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Abstract. Organelle acidification plays a demonstrable 
role in intracellular protein processing, transport, and 
sorting in animal cells. We investigated the relation- 
ship between acidification and protein sorting in yeast 
by treating yeast cells with ammonium chloride and 
found that this lysosomotropic agent caused the mis- 
localization of a substantial fraction of the newly syn- 
thesized vacuolar (lysosomal) enzyme proteinase A 
(PrA) to the cell surface. We have also determined that 
a subset of the vpl mutants, which are deficient in 
sorting of vacuolar proteins (Rothman, J. H., and 
T. H. Stevens. 1986. Cell. 47:1041-1051; Rothman, 
J. H., I. Howald, and T. H. Stevens. EMBO [Eur. 
Mol. Biol. Organ.] J. In press), failed to accumulate 
the lysosomotropic fluorescent dye quinacrine within 
their vacuoles, mimicking the phenotype of wild-type 

cells treated with ammonium. The acidification defect 
of vpl3 and vpl6 mutants correlated with a marked 
deficiency in vacuolar ATPase activity, diminished lev- 
els of two immunoreactive subunits of the proton- 
transiocating ATPase (H+-ATPase) in purified vacuolar 
membranes, and accumulation of the intracellular por- 
tion of PrA as the precursor species. Therefore, some 
of the VPL genes are required for the normal function 
of the yeast vacuolar H+-ATPase complex and may en- 
code either subunits of the enzyme or components re- 
quired for its assembly and targeting. Collectively, 
these findings implicate a critical role for acidification 
in vacuolar protein sorting and zymogen activation in 
yeast, and suggest that components of the yeast vacuo- 
lar acidification system may be identified by examining 
mutants defective in sorting of vacuolar proteins. 

number of intracellular protein transport and process- 
ing reactions occur within the acidic interiors of the 
organelles that mediate these processes in eukaryotic 

cells (Mellman et al., 1986; Bowman and Bowman, 1986). 
These organelles, including the lysosome and components of 
the endocytic and exocytic pathways, comprise the organellar 
system known as the vacuolar network. The participation of 
a low lumenal pH in intracellular sorting of proteins secreted 
via the constitutive and regulated exocytic pathways (Moore 
et al., 1983), ligands internalized by endocytosis (Mellman 
et al., 1986), proteins delivered to compositionally distinct 
plasma membranes of polarized epithelial cells (Caplan et 
al., 1987), and newly synthesized lysosomal proteins (von 
Figura and Hasilik, 1986), has been implicated from the 
effects of"lysosomotropic" agents that inhibit acidification of 
this vacuolar network. The importance of organellar acidifi- 
cation is also evident from studies of several Chinese ham- 
ster mutant cell lines that are defective in endosomal acidi- 
fication (Merion et al., 1983; Marnell et al., 1984; Robbins 
et ai., 1983). Among the numerous phenotypes attributed to 
the acidification defect is the failure of these cells to properly 
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localize newly synthesized lysosomal proteins (Robbins et 
al., 1984). However, the precise molecular defects leading 
to the failure in acidification are unknown (Timchak et al., 
1986; Stone et al., 1987). 

Acidification also appears to play a role in triggering pro- 
teolytic maturation of precursor proteins during transport. 
For example, proteolytic processing of proinsulin has been 
correlated with acidification of the secretory granules that 
transport the prohormone to the cell surface (Orci et al., 
1987). The acidic environment of the lysosome is required 
for the activity of hydrolases that are sequestered within it, 
and it has been suggested that these hydrolases exhibit a low 
pH optimum to ensure that they are inactivated if released 
from the lysosome into the more basic cytoplasm (Mellman 
et al., 1986). The acidic state of vacuolar network organelles 
thus appears to be critical for many of the normal activities 
of eukaryotic cells. 

The yeast vacuole is an acidic organelle containing hydro- 
lytic enzymes, and is considered to be equivalent to the lyso- 
some of animal cells (Wiemken et al., 1979; Rothman and 
Stevens, 1988). Sorting of proteins to the yeast vacuole has 
been shown to follow a pathway that is similar to that fol- 
lowed by lysosomal proteins in animal cells (Stevens et al., 
1982). Genes encoding molecular components required for 
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Table L Yeast Strains 

Strain Genotype Source 

JHRY20-2C 
JHRY20-2C vplg-A l 
JHRY61-1B 
JHRY64-5B 
SF838-1D 
SF838-1D vpl3-A1 
SF838-1Dm220 
SF838-1Dm 108 
SF838-9DR2L1 
SF838-9DR2LI vpl3-Al 
SF838-9DR2L1 m 1038 
SF838-9DR2L 1 m 1057 
X2180-1B 

MATa, his3-A200, ura3-52, leu2-3, leu2-112 
MATa, his3-A200, ura3-52, leu2-3, leu2-112, vpI8-AI : :URA3 
MATa, his4-519, leu2-3, leu2-112, vpl3-2 
MATch, his4-519, ura3-52, leu2-3, leu2-112, lys2, vpl6-2 
MATch, ade6, his4-519, ura3-52, leu2-3, leu2-112, pep4-3, gal 
MATs, ade6, his4-519, ura3-52, leu2-3, leu2-112, pep4-3, gal, vpl3-zil::LEU2 
MATch, ade6, his4-519, ura3-52, leu2-3, leu2-112, pep4-3, gal, vpl6-11 
MATch, ade6, his4-519, ura3-52, leu2-3, leu2-112, pep4-3, gal, vpl8-10 
MATa, his4-519, ura3-52, leu2-3, leu2-112, lys2, pep4-3, gal 
MATa, his4-519, ura3-52, leu2-3, leu2-112, lys2, pep4-3, gal, vpI3-AI::LEU2 
MATa, his4-519, ura3-52, leu2-3, leu2-112, lys2, pep4-3, gal, vpl6-2 
MATa, his4-519, ura3-52, leu2-3, leu2-112, lys2, pep-4-3, gal, vpl8-3 
MATe~, real, mel, gal2 

Rothman et ai., 1986 
Derived from JHRY20-2C 
Rothman and Stevens, 1986 
Rothman and Stevens, 1986 
Rothman and Stevens, 1986 
Derived from SF838-1D 
Rothman and Stevens, 1986 
Rothman and Stevens, 1986 
Rothman and Stevens, 1986 
Derived from SF838-9DR2LI 
Rothman and Stevens, 1986 
Rothman and Stevens, 1986 
Yeast Genetic Stock Center 

The vp16-2, vpl6-11, vpl8-3, and the vplg-lO strains were the original isolates of the indicated vpl alleles and are isogenic to strain SF838~ I D or SF838-9DR2L 1. 
The PEP4 ~ vp13-2 and vpl6-2 strains are outcrosses of the indicated vpl alleles (Rothman and Stevens, 1986). 

protein sorting (Rothman and Stevens, 1986; Bankaitis et al., 
1986), as well as sorting determinants residing on vacuolar 
proteins (Vails et al., 1987; Johnson et al., 1987; Klionsky 
et al., 1988), have been identified in yeast. Thus, yeast pro- 
vides a simple system for dissecting the mechanisms by 
which newly synthesized proteins are sorted to the vacuole 
and for examining the role of acidification of the vacuolar 
network in protein sorting. 

The acidic pH of the yeast vacuolar lumen appears to be 
generated and maintained by a proton-translocating ATPase 
(H÷-ATPase) ' located in the vacuolar membrane (Uchida et 
al., 1985). This H÷-ATPase complex has been purified 
from yeast vacuoles and is comprised of at least three 
(Uchida et al., 1985), and probably more (Kane et al., 1989) 
distinct polypeptides. The function of each of these subunits 
is not understood, nor is it known whether this complex is 
capable of translocating protons across the vacuolar mem- 
brane in the absence of other components. 

Although it is clear that the yeast vacuole maintains a 
lower internal pH than that of the cytoplasm (Navon et ai., 
1979; Makarow and Nevalainen, 1987), it has not been 
demonstrated that this acidic environment is essential for 
delivery of newly synthesized proteins into the vacuole. Iso- 
lation of mutations in the genes encoding the vacuolar H ÷- 
ATPase subunits or other proteins involved in acidification 
of the vacuolar system would allow a direct test of the role 
of acidification in protein sorting. In this report, we provide 
evidence suggesting that vacuolar network acidification is re- 
quired for vacuolar protein sorting and vacuolar zymogen 
activation. We also demonstrate that a limited subset of the 
mutants that are defective in vacuolar protein sorting are 
deficient in vacuolar acidification and ATPase activity at the 
vacuolar membrane. The genes represented by these acid- 
ification-defective mutants may encode subunits of the vacu- 
olar H÷-ATPase or components required for proper assembly 
and localization of this enzyme in the vacuolar membrane. 

1. Abbreviations used in this paper: H+-ATPase, proton-translocating ATP- 
ase; PrA, proteinase A; proPrA, precursor form of PrA. 

Materials and Methods 

Yeast Strains 
The yeast strains used in this study were constructed by standard genetic 
manipulations. The genotypes of these strains are indicated in Table I. The 
vpl3-Al allele carries a substitution of the LEU2 gene within the VPL3 open 
reading frame, and the vpl8-Al allele carries a substitution of the URA3 
within the VPL8 gene. These deletion constructs were integrated into the 
yeast genome to replace the wild-type chromosomal copies of these genes 
by standard techniques (Rothstein, 1983). Haploid strains carrying either 
the vpl3-A1 or the vpl8-Al alleles were viable at all temperatures and dis- 
played a Vpl- phenotype (C. Raymond, unpublished observations). 

Materials 

Carrier-free I35S]H2SO4 and zymolyase 100T were from ICN Biomedicals, 
Inc. (Irvine, CA). Fraction II lyticase was prepared as described previously 
(Scott and Schekman, 1980). [L2SI]protein A was from Amersham (Arling- 
ton Heights, IL), nitrocellulose was from Schleicher and Schuell, Inc. 
(Keene, NH), IgG Sorb was from the Enzyme Center (Boston, MA), and 
SDS was from BDH Biochemicals Ltd. (Poole, UK). Acetylated BSA used 
in radiolabeling experiments was from Bethesda Research Laboratories 
(Bethesda, MD), and ZW3-14 used in vacuolar H+-ATPase solubilization 
was from Calbiochem-Behring Corp. (San Diego, CA). Quinacrine and all 
other reagents used for enzymatic and protein assays were obtained from 
Sigma Chemical Co. (St. Louis, MO). 

Antibodies to yeast carboxypeptidase Y, proteinase A and phospho- 
glycerate kinase were described in earlier communications (Rothman et al., 
1986; Stevens et al., 1986). Antiserum prepared against the 57-kD subunit 
of the beet H+-ATPase (Manolson et al., 1987) was a gift of M. Manoison 
and R. Poole. The monoclonal antibody (8B1F3) specific for the yeast 69- 
kD H+-ATPase subunit was generated by immunizing and boosting mice 
with washed vacuolar membranes (prepared as described in Uchida et al., 
1985), followed by a final boost with H+-ATPase subunits obtained by 
KNO3 stripping of vacuolar membranes (Kane et al., 1989). The anti-69- 
kD monoclonal antibody reacted with a unique 69-kD protein band in im- 
munoblots of the purified H+-ATPase complex, solubilized vacuolar mem- 
branes, or total yeast cell extracts. 

Immunoprecipitation and Fluorography 

Cultures of midlog phase yeast cells growing at 30°C were pulse labeled 
with [35S]H2SO4 (100-1,000 #Ci) in MV-pro medium containing 50 mM 
potassium phosphate (pH 5.7) and 0.5 mg/ml BSA, and chased as previously 
described (Stevens et al., 1986). In the experiments performed in the pres- 
ence of ammonium, the growth medium contained 50 mM potassium phos- 
phate, pH 7.7. The chase period was initiated by the addition of 10 mM 
Na2SO4. The pulse and chase periods were as indicated in the figure legends. 
Cultures were separated into intracellular (Fig. 1, lanes 1; spheroplast pellet) 
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Figure 1. Effects of a lysosomotropic agent on sorting of PrA. A 
culture of strain X2180-1B was treated with 400 mM sodium chlo- 
ride (NaCI) or 400 mM ammonium chloride (NH4CI) for 30 min 
at 30°C, subsequently labeled for 30 min and then chased for 60 
min in the presence of the same concentrations of these compounds. 
1, intracellular fraction; E, extracellular fraction obtained by pool- 
ing the periplasmic and medium fractions before addition of antise- 
rum. The positions of migration of the proPrA and mature PrA 
(mPrA) and molecular mass standards (in kilodaltons) are noted. 

and extracellular (Fig. 1, lane E; spberoplast supernatant plus medium) frac- 
tions and immunoprecipitated (Stevens et al., 1986). The immunoprecipi- 
tated proteinase A was solubilized in sample buffer (50 mM Tris-HCl, pH 
6.8, 10% glycerol, 2% SDS, 2% ~-mercaptoethanol, 0.1% bromophenol 
blue), and electrophoresed on 10 % polyacrylamide SDS gels (Stevens et al., 
1986). After electrophoresis, gels were fixed, permeated with sodium 
salicylate for fluorography (Chamberlain, 1979), dried and exposed to film 
at -80°C (XAR-5; Eastman Kodak Co., Rochester, NY). 

Quinacrine staining and Fluorescence Microscopy 
Analysis of cells for vacuolar uptake of quinacrine was performed as de- 
scribed by Weisman et al., (1987). Cells oftbe indicated genotype were in- 
cubated for 5 min at 25°C in the presence of 200 #M quinacrine in YEPD 
buffered to pH 7.7 with 50 mM potassium phosphate, washed once in the 
same medium without the dye, and prepared for Nomarski optics and 
fluorescence microscopy as described by Weisman et al. (1987). Micros- 
copy was performed using a microscope (Axioplan; Carl Zeiss, Inc., 
Thornwood, NY) equipped for Nomarski optics and epifluorescence with 
a 100x oil-immersion objective. 

Isolation of Vacuolar Membranes and 
Enzymatic Assays 

Yeast vacuolar membranes were purified by spheroplasting cells, lysing the 
cells osmotically, and floating vacuoles over two consecutive FicoU gra- 
dients as described by Kakinuma et al. (1981). ATPase activity of the iso- 
lated vacuolar membranes was determined using a coupled assay and an 
ATP-regeneration system (Lotscher et al., 1984). ATPase activities are 
reported as specific activity (U/mg), with one unit defined as I #mol phos- 
phate liberated • min -I . mg-L Protein was determined by the method of 
Lowry (Lowry et al., 1951) on purified vacuoles that were first solubilized 
in 2% SDS. 

Western Blotting 

Vacuolar proteins from a purified vacuole fraction were solubilized in sam- 
ple buffer and incubated at 70°C for 15 min. A constant amount of vacuolar 
material, 10 #g of vacuolar protein/lane, was loaded onto a 10% polyacryl- 
amide SDS gel and electrophoresed (Laemmli, 1970). Total yeast cell pro- 
tein extracts were prepared by vortexing yeast cells with glass beads at 65°C 
in protein sample buffer containing 8 M urea and 5% SDS. A constant 
amount of protein, equivalent to 1 x l0 T cells (",,50 #g total protein), was 
loaded on each lane of a 10% polyacrylamide SDS gel. After electrophore- 
sis, proteins were electroblotted onto nitrocellulose and H+-ATPase poly- 
peptides were detected with monoclonal antibody 8BIF3 following the pro- 
cedure supplied with the immune-blot assay kit from Bio-Rad Laboratories 
(Cambridge, MA), except that nonfat dry milk (1%) was used as nonspecific 
protein instead of gelatin. Bound antibody was subsequently decorated with 
[12~I]protein A and detected by autoradiography (Burnette, 1981). 

Results 

Lysosomotropic Agents Perturb Vacuolar 
Protein Sorting 

To investigate the role of vacuolar acidification in protein tar- 
geting in yeast, we analyzed the effects of lysosomotropic 
agents on sorting of newly synthesized proteins to the vacu- 
ole. Wild-type yeast cells were treated with ammonium chlo- 
ride, labeled with [3~S]H2SO4, and fractionated into intra- 
cellular and extracellular fractions. Proteinase A (PrA), a 
soluble vacuolar protein, was then immunoprecipitated from 
these fractions and analyzed by fluorography as shown in 
Fig. 1. Control cells that had been treated with sodium chlo- 
ride mislocalized only low levels of a precursor form of PrA 
(proPrA) to the extracellular fraction, whereas cells treated 
with ammonium chloride misdirected a much higher propor- 
tion of the total newly synthesized proPrA to the cell surface. 
Similar results were obtained when cells were treated with 
the lysosomotropic agent neutral red, or when another 
vacuolar enzyme, carboxypeptidase Y, was immunoprecipi- 
tated from fractions of cells treated in the same way (not 
shown). The appearance of extracellular PrA from cells 
treated with these agents was not a result of cell lysis since 
(a) no mature PrA was observed in this fraction although ma- 
ture PrA was found intracellularly, and (b) the cytoplasmic 
protein phosphoglycerate kinase was not found in the ex- 
tracellular fractions (not shown). These observations suggest 
that neutralization of the vacuolar network in yeast results in 
the secretion of newly synthesized vacuolar proteins. 

Some vpl Mutants Fail to Accumulate Quinacrine 
within Their Vacuoles 

The fluorescent dye, quinacrine, has been shown to accumu- 
late within vacuoles when supplied exogenously to intact 
yeast ceils in medium buffered at alkaline pH (Weisman et 
al., 1987) (Fig. 2). When the lumenal pH of the vacuole is 
raised by addition of 200 mM ammonium to the growth 
medium (Makarow and Nevalainen, 1987), quinacrine fails 
to accumulate within the vacuole (Weisman et al., 1987) (Fig. 
2), indicating that concentration of the dye within the vacu- 
ole is dependent on the acidic state of this organelle. To test 
whether any of the vpl mutants were defective for vacuolar 
acidification, we exposed representative mutants from each 
of the 19 VPL complementation groups (Rothraan and Stevens, 
1986; Rothman et al., 1989a) to quinacrine and followed its 
uptake by fluorescence microscopy. In these studies the loca- 
tion of the vacuole was determined by Nomarski optics mi- 
croscopy. Most of the mutants accumulated only slightly 
lower levels of quinacrine within their vacuoles than did iso- 
genic wild-type cells (e.g., Fig. 2, vpl8-10). In contrast, al- 
though the vpl3 and vpl6 mutants contained mostly normal 
looking vacuoles as visualized by Nomarski optics, these 
cells were exceptionally deficient in quinacrine accumula- 
tion (Fig. 2). These findings indicate that the VPL3 and VPL6 
gene products are required for the establishment or main- 
tenance of a low vacuolar pH. 

vpl3 and vpl6 Mutants Are Deficient in Vacuolar 
ATPase Activity 

To determine whether the apparent deficiency in vacuolar 
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Figure 2. Vacuolar quinacrine accumula- 
tion is blocked in certain vpl mutants. 
Quinacrine-treated cells were viewed by 
Nomarski optics (left) and fluorescence 
(right) microscopy. The VPL + strain was 
SF838-1D, and each of the mutants noted in 
the figure was an isogenic mutant carrying 
the indicated vpl allele. In the second pair of 
micrographs, strain SF838-1D was treated 
with quinacrine in the presence of 200 mM 
ammonium acetate (VPL++ NH4+). 
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Table II. Acidification in Wild-type and Selected vpl 
Mutant Yeast Strains 

H÷-ATPase 
specific % vacuolar 
activity ATPase specific Quinacrine 

vpl allele (U/rag) activity staining 

VPL ÷ 1.12 100 + 
vpl3-a I 0.071 6.3 -- 
vp16-2 0 .068  6.1 -- 

vplS-3 O. 81 72 + 

ATPase activities of isolated vacuoles are given as specific activities and per- 
cent of wild-type specific activity. The vacuolar ATPase activities were the 
same for cells carrying different alleles of each vpl complementation group. 
ATPase levels (Lotscher et al., 1984) were determined in the absence and 
presence of inhibitors of the plasma membrane and mitochondrial ATPases 
( 100 #M sodium vanadate and 2 mM sodium azide respectively; Uchida et al., 
1985). In all cases, these nonvacuolar ATPases together accounted for <5% of 
the total ATPase activity of the isolated vacuoles. The reported ATPase values 
represent the average of at least two vacuolar isolations of a given mutant. The 
VPL + strain was SF838-9DR2LI: the vpl3 strain was SF838-9DR2LI vpl3-AI; 
the vpl6 strain was SF838-9DR2LImI038; and the vpl8 strain was SF838- 
9DR2LIm1057. 

acidification in the vpl3 and vpl6 mutants was reflected in re- 
duced levels of the vacuolar H+-ATPase, we purified vacu- 
oles from wild-type and isogenic vpl mutant yeast cells by 
the method of Kakinuma et al. (1981), and assayed the iso- 
lated vacuolar membranes for ATP hydrolysis. It was neces- 
sary to perform these analyses on isolated vacuoles since 
crude extracts of yeast contain high levels of nonvacuolar 
ATPase activity even in the presence of inhibitors of the mito- 
chondrial and plasma membrane enzymes (our unpublished 
observations). In these experiments, neither sodium vana- 
date, which inhibits the plasma membrane ATPase nor so- 
dium azide, an inhibitor of the mitochondrial enzyme, was 
found to reduce the ATPase activity in the purified vacuoles 
significantly (<5% inhibition), indicating that the vacuolar 
fractions were not substantially contaminated with either of 
these enzymes (Uchida et al., 1985; Bowman and Bowman, 
1986). However, >90% of the ATPase activity of purified 
vacuolar membranes from wild-type cells was inhibited by 
10 nM bafilomycin A~, a specific inhibitor of vacuolar ATP- 
ases from different sources (Bowman et al., 1988; Kane et 
al., manuscript in preparation). The results of some of these 
analyses, performed on wild-type cells and three representa- 
tive vpl mutants, are presented in Table II. Whereas those 
mutants that labeled normally with quinacrine, such as vpl8, 
contained specific activity levels for the vacuolar ATPase 
that were only slightly lower than that of wild-type cells, vpl3 
and vpl6 mutant vacuoles contained very low ATPase levels 
(Table II). The residual ATPase activity in vpl3 and vpl6mu- 
tant vacuolar membranes was further reduced by 10 nM 
bafilomycin A,, suggesting that the residual ATPase activity 
in these membranes is attributable to the vacuolar H+-ATPase. 
The greatly reduced vacuolar ATPase activities in vpl3 and 
vpl6 mutants indicate that these cells are defective in the 
vacuolar membrane H÷-ATPase. 

Two Subunits of  the Vacuolar H÷-ATPase Are 
at Diminished Levels in the Vacuolar Membranes 
o f  vpl3 and vpl6 
To clarify the nature of the defect in the vacuolar H +- 

Figure 3. Western blot analysis of the 69-kD H+-ATPase subunit 
from whole cell extracts and isolated vacuolar membranes. Solubi- 
lized protein extracts from whole cells (A) or purified vacuolar 
membranes (B) from a VPL + strain (lanes 1 and 5), vpl3 strain 
(lanes 2 and 6), vpl6 strain (lane~ 3 and 7), and a vpl8 strain (lanes 
4 and 8) were loaded on a 10% polyacrylamide SDS gel and elec- 
trophoresed. The gels were electroblotted onto nitrocellulose mem- 
branes and probed with anti-69-kD monoclonal antibody 8BIF3. 
Approximately 50 #g of total yeast protein was loaded in each lane 
of A, and 10 #g of protein from a purified vacuole fraction was 
loaded in each lane of B. The VPL ÷ strain was SF838-9DR2L1, the 
vpl3 strain was SF838-9DR2LI vpl3-A 1, the vpl6 strain was SF838- 
9DR2LImI038, and the vpl8 strain was SF838-9DR2LlmI057. The 
position of the 69-kD H+-ATPase subunit is shown relative to pro- 
tein standards. 

ATPase of vpl3 and vpl6 mutants, we analyzed vacuolar 
membranes isolated from these mutants for immunoreactive 
subunits of the H+-ATPase complex. Uchida et al. (1985) 
have reported that the H+-ATPase complex consists of three 
subunits of molecular masses 89, 64, and 19.5 kD. Following 
the same purification procedures, we have found a somewhat 
different molecular mass distribution for these three subunits 
of 69, 60, and 17 kD, and identified several other proteins that 
copurify with these subunits (Kane et al., 1989). Based on 
studies with covalent modifying reagents directed at the ATP 
binding site, it has been suggested that the 69-kD polypep- 
tide is the ATP-binding catalytic subunit of the complex 
(Uchida et al., 1988). 

We examined the levels of the 69-kD subunit in isolated 
vacuolar membranes from vpl and wild-type strains by prob- 
ing a Western blot of vacuolar membrane proteins with a 
monoclonal antibody (8B1F3) that specifically recognizes 
this subunit. Fig. 3 B shows the results of such an immuno- 
blot. It is apparent that the 69-kD H+-ATPase subunit was 
at greatly diminished levels (Fig. 3, lanes 6and 7) in the two 
mutants (vpl3 and vpl6) that exhibited severe deficiencies in 
vacuolar ATPase specific activity. The level of the 69-kD 
H+-ATPase subunit in vpl8 vacuolar membranes was only 
slightly diminished relative to VPL ÷ (Fig. 3, lanes 5 and 8), 
in accord with the ATPase activities for this mutant (Table 
II). The monoclonal antibody against the 69-kD subunit was 
also used to probe Western blots of whole cell extracts from 
the same vpl3, vpl6, vpl8, and wild-type strains. As shown 
in Fig. 3 A, all of the mutants had steady-state levels of the 
69-kD subunit equivalent to wild type. This result indicates 
that vpl3 and 6 mutants contain normal levels of the 69-kD 
polypeptide, yet only a small portion of the subunit reaches 
the vacuolar membrane. 

These studies were extended to examine the effects of the 
vpl3 and vpl6 mutations on the levels of the 60-kD subunit 
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Figure 4. Intracellular proPrA accumulation in acidification-defec- 
tive mutants. Cultures of cells of the indicated genotype were pulse 
labeled for 15 min, chased for an additional 15 min, and intracellu- 
lar extracts of the labeled cells were prepared from spheroplasts and 
immunoprecipitated with PrA antiserum as described in the legend 
to Fig. 1. The VPL ÷ strain was JHRY'20-2C, the vpl3 strain was 
JHRY61-1B, the vpl6 strain was JHRY64-5B, and the vpl8 strain was 
JHRY20-2C vpl8-A1. Symbols are as noted in Fig. 1. 

of the H÷-ATPase complex in the vacuolar membrane. We 
used a polyclonal antibody generated against the 57-kD 
subunit of the beet tonoplast H÷-ATPase complex (Manol- 
son et al., 1989). This antibody has been found to cross react 
with the 60-kD subunit of the yeast vacuolar H÷-ATPase 
(Kane et al., 1989), and thus serves as a useful reagent for 
analyzing this polypeptide. Using this antibody, similar re- 
suits were obtained as for the 69-kD subunit; i.e., vpl3 and 
vpl6 mutants were found to contain much lower levels of this 
polypeptide in their vacuolar membranes than in wild-type 
or vpl8 cells (not shown). Unfortunately, the specificity of 
the red beet polyclonal antibody against the 60-kD subunit 
was too poor to permit quantitation of this subunit in Western 
blots of whole cell lysates. Our findings demonstrate that the 
vacuolar membranes of vpl3 and vpl6 mutants, but not vpl8 
mutants, are deficient in at least two subunits of the vacuolar 
H÷-ATPase. 

Deficiencies in Vacuolar Acidification Correlate with 
Intracellular Accumulation of proPrA 
It has been proposed that conversion of the precursor form 
of the vacuolar zymogen proPrA to its mature form PrA oc- 
curs by an autocatalytic mechanism that is strongly favored 
at an acidic pH (Ammerer et al., 1986; Wooiford et al., 
1986; Mechler et al., 1987). If this hypothesis is correct, it 
would be expected that mutants defective in vacuolar 
acidification should fail to convert the intracellular portion 
of the enzyme to its mature form. By immunoprecipitating 
PrA antigen from radiolabeled vpl3 and vpl6 mutants, we de- 
termined that a major fraction of the intraceUular portion of 
PrA accumulated as the 52-kD proPrA species, whereas in 
other vpl mutants (e.g., vpl8-A1) most appeared as the pro- 
teolytically processed 42-kD species (Fig. 4). These obser- 
vations correlate with the results of quinacrine labeling de- 
scribed above, and are consistent with the hypothesis that 
PrA activation is promoted by an acidic environment. 

Discussion 

In this paper, we have presented four lines of evidence that 
the yeast vacuolar H+-ATPase and vacuolar acidification 
participate in protein sorting and proteolytic zymogen acti- 
vation: (a) a lysosomotropic agent that has been shown to 
raise the pH of the vacuole (Makarow and Nevalainen, 1987; 
Weisman et al., 1987) leads to substantially increased secre- 
tion of two vacuolar proteins; (b) some mutants defective in 
sorting of vacuolar proteins are also defective in vacuolar 
acidification; (c) vacuoles isolated from acidification-defec- 
tive vpl mutants are deficient in ATPase activity and contain 
reduced levels of two H+-ATPase subunits; and (d) in mu- 
tants that fail to acidify their vacuoles, the intracellular por- 
tion of proPrA is not efficiently processed to the mature 
species. In support of these data, Banta et al. (1988) have re- 
ported that a yeast vptl3 mutant (allelic to vpl6) also fails to 
accumulate quinacrine in its vacuole. In addition, these in- 
vestigators reported that bafilomycin A~, which is known to 
inhibit specifically and potently vacuolar H+-ATPases from 
many sources (Bowman et al., 1988), causes wild-type yeast 
ceils to fail to accumulate quinacrine in their vacuoles and 
to mislocalize newly synthesized vacuolar proteins to the cell 
surface. Taken together, the above results implicate a direct 
role for acidification of the vacuolar network in vacuolar pro- 
tein sorting. 

The observation that vpl3 and vpl6 mutants are deficient 
in vacuolar acidification makes it possible to examine the 
role of the vacuolar membrane pH gradient in a number of 
cellular processes. For example, we have shown that vpl3 and 
vpl6 mutants accumulate intracellular proPrA, suggesting 
that low pH triggers maturation of proPrA. Consistent with 
these findings, PrA-related proteins from other organisms 
have been shown to autoactivate at low pH (Bustin and 
Conway-Jacobs, 1971; James and Sielecki, 1986). In addi- 
tion to zymogen activation, the pH gradient across the vacuo- 
lar membrane is thought to be exploited by several trans- 
porters that act to concentrate small molecules (e.g., Ca 2÷ 
and amino acids) in the vacuole (Ohsumi and Anraku, 1981, 
1983). The acidification defective vpl mutants should allow 
a determination of the in vivo role of an acidic vacuolar pH 
in accumulation of these small molecules. 

Although our findings suggest that the low pH environ- 
ment of the yeast vacuole is required for protein sorting and 
zymogen activation, we have not proven a causal relationship 
between the increased pH of the vacuolar lumen in vpl3 and 
vpl6 mutants and the failure to sort and activate soluble 
vacuolar proteins. Indeed, we cannot rule out the possibility 
that these mutants are deficient in vacuolar ATPase activity 
and acidification resulting from an overall defect in vacuolar 
biogenesis (i.e., that the Vpl- phenotype is the cause of the 
acidification defect rather than its effect). However, mutants 
such as vpl8 mislocalize proportions of carboxypeptidase Y 
and PrA similar to vpl3 and vpl6 mutants (Rothman and 
Stevens, 1986), yet are not markedly deficient in vacuolar 
acidification, ATPase activity, or H+-ATPase subunit com- 
position (Table II and Fig. 3). Clearly, mislocalization of a 
high percentage of newly synthesized PrA and carboxypepti- 
dase Y is not obligatorily associated with acidification de- 
fects. Thus, it is possible that the VPL3 and VPL6gene prod- 
ucts are required directly for the localization, assembly, or 
function of the vacuolar H+-ATPase. These observations 
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support the model that a failure to acidify the vacuolar net- 
work results in a vacuolar protein sorting defect. 

Vacuolar acidification might function in promoting dis- 
sociation of vacuolar proteins from their sorting receptors 
(Rothman et al., 1989b), in analogy to low pH-induced re- 
lease of endocytosed ligands from their cell surface receptors 
(Mellman et al., 1986) or to uncoupling of lysosomal pro- 
teins from mannose-6-phosphate receptors (von Figura and 
Hasilik, 1986). This model will be directly testable when the 
functions of the VPL3 and VPL6 gene products are under- 
stood, or when the genes encoding the vacuolar H*-ATPase 
subunits have been identified and disrupted. 

The fact that vacuolar membrane ATPase activity is sub- 
stantially reduced in vpl3 and vpl6 mutants and the observa- 
tion that immunoreactive H+-ATPase subunits are similarly 
diminished suggests that these mutants could carry lesions 
in genes encoding subunits of the complex itself. The pres- 
ence of normal levels of the 69-kD subunit in whole cell ly- 
sates from a vpl3A strain indicates that this gene does not en- 
code the 69-kD subunit, but our results do not rule out the 
possibility that the VPL6 gene encodes the 69-kD subunit. 
The normal levels of the 69-kD subunit in whole cell lysates 
of vpl3 and vpl6 mutants also indicate that the mutations do 
not affect the level of expression of the 69-kD subunit gene. 
Although we could not perform similar tests of the whole cell 
iysates using the polyclonal antibodies against the 60-kD 
subunit, we now have cloned the 60-kD subunit gene, as well 
as the VPL3 and VPL6 genes, and have confirmed that the 
three genes are different (C. Yamashiro, C. Raymond, and T. 
Stevens, unpublished results). There are several other possi- 
bilities, however. The lowered levels of both the 69- and 60- 
kD subunits in vacuolar membranes of vpl3 and vpl6 mutants 
may indicate that the absence of one subunit of the H +- 
ATPase (caused by a mutation in its structural gene) results 
in reduced levels of the others in the vacuolar membrane be- 
cause of cooperative assembly of the complex. We now have 
evidence that the vacuolar H+-ATPase complex contains 
four to six other polypeptides in addition to the 69- and 60- 
kD subunits (Kane et al., 1989), and mutations in any of 
these polypeptides could potentially disrupt the structure or 
assembly of the complex. Alternatively, the VPL3 and VPL6 
gene products may be accessory proteins required for assem- 
bly of the H+-ATPase complex or its transport to the vacu- 
ole. At present we cannot distinguish between the various 
possibilities. 

In light of our findings, it is possible that most or all of 
the genes encoding the vacuolar H+-ATPase complex, the 
components required for its assembly and localization, and 
the proteins carrying our accessory functions required for 
acidification could be identified using procedures for isolat- 
ing yeast mutants defective in protein sorting (Rothman and 
Stevens, 1986; Bankaitis et al., 1986; Robinson et al., 1988; 
Rothman et al., 1989a). Molecular clones of such genes will 
prove useful in understanding the functional roles that their 
products play in vacuolar acidification and protein sorting. 
To this end, we are using the cloned VPL3 and VPL6 genes 
to assess the structure, localization, and mechanism of action 
of their products. 
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