value between 0 and 1. Lorenz

curve analysis has also enjoyed a long history of use, dating back to

1905 [20]. However, it has been primarily used by economists

(demographers) to study inequality in income (population)

distribution [21,22]. Lee [15] pioneered the use of Lorenz curve

analysis in biomedicine (in the context of diagnostic test

evaluation, although he did not consider prediction models). The

interpretation of the ROC curve-based AUC index is actually

rather unrealistic - subjects will not come in pairs, one being

diseased and the other non-diseased, with their predicted

probabilities to be compared. By contrast, Lorenz curve-based

Gini and Pietra indices follow-up study subjects from their a priori

probabilities to their a posteriori probabilities (after using a

prediction model), and should have more relevance for actual

clinical practices.

Brier score has been used to evaluate the accuracy of weather

forecasting since 1950 [23]. In recent decades it has seen use in

applications in biomedical fields [24–26]. Brier score depends on

the disease prevalence (the a priori probability) of the population

where the prediction model is built, and therefore it is unsuitable

for making a comparison between populations. Steyerberg et al.

[7] proposed a standardized version of the Brier score, the sBrier,

which is an index between 0 and 1, and is prevalent-independent.

Austin and Steyerberg [27] used sBrier to examine performance

changes when new markers were added to a baseline model.

However, they did not consider the type of markers with

discrimination power concentrating in the gray zone of the

baseline model, and therefore did not recognize that sBrier was

sensitive to gray-zone resolving markers. Another, lesser known

fact about sBrier is that the change in sBrier upon addition of new

markers is equal to the IDI index itself. A proof of this is given in

Exhibit S3.

It is worth noting that Gini, Pietra and sBrier indices can be

expressed as ratios, comparing the resolution power (separation for

Gini; gain for Pietra; squared gain for sBrier) of the current model

with that of an error-free model. They are all therefore indices

between 0 and 1, and can be neatly interpreted as a per cent

maximum resolution power of the current model. In Table 1, the

prediction performances of the baseline model are 0.644 (Gini),

0.485 (Pietra), and 0.306 (sBrier), respectively. This means that the

baseline model still has a great deal of room for improvement;

currently, it only achieves 64.4% separation/48.5% gain/30.6%

squared gain of a sure-fire prediction model.

In this study, it is felt that patients (and their physicians) should

be more interested in the gain (or squared gain) of a model (this

tells how much their disease probability could be expected to be

revised if they use that model), than in the separation (this

compares two randomly chosen people). This study found that the

two indices that quantify gains (Pietra and sBrier) are also those

that are most sensitive to gray-zone resolving markers.

Taken together, Pietra and sBrier are promising alternative

prediction model performance measures, in light of their ease of

interpretation, clinical relevance and sensitivity to gray-zone

resolving markers. Further work is needed to fully develop the

statistical inference procedures (hypothesis tests and confidence

intervals etc.) regarding these two indices.

Supporting Information

Exhibit S1 Simulation when a strong continuous-scale
marker is added to the prediction model.

(PDF)

Exhibit S2 Simulation when multiple weak binary
markers are added to the prediction model.

(PDF)

Exhibit S3 A proof that the change in sBrier upon
addition of new marker(s) is equal to the IDI index.

(PDF)

Table 1. Improvements in prediction performances when new markers, M1 and M2, are added to a baseline model (B),
respectively.

Performance Measure

AUC Gini Pietra sBrier

Model

B 0.822 0.644 0.485 0.306

B+M1 0.841 0.683 0.521 0.344

B+M2 0.844 0.687 0.568 0.363

Absolute (Relative) Improvement

from B to B+M1 +0.019 (+2.3%) +0.039 (+6.1%) +0.036 (+7.4%) +0.038 (+12.4%)

from B to B+M2 +0.022 (+2.7%) +0.043 (+6.7%) +0.083 (+17.1%) +0.057 (+18.6%)

The discrimination power of M1 is independent of the baseline score, whereas that of M2 is concentrated in the gray zone of the baseline model.
doi:10.1371/journal.pone.0091249.t001
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