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Abstract

Background: In recent years, the integration of ‘omics’ technologies, high performance computation, and
mathematical modeling of biological processes marks that the systems biology has started to fundamentally impact
the way of approaching drug discovery. The LINCS public data warehouse provides detailed information about cell
responses with various genetic and environmental stressors. It can be greatly helpful in developing new drugs and
therapeutics, as well as improving the situations of lacking effective drugs, drug resistance and relapse in cancer
therapies, etc.

Results: In this study, we developed a Ternary status based Integer Linear Programming (TILP) method to infer cell-
specific signaling pathway network and predict compounds’ treatment efficacy. The novelty of our study is that
phosphor-proteomic data and prior knowledge are combined for modeling and optimizing the signaling network.
To test the power of our approach, a generic pathway network was constructed for a human breast cancer cell line
MCF7; and the TILP model was used to infer MCF7-specific pathways with a set of phosphor-proteomic data
collected from ten representative small molecule chemical compounds (most of them were studied in breast
cancer treatment). Cross-validation indicated that the MCF7-specific pathway network inferred by TILP were reliable
predicting a compound’s efficacy. Finally, we applied TILP to re-optimize the inferred cell-specific pathways and
predict the outcomes of five small compounds (carmustine, doxorubicin, GW-8510, daunorubicin, and verapamil),
which were rarely used in clinic for breast cancer. In the simulation, the proposed approach facilitates us to identify
a compound’s treatment efficacy qualitatively and quantitatively, and the cross validation analysis indicated good
accuracy in predicting effects of five compounds.

Conclusions: In summary, the TILP model is useful for discovering new drugs for clinic use, and also elucidating
the potential mechanisms of a compound to targets.
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Background
In recent years, molecular and cellular biology has sig-
nificantly improved our understanding of cancers in hu-
man, however, the discovery and use of therapeutic
drugs still faces major challenges [1]. Particularly, insuf-
ficient understanding of pathological and therapeutic
mechanisms at a cellular level holds back the growth of
the number of new drugs taken for clinical use [2]. More
difficulties arise to predict the exact effects of those ap-
proved drugs [3]. As a result, patients with serious ill-
nesses are left with few treatment options; and the new
medicines are usually extremely expensive. Only 10% of
drug molecules entering clinical trials succeed and ap-
proximately 3 out of 10 drugs generate enough profit to
pay back the investment [4]. The linkage between basic
science and useful treatment has to be built based on
deep understanding of biological networks, as well as
drug-induced molecular changes in these networks [5].
A global view covering the interconnectivity of the sig-
naling proteins and their functional contributions to
cancer development is critical for the success of targeted
drug anti-cancer therapies. Accordingly, the systems
biology approaches, which combine experimental data
and mathematical modeling, provide an effective frame-
work to understand cancers and develop new drugs [6].
Recently, the public LINCS genomic database (Http://

www.lincsproject.org/) was established, aiming to create
a network-based understanding of biology by cataloging
molecular changes in gene expression and signal trans-
duction occurring when cells were exposed to various
genetic or drug perturbations [7]. The LINCS is helpful
for drug screen and discovery via better understanding
intracellular pathways. Particularly, the P100 [8] data in
LINCS project, is mass spectrometry (MS) based
phosphor-proteomic profiles caused by a wide range of
small molecule chemical compounds on several repre-
sentative cancer cell lines, such as MCF7 (breast can-
cer) and PC3 (prostate cancer) cell lines [9]. Due to
unclear targets or treatment effects, most part of
compounds used in P100 is not widely applied as
drugs in market. Identifying the treatment effects of a
compound on certain cell line is of great significance
of discovering new potential drugs and improving the
response to therapies in clinic.
Considering the P100 data [10] was only measured at

6 h after compound perturbations, it is impossible to
build ODE-based model of intracellular pathway net-
work to predict drug efficacy [6]. Mitsos and coworkers
firstly proposed an integer linear programming method
(ILP) to predict drug treatment effect with phosphor-
proteomic data, however, their model can only address
the signaling networks with simple topology [11]. We re-
cently developed a Binary Linear Programming based
approach (BLP) for modeling large-scale signaling

pathways [10]. BLP was applied on LINCS dataset
(L1000 gene expression profiles [12] and P100 proteo-
mics [10]) to identify compound treatment effects via
pathway alterations. Different from the ILP approach
[11], our BLP model can address the signaling networks
which have complex topologies. However, BLP shows
obvious disadvantage: 1) the definition of the state of
each protein node with Boolean variable is not sufficient
enough to represent the relative changes of the proteins
between treatment and un-treatment; 2) BLP model may
lead to biased predictions due to the division of the
training and testing set of P100 data is fixed in advance.
In this paper, we proposed a novel systemic modeling

approach, namely Ternary status based Integer Linear
Programming (TILP), to infer cell-specific signaling
pathway network and predict the response of cells to
new compounds (Fig. 1). The Ternary status for signal-
ing proteins and the prior knowledge about potential
targets with constraints, make the TILP model more
representative to describe the dynamic changes (e.g.
down-regulation, up-regulation, and no-change) of the
response network under perturbed conditions. To valid-
ate the performance of the proposed model TILP, the
P100 data related with MCF7 cell line was used in the
simulation. First, we manually built a generic pathway
map related with MCF7 cells; and then infer MCF7-

Fig. 1 The flowchart of the TILP model
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specific pathway by using TILP on the training dataset
of ten compounds. Then, TILP was applied to re-
optimize the inferred cell-specific pathway using the
dataset of five testing compounds, and qualitatively and
quantitatively predict their treatment effects on MCF7
cell line. The cross-validation indicates high accuracy in
predicting the effects of five testing cases. In summary,
the proposed computational model was capable of eluci-
dating potential molecular mechanisms of a chemical
compound’s efficacy.

Results
Experimental data
The P100 phosphoproteomic data for MCF7 breast can-
cer cell line was considered, which was treated by 15
small molecule chemical compounds (see Table 1).
These 15 compounds can be considered as 15 perturbed
conditions to MCF7 cell line. The first 10 compounds
have been proved to be the potential anticancer drugs to
treat breast cancer; the remaining 5 compounds were
rarely studied for this disease. In this study, two subsets
of the P100 phosphoproteomic data were analyzed. The
first subset with 10 compounds was used to infer the
specific signaling pathways of MCF7 cells using the TILP
method. The second subset with 5 compounds was used
to predict drug treatment effects by re-optimizing the
inferred cell-specific network using TILP.
The expression of each protein (ρ) in P100 dataset was

represented as log2 ratio of treatment to control (un-
treatment). Therefore, the raw data of P100 were nor-
malized to ternary values (1, 0, and −1) with threshold
1.2, where 1 corresponds to up-regulation (ρ ≥ log2(1.2)),

0 to no-change (−log2(1.2) < ρ < log2(1.2)), and −1 to
down-regulation (ρ ≤ − log2(1.2)). The normalization
method reflects the relative changes on signaling pro-
teins after compound perturbation.

Constructing a generic pathway map
Based on the threshold described in above section, we
selected the differentially expressed proteins (DEPs)
from the preprocessed P100 dataset, and imported them
into a public platform of pathway analysis, IPA (http://
www.ingenuity.com). Combining all the top-ranked
enriched signaling pathways (P value < 0.01) from IPA
and the MCF7-related pathways widely reported in pre-
vious literatures, we manually constructed a generic
pathway map (see Fig. 2) that includes important signal-
ing pathways in breast cancer cells, such as ER/SHC
pathway [13], EGFR signaling [14], HER2 signaling [15],
INSR pathway [16], and HDAC pathway [16] et al. For
example, several evidences proved the interplay between
BRCA1 and cell cycle regulation. Particularly, BRCA1
plays an important role in controlling DNA damage
induced G2/M checkpoint [17]. HSP90 is a potential
novel breast cancer cell biomarker, which partici-
pates in primary tumor growth [18]. Previous studies
suggested that PKC could act as a positive regulator
of growth in humor-derived mammary cells, poten-
tially through activating Ras signaling-regulated path-
way [19]. Activation of tumor suppressor p53 can
induce cell cycle arrest for repairing DNA-lession
[20]. NFKB has shown the capability of enhancing
cell survival and anti-cancer drug resistance [21].
Particularly, the outcome of this pathway network
mainly associated with four cell functions, including
cell survival, and cell growth, cell cycle regulation,
and DNA repair.
There are 35 nodes and 50 directed edges in the

generic pathway map shown in Fig. 2. Nodes in the
network represent signaling kinases with their discrete
values: −1, 1, or 0, where −1, 1, and 0 stand for
“down-regulation”, “up-regulation”, and “no-change”,
respectively. These values represented possible states
of proteins after the tumor cells were treated by com-
pounds. We also presented two types of directed
edges in the signaling network topology: inhibition

or activation . Each edge in the network
model was thus encoded by an integer parameter,
which had two possible values: −1 (inhibition) or. 1
(activation). After receiving the perturbation with cer-
tain compound, the state of each signaling reaction is
denoted with logical values 0 or 1, indicating “occur”
or “does not occur”. Moreover, the nodes with grey
color were observed in the P100 assay, and the
remaining nodes were un-observed. Particularly, the
nodes with orange color were proved as the targets of

Table 1 P100 data on 15 chemical compounds were used in
this study

No. Chemical compound Treatment concentration (uM)

1 Fulvestrant 1

2 Paclitaxel 1

3 Staurosporine 1

4 Irinotecan 100

5 Scriptaid 10

6 Anisomycin 15

7 Trichostatin 1

8 MS-275 10

9 Digoxin 5.2

10 Geldanamycin 1

11 Carmustine 10

12 Doxorubicin 6.8

13 GW-8510 10

14 Daunorubicin 1

15 Verapamil 15
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certain compounds in literatures (Table 2), which pro-
vide complementary knowledge to current p100 data.
In addition, the states of four output nodes represent
key cell functions, which were determined by their
upstream parent nodes (Transcriptional Factors, TFs)
locating at the end of signaling pathways. A “cell
function” node is up-regulated if and only if at least
an upstream positive TF is up-regulated or a negative
TF is down-regulated. We used OR gates to model
the effect of TFs on the changes of cell functions. In
our generic pathways, four cell function nodes were
calculated with following Eq. (1–4).

Fcell Cyc ¼ RBþ PLK1 ð1Þ
FDNA Rep ¼ P21þ RRM2 ð2Þ
Fcell Sur ¼ NFKB−BADþ BCL2 ð3Þ
Fcell Gro ¼ pGSK3þ p70S6K þ cMYC þ cJUN ð4Þ

According to Eq. (1–4), four cell functions (cell cycle
regulation, DNA repair, cell survival, and cell growth)
are quantified as integer variables, and are calculated
from their upstream TFs (see Methods).

Fig. 2 MCF7-related generic pathway map

Table 2 The compound targets were proved in the previous literatures

NO. Compound treatment Up-regulation Down-regulation PMID

1 Fulvestrant ER 26,272,024

2 Paclitaxel JNK BCL2 22,433,870

3 Staurosporine PKC 17,171,646

4 Irinotecan HIF1, NFKB ER 24,966,994

5 Scriptaid HDAC1 14,620,913

6 Anisomycin BCL2 23,261,849

7 Trichostatin HDAC1 24,626,188

8 MS-275 HDAC1 18,579,665

9 Digoxin HIF1 19,020,076

10 Geldanamycin HSP90 26,674,599, 26,405,178
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Moreover, we defined a linking pattern of protein
nodes, so that a complicated signaling network can be
represented with this pattern (Fig. 3). In this model, the
states of protein nodes and connected edges (regula-
tions) were all constrained with our developed mathem-
atical rules (Additional file 1: Text S1). Moreover, all the
regulations, connected to the same protein, were consid-
ered as independent. In other word, a child (down-
stream) node can be regulated by at least one of parent
(upstream) nodes simultaneously, and its status was fi-
nally determined by all of its parent nodes and the link-
ing pattern. Our TILP model combined P100 data with
prior knowledge, optimizes the generic pathway map by
removing inconsistent links from the original network.
The inference of the states of all the nodes and edges in
the network was implemented with a set of linear con-
straints in TILP. The details regarding the mathematical
constraints were described in Additional file 1.

Inferencing a cell-specific pathway network by TILP
In order to infer the cell-specific network from our con-
structed generic pathway map that best reproduces the
experimental data, we minimized the differences be-
tween the model’s predicted values and the correspond-
ing observational values for the subset of protein nodes
that are observed, as well as the complexity of network
structure. To solve the multi-objective optimization
problem, we developed a TILP model of the generic
pathway network, and obtained a cell-specific pathway
network by optimizing formula (9) shown in Methods.
The idea behind TILP is that the states of nodes are nor-
malized to ternary numbers; directed edges between two
connected nodes are represented as Boolean numbers;
and linear constraints are defined to describe the casual
relationship between child and parent nodes. The prior
knowledge shown in Table 2 was represented as linear
constraints to guide the optimization process. The TILP
model of a signaling network was solved by using
MATLAB toolbox Gurobi 6.5.1 [22]. The toolbox

guarantees to minimize a global error function that com-
bines the requirements of data fit and simplicity. The fit-
ting precision of the inferred specific pathways of MCF7
cells was 83.33%, which demonstrates that TILP fits well
on P100 data. The definition of fitting precision is de-
scribed in Additional file 1: Text S2.
The inferred MCF7-specific pathway networks are

shown in Fig. 4. After the TILP model optimizes above
two objectives with P100 data, we keep those edges
whose regulation occurs for some treatment conditions,
and remove the edges whose regulations completely do
not occur for all the conditions. Comparing with the sig-
naling pathway network shown in Fig. 2, totally 13 re-
dundant edges were removed from the generic pathway
map due to the inconsistencies between these links and
observations of connected nodes. For example, both
BRCA1 and p53 are tumor suppressors and are involved
in a number of cellular processes including cell cycle ar-
rest, apoptosis, and DNA damage repair. Dong, et al.
have identified that there may be a functional link be-
tween p53 and BRCA1 in DNA double strand breaks re-
pair process at transcriptional and possible post-
transcription level; however, the association between
them is still unclear [23]. In our study, the result of
optimization shows that, the link BRCA1→p53 does not
exist in the inferred MCF7-specific pathway network
(Fig. 4). In addition, four output nodes associated with
four types of cell functions, which quantitatively repre-
sent the compound-induced treatment effects. To prove
the reliability of the cell-specific pathway network in-
ferred by TILP, cross-validation was described in detail
in the section “Discussion”.

Predicting a compound’s treatment effects
Our assumption is that the topology of cell-specific sig-
naling network are stable if there is no perturbation
from its microenvironment on the tumor cells. Once a
small compound acts on tumor cells, some intracellular
signaling pathways will represent significant changes
(up-regulation or down-regulation) to response this ex-
ternal perturbation, which subsequently alters their cell
functions or behaviors. Here, we firstly used TILP ap-
proach to fit the generic pathway map with the first part
of phosphorylation data (10 training compounds) in
P100 and obtain a cell-specific pathway network. The
second part of data (5 testing compounds) was fitted to
optimize the network model of cell-specific pathways,
and the states of all the phosphoproteins and signaling
reactions can be inferred so that the compound’s effects
is easily identified. As shown in Fig. 5, we predicted a
compound’s treatment effects with two aspects: 1) quali-
tatively identify the treatment effects via compound-
induced pathway alterations. Considering the response
network treated by a compound will induce activation of

Fig. 3 The linking pattern of protein nodes, which is common in the
signaling network
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Fig. 4 The MCF7-specific signaling pathway network inferred by TILP model

Fig. 5 a compound A-induced response network; b Cell-specific network; c compound C-induced response network; d OR gates used to model
output nodes; e the calculation of similarity between two compounds
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some reactions, comparing it with the cell-specific path-
way network facilitates us to easily identify the treatment
effects according to the pathway alterations: down-
regulation, up-regulation, and no-change. For example,
the comparison between Fig. 5a and b facilitates us to
identify the treatment effects of compound A on cancer
cells. 2) quantitatively evaluate the similarity of treat-
ment effects between two compounds according to the
outcome vectors of signaling network. The extracellular
perturbations on cancer cells finally reflects the changes
of cell functions through signal transduction; therefore,
the expression of all the output nodes in the signaling
network provides an effective way to quantitatively rep-
resent the efficacy of compound treatment. In our work,
Correlation Coefficient [24] was applied to calculate the
similarity between two compounds with their corre-
sponding vectors consisting of four output nodes. The
similarity of treatment effects between compound A and
C (Fig. 5a and c) can be calculated with the output vec-
tors via formula (12) in Methods. The regulation of mul-
tiple TFs on a same cell function is defined as logical OR
gate (Fig. 5d), which indicates that different TFs are
independent.
Additional file 2 Figure S1, Additional file 3: Figure S2,

Additional file 4: Figure S3, Additional file 5: Figure S4
and Additional file 6: Figure S5 present the response
network perturbed by 5 testing compounds: carmustine,
doxorubicin, GW-8510, daunorubicin, and verapamil
(Table 1). For all 15 measured proteins in the MCF7-
specific pathway network, fitting precision of these ob-
served nodes for five compounds were 100%, 80%,
86.67%, 93.33%, and 80%, respectively. According to the
pathway alterations, we can qualitatively identify the
compound-induced treatment effects on MCF7 cells.
From Additional file 2: Figure S1, Additional file 3: Fig-
ure S2, Additional file 4: Figure S3, Additional file 5: Fig-
ure S4 and Additional file 6: Figure S5, the reactions
with red color represent up-regulation, green is for
down-regulation, and black is for no-change. The reac-
tions with yellow color did not occur after compound
treatment

I. Carmustine [25], a potential anticancer agent,
activated the MAPK (MEK/ERK, and JNK) pathway
via ER→SHC→RAS, and inhibited PI3K/AKT,
HSP90/HIF, and AMPK pathways in MCF7 (see
Additional file 2: Figure S1). An’s work proved that
carmustine induced phosphorylation of the MAPKs,
such as ERK, JNK, and p38, etc. [26].

II. Doxorubicin [27], the current front-line therapy for
breast cancer, not only activated MAPK pathway as
carmustine, but also up-regulated EGFR/PKC path-
way. In addition, treatment with Doxorubicin also
decreased the expression of ATM/BRCA1, HSP90/

NFKB, and PI3K/AKT/BAD pathways (see Additional
file 3: Figure S2). Rojo and coworkers proved that ex
vivo exposure of breast tumors to doxorubicin down-
regulated MKP-1, and up-regulated p-ERK1/2 and p-
JNK, in the majority of cases [28]. Liu, et al. also found
that the active TGFβ signaling exhibited resistance to
the DNA-damaging agent doxorubicin in some breast
tumors [29], and TGFβ induces a DNA-repair defi-
ciency through downregulating DNA-repair genes,
such as ATM, and BRCA1 [30].

III.Additional file 4: Figure S3 indicates that GW-8510
potentially inhibited most of signaling pathways in
the MCF7-specific network expect increase the
expression of HDAC1.

IV.Daunorubicin [31], a market selling heterocyclic
anticancer drug, mainly activate MAPK (MEK/ERK,
and JNK) pathways via ER→SHC→RAS, and down-
regulated cell survival through reduced PI3K/AKT
pathway in the inferred MCF7-specific pathway
network (Additional file 5: Figure S4). Stulpinas and
colleagues observed that daunorubicin treatment
induced the activation of JNK and phosphorylation
of its direct target c-Jun along with inactivation of
AKT [32]. We also noticed from Additional file 5:
Figure S4 that, the activation of HDAC1 induced the
down-regulation of p53. D’Assoro’s study indicates
that treatment on MCF7 cell line with daunorubicin
resulted in the arrest of both G1/S cell cycle
progression [33].

V. As to Verapamil [34], a calcium channel antagonist,
is known as a potential anticancer agent. In
Additional file 6: Figure S5, this compound induced
up-regulation of ATM/BRCA1 to increase the cell
cycle, and down-regulation of MAPK, HSP90/HIF1
to reduce the tumor growth.

In addition, the “cell function” vector consists of four
output nodes, which can be potentially used to calculate
the similarity between two compounds (Fig. 5e). For ex-
ample, the outcome vectors of response network, treated
by Paclitaxel and Staurosporine, were [0, 0,-3,-1] and [0,
0,-2,-2], indicating that both compounds may potentially
induce cell death. Compared to the topological structure
of cell-specific pathway network shown in Fig. 4, the
similarities of compound-induced network are 91.89%
(paclitaxel), and 89.19% (staurosporine), respectively. In
Yu’s work, MDA-MB-435 breast cancer cells represent
similar cell apoptosis rates after treatment with pacli-
taxel or staurosporine [35]. Cartee, et al. also found that
exposed the BG-1 cells to staurosphorine or paclitaxel
exhibited similar apoptotic cell death via caspase activa-
tion [36]. Another example is the calculated outcomes of
GW-8510-induced response network were similar as di-
goxin did, that are [−2,-2,-3,-4] and [−2,-2,-1,-4],
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respectively. Although the predicted inhibition effects of
GW-8510 on above four cell functions cannot be con-
firmed, Chung and coworkers introduced that GW-8510
may have high inhibitory activities against cancer cells.
They further confirmed that the novel functional links
between GW-8510 and cell cycle inhibition according to
the microarray experiments [37]. In summary, most of
the above predictions from networks are consistent with
the conclusions in previous studies, which implies that
TILP model is reliable for identifying compound treat-
ment effects.

Discussion
In this study, we presented a novel computational mod-
eling approach TILP to reconstruct cell-specific pathway
network and predict the system’s response to compound
treatment by combining prior knowledge from literature
and phosphoproteomic data collected from various types
of perturbation experiments. In order to test the power
of TILP model, we selected a set of P100 proteomic data
of 15 chemical compounds effecting on MCF7 breast
cancer cell line. Based on the differential expressed pro-
teins in P100 data, we combined all the top-ranked
enriched pathways (P value < 0.01) from IPA with some
important pathways reported in previous literatures, to
manually construct a generic pathway map related with
MCF7 cells, which includes 50 reactions and 35 proteins
(15 proteins were observed in P100 dataset). With the
TILP model for pathway modeling and optimization, a
MCF7-specific pathway network of 35 nodes and 37 edges
was finally inferred. Based on the topological structure of
optimized MCF7-specific network, we monitored 5 cases
of compound-induced response networks to predict the
effects of these compounds using TILP again.
An important aspect of our approach is its practicabil-

ity in inferring cell-specific network. Although continu-
ous modeling approaches (e.g. ODEs [38]) are
commonly used to model dynamics of biological net-
works [39]; however, parameter estimation in ODE
models is a NP-hard problem [40]. TILP, a parameter-
free model, based on the conception of discrete model-
ing, has simplified both the representation and
optimization of signaling network with mathematical
constraints. In the TILP model, we defined two types of
constraints: (1) the states of connected proteins and re-
actions were defined with linear constraints; (2) the prior
knowledge about the expressions of potential targets
corresponding to perturbed compounds was also repre-
sented as linear constraints. Thus, the developed con-
straint system simplifies the optimization process and
quickly searches an optimal solution from an allowable
subspace. For inferencing the MCF7-specific pathway
network, the optimization procedure of TILP model
produced about 11,357 constraints and 4950 variables

(4600 binary variables, and 350 integer variables). To-
tally, 4317 constraints and 2032 variables were automat-
ically generated for predicting a compound’s effects. The
TILP model is scalable to more complex signaling net-
works; the efficiency can still be guaranteed because a
linear programming problem usually can be solved in
linear time when the dimensionality is fixed [41].
Another important aspect of our approach is to help

identify compound treatment effects in two ways: (1)
identify the treatment effects through network topo-
logical alterations; (2) calculate the similarity of two
compounds with their corresponding outcome vectors
from pathway network. As described in the experimental
results, most of predictions were consistent with the
previous studies in the literature. However, there are still
a small part of predictions could not be proved from lit-
erature, such as, GW-8510, which means it has never
been used for breast cancer treatment. In addition, some
evidences on other cell lines provided supports to our
findings. For example, carmustine enhances chemothera-
peutic efficacy by attenuating AKT activity in gliomas
[42]. As a protective agent, verapamil [43] was found to
significantly reduce the expression of HIF-1 alpha in
many cells [44]. Liu and coworkers work also provided
evidence for a crucial role for the over expression of
MEK/ERK pathway in protecting kidney SP cells from
ischemic/hypoxic injury, and Verapamil treatment re-
versed MEK-induced cell viability [45]. Further biological
experiments (e.g. Western Blot, or Mass Spectrometry)
will potentially validate the effectiveness of your model.
Comparing to our BLP model, the proposed TILP

model successfully solved the limitations in BLP: 1) we
used three states (“up-regulation”, “down-regulation”,
and “no-change”) to represent the relative changes of a
protein when the cancer cells received extracellular
stimuli; 2) the training set is related with 10 compounds,
which have been validated effectively for breast cancer
treatment. And the five compounds included in the test-
ing set are rare studied in the breast cancer therapy.
Therefore, the cell-specific pathways optimized by the
training set, has potential to find new drugs for cancer
therapy. 3) The TILP model not only qualitatively iden-
tify the compound treatment effects via pathway alter-
ations, but also quantitatively evaluate the similarity of a
pair of compounds on the same cancer cell line.

Cross-validation
In order to prove the reliability of our approach TILP,
we tested the effects of leave-one-out cross-validation on
the p100 data of the first 10 compounds which were
used in model training. For each compound, we ex-
tracted phospho-proteomic data of 9 compounds to infer
a cell-specific pathway network and then identify the
treatment effects of the remaining one by predicting the
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states of all the proteins via TILP. The mean value of fit-
ting precision for above 10 cases was 84%, suggesting
that the inferred cell-specific pathway network is reliable
for predicting a compound’s effects. Based on the results
of the leave-one-out cross-validation we did on MCF7
cell line, we calculated the similarity of network dia-
grams among 10 cases (each corresponds to one com-
pound) where each case represents a cell-specific
pathway network trained from the remaining 9 com-
pounds after leaving one compound out. In overall, the
connected edges in the final inferred cell-specific path-
way network (Fig. 4) are 37. The similarity of an inferred
cell-specific pathway network based on the different
combinations is defined as the ratio of the number of
connected edges in cell-specific network of each case to
the total number of connected edges (37). The mean
value of the similarities of 10 cell-specific networks gen-
erated by cross validation was 99.7%. It verifies that our
inferred cell-specific pathway network with p100 data of
10 compounds was reliable.

Methods
Experimental data
The P100 assay is a mass spectrometry-based targeted
proteomic assay that detects and quantifies a representa-
tive set of ~100 phosphopeptide probes that are pre-
sented in a wide range of cell types and have been
demonstrated to be modulated via perturbations https://
personal.broadinstitute.org/jjaffe/p100.php. The P100
phospho-profiles are suitable for molecular signature
generation, querying of signatures across cell perturba-
tions and types, and modeling of response networks in
cellular systems.
P100 data is processed through a combination of sci-

entist review of primary data, automated quality control
and statistical calculations to result in assay profiles.
Currently, the signature of the assay is the complete pro-
file of all probes measured in the assay. Five types of
cells were collected and profiled, such as MCF7 (breast
cancer cell), H9 (Human embryonic stem cell), et al.
In our work, we selected the validation dataset of

MCF7 cell line in P100, which contains measurements
of phosphor-signal treated by 26 different small com-
pounds. The treatments were each monitored for 6 h
with two replicates. All raw expression values in P100
experiment represent log2 ratios of the treatment VS.
Control.

Ternary status based integer linear programming (TILP)
In this study, the TILP computational framework was
applied to systemically model a signaling pathway net-
work with phospho-proteomic data. The developed
model was used in two ways: firstly, TILP infers the cell-
specific pathway network from the discrete

representation of a generic pathway map; secondly, TILP
predicts the treatment effects of a small compound
based on the inferred cell-specific signaling network.
The detail steps of the TILP framework is described as
follows:

Discrete representation of the generic pathway map
At first, we selected the differentially expressed proteins
(DEPs) from the observational data (LINCS P100). Sec-
ond, we chose the top-ranked enriched signaling path-
ways from the database IPA (Ingenuity Pathway
Analysis) based on the DEPs. Third, the generic pathway
map was manually constructed by merging all the
enriched signaling pathways with some important path-
ways studied in literature.
After determining the topological structure of the gen-

eric pathway map, the next step is the discrete represen-
tation of the signaling network. In our study, a signaling
pathway map was defined as a discrete network [46],
consisting of a set of nodes and directed edges. In order
to reasonably describe the relative changes of cells after
perturbation by a chemical compound, nodes in the net-
work represented phosphoproteins with their discrete
values 1, −1, and 0, which stand for “up-regulation”,
“down-regulation”, and “no-change”(no significant
change), respectively. The directed edges indicate phos-
phorylation reactions in the process of signal transduc-
tion induced by a compound. Here, we consider two
types of reactions: inhibition and activation
which were encoded by integer variables (−1 or +1). In
our study, we defined a linking pattern of signaling pro-
teins which was commonly seen in most of pathway net-
work structures (Fig. 3). According to Fig. 3, we found
that a child protein node can connect with several par-
ent protein nodes, and be activated by at least one of its
parents. In our TILP model, the states of all the ele-
ments (nodes and edges) in a network were satisfied to
our developed mathematical constraints (see the details
in Additional file 1: Text S1).

Inference of the cell-specific pathway network
Recently, we have developed a linear programming ap-
proach DILP to model signaling pathways with time
series proteomics. In the DILP model, we proposed three
states for defining the protein nodes under different time
points [22]. In this study, some basic conceptions were
inherited from our DILP model.
A signaling network is defined as a set of phosphopro-

teins P = {1, 2,…, j,…ns} and signal reactions E = {1, 2,…,
i,…nr}. All the observed proteins were measured under
several perturbed conditions (compound treatment),
indexed by the set C = {c1, c2,…, cL}. An integer variable
xj, kϵ{−1, 0, 1} indicates if the protein j (j ∈ P) is down-
regulated (xj, k = − 1), up-regulated (xj, k = 1), or un-
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changed (xj, k = 0) after the tumor cells were treated by
compound k, where k ∈C. An output node in the net-
work denotes a type of cell function, which is calculated
from its upstream TFs. We used OR date (Fig. 5d) to
model the effects of TFs on output node as a function of
their expressions of connected upstream TFs:

Fh ¼
XN1

p¼1
TFþ

p −
XN2

q¼1
TF−

q ð5Þ

where Fh represents the h-th cell function in the signal-
ing network, TFþ

p and TF−
q are the TFs that increase or

reduce this cell function. A reaction i (i ∈ E) is repre-
sented as (activation) or (inhibition), where
u and d are the parent (start) and child (end) nodes, re-
spectively (u, d ∈ P). Moreover, the impact (“positive
regulatory” or “negative regulatory”) of the parent node
u on child node d is described as the regulation from u
to d when the expression of u is increased or decreased.
Considering that different compounds may act on differ-
ent signaling pathways, a reaction may take place under
some treatment conditions but not others [11]. Thus, we
defined binary variable zi, k, which is 0 if reaction i (i ∈
E) takes place after compound k treatment, and 1 other-
wise. The goal of this step is to detect and remove the
inconsistent reactions from the topological structure of
generic pathway map which do not occur in any condi-
tions. Therefore, the binary variable yi is equal to 1 if re-
action i is removed from the generic pathway map, and
0 elsewise. Eq. (6–7) are defined to constrain the pres-
ence of reaction i in the optimized cell-specific network
through the state of reaction i in the condition k.

zi;k≥yi; k∈C; i∈E ð6Þ

1−yi≤
X

k∈T
1−zi;k
� � ð7Þ

To infer the cell-specific pathway network, we created
a Ternary status based Integer Linear Programming
(TILP) approach to minimize the differences between
the predicted values and observational values for the
subset of protein nodes that are observed, as well as the
complexity of network structure. The global error func-
tion is defined as below:

min
X;Y ;Z

X

k∈T

X

j∈P

mj;k−xj;k
� �2 þ γ

X

i∈E

yi

( )
ð8Þ

where three variable set X, Y, and Z denote all variables
xj, k ∈ X, yi ∈ Y, and zi, k ∈ Z, respectively. Eq. (8) indicates
that more proteins are observed in experiment raise the
accuracy of optimization. Considering the fact that ex-
perimental data often cannot cover all of the proteins in
signaling network, prior knowledge extracted from liter-
atures was represented as linear inequality to constrain
the expected value of xj, k and narrow the search space.

For example, we use xj, k ≤ − 1 to express the fact that a
target has been confirmed in the previous literature: the
expression of protein j is inhibited after tumor cells were
treated by compound k.

In the objective function shown in Eq. (8), the first
term denotes the fitting error between observed and
predicted values; and the second term indicates the
number of interactions in the optimized signaling
network. The observed and predicted values of j–th
protein in condition k were defined as mj, k, xj,
k ∈ {1, 0, −1}, respectively. When mj, k and xj, k are
equal, the square error (mj, k − xj, k)

2 is equal to 0;
otherwise it is either 4 or 1. Therefore, optimization
of the above objective function might induce local
optimal solution because of the non-uniform distri-
bution of the term (mj, k − xj, k)

2. To address the bias
mentioned above, a binary variable aj, k (0 or 1) was
designed as the difference between mj, k and xj, k as
following: aj, k will be 1, if mj, k is not equal to xj, k,
and 0 elsewise. The square error (mj, k − xj, k)

2 in
function (8) was thus replaced by aj, k. The value of
aj, k was restricted by constraints (24–25) as shown
in Additional file 1: Text S1. Finally, the above ob-
jective function (8) was simplified as formula (9).

min
X;Y ;Z

X

k∈T

X

j∈P

aj;k þ γ
X

i∈E

yi

( )
ð9Þ

where three variable set X, Y, and Z denote all variables
xj, k ∈ X, yi ∈ Y, and zi, k ∈ Z, respectively. By optimizing
the above objective function, the predicted values for
variable sets X, Y, and Z can be obtained. The negative
constant γ in Eq. (9) is used to obtain a minimum sub-
graph from the constructed generic pathway map as the
finalized cell-specific signaling network (− 1

∣E∣ < γ < 0),
in which |E| denotes the number of interactions in the
topology. In the optimization procedure, the predicted
values of nodes and edges in signaling network meet the
developed constraints (Additional file 1: Text S1).
In Eq. (9), minimizing the complexity of network

structure by edge removals might eliminate some reac-
tions, leading to the result that some phosphor-signals
may not be transduced from upstream into downstream
(see one example shown in Fig. 6). Given a generic path-
way map as shown in Fig.6a, we found that Fig.6b and c
result in equal fitting precision between predicted and
observed values. However, “missing edges” in Fig. 6b
leads to interruption of the signal from upstream. There-
fore, the solution shown in Fig. 6c is optimal in this case.
To address the problem mentioned above, we further
defined constraints to avoid missing edges in the
optimization process:
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−1≤xu;k ∙xd;k þ zi;k≤1 ð10Þ

−1≤xu;k ∙xd;k−zi;k≤1 ð11Þ

Eq. (10) indicates that the activation reaction i under
condition k takes place if xu, k ∙ xd, k = 1. Similarity, the
inhibitory reaction i under condition k take place if xu, k
∙ xd, k = − 1(Eq. (11)). Comparing with previous DILP
model, TILP greatly simplifies the calculation for adding
the “missing edges” in the optimization. The details were
described in the Additional file 1: Text S1.
The formulations in TILP model described above were

implemented in GUROBI 6.5.1 [47], which is a well-
known a Matlab-based mathematical programming
solver. The optimization of Eq. (9) delivers an optimal
sub-network of the constructed generic pathways and
best reproduces the experimental data.

Prediction of compound treatment effects
To predict a compound’s treatment effects, TILP model
was used on the optimaml cell-specific pathway network
to fit the testing data. We can identify the treatment
effects of a compound from two aspects:

1. qualitatively identify the treatment effects via
compound-induced pathway alterations. The states
of all the phosphor-proteins and signaling reactions
in the network could be inferred, so that we can
easily find which pathway is activated (nodes are
up-regulated and edges take place in this pathway),
inhibited (nodes are down-regulated and edges take
place in this pathway), or un-changed (the
expression of nodes have no significant changes).

Additional file 2: Figure S1, Additional file 3: Figure
S2, Additional file 4: Figure S3, Additional file 5:
Figure S4 and Additional file 6: Figure S5 provides
more details about the five testing cases.

2. quantitatively evaluate the similarity of treatment
effects between two compounds according to the
outcome vectors of signaling network. The similarity
score (SS) is defined as correlation coefficient, to
represent the similarity of treatment effects between
compound A and C with their corresponding
outcome vectors of response networks.

SS ¼ corrcoef TA;TCð Þ ð12Þ

where TA and TC are the output vectors from com-
pound A and compound C induced response networks,
respectively. Based on Eq. (12), we can easily evaluate
the treatment effects between any two compounds (see
the details in Fig. 5e).

Conclusions
We developed a Ternary status based Integer Linear
Programming (TILP) model to identify cell-specfic sig-
naling pathways and predict compoun treatment effects
by combining phosphorproteomics data and prior know-
ledge. To validate the effectiveness, we tested our TILP
model on MCF7 cell line with LINCS P100 proteomics.
The simulation results indicate that our model is capable
of inferring the cell-specific pathway network, and fur-
ther qualitatively and quantitatively predicting the com-
pound treatment effects. For large-scale biological
networks, it is difficult to estimate a large number of pa-
rameters from limited observations using ODE-based
modeling approaches. As a parameter-free model, the
TILP model is more efficient than continuous models
(such as ODEs) because all of the elements in the net-
work were defined as discrete variables so that the opti-
mal solusion can be qucikly searched from an allowable
subspace with constraints. Although MCF7 is used as a
case of disease, the proposed model will be applicable to
other disease studies with proteomic data.
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