
Islam and Rahman Algorithms for Molecular Biology 2013, 8:30
http://www.almob.org/content/8/1/30

RESEARCH Open Access

On the protein folding problem in
2D-triangular lattices
Abu Sayed Md Sohidull Islam and Mohammad Sohel Rahman*

Abstract

In this paper, we present a novel approximation algorithm to solve the protein folding problem in HP model. Our
algorithm is polynomial in terms of the length of the given HP string. The expected approximation ratio of our

algorithm is 1− 2 log n

n − 1
for n ≥ 6, where n2 is the total number of H’s in a given HP string. The expected approximation

ratio tends to reach 1 for large values of n. Hence our algorithm is expected to perform very well for larger HP strings.

Keywords: Protein folding, Approximation ratio, Algorithms, HP model

Background
A long standing problem in Molecular Biology and Bio-
chemistry is to determine the three dimensional struc-
ture of a protein given only the sequence of amino acid
residues that compose protein chains. This problem is
known as the Holy Grail of Computational Molecular
Biology, also termed as “cracking the second half of the
genetic code”. There exist a variety of models attempting
to simplify the problem by abstracting only the “essential
physical properties” of real proteins. In these models, the
three-dimensional space is often represented by a lattice.
Residues which are adjacent (i.e., covalently linked) in the
primary sequence must be placed at adjacent points in the
lattice.

In this paper, we consider the Hydrophobic-Polar
Model, HP Model for short, introduced by Dill [1]. The
HP model is based on the assumption that hydrophobic-
ity is the dominant force in protein folding. This model
simplifies a protein’s primary structure to a linear chain
of beads. Each bead represents an amino acid, which
can be one of two types: H (hydrophobic or nonpolar)
or P (hydrophilic or polar). Conformations of proteins
are embedded in either a two-dimensional or three-
dimensional square/triangular/hexagonal lattice. A con-
formation of a protein is simply a self-avoiding walk along
the lattice. The goal of the protein folding problem is to

*Correspondence: msrahman@cse.buet.ac.bd
A�EDA Group, Department of CSE, BUET, Dhaka 1000, Bangladesh

find a conformation of the protein sequence on the lat-
tice such that the overall energy is minimized, for some
reasonable definition of energy. Each amino acid in the
chain is represented by occupying one lattice point, con-
nected to its chain neighbour(s) on adjacent lattice points.
An optimal embedding is one that maximizes the num-
ber of H-H contacts which are not adjacent in the amino
acid chain. So, in effect, an input to the problem is a finite
string over the alphabet (H , P)+. Often, in what follows,
the input strings to our problem will be referred to as HP
strings. For a more biological background and motivations
the readers are referred to [1,2].

A number of approximation algorithms have been
developed for the HP model on the 2D square lattice,
3D cubic lattice, triangular lattice and the face-cantered-
cubic (FCC) lattice [3-5]. The first approximation algo-
rithm developed for this problem on the square lattice
by Hart and Istrail has an approximation ratio of 1/4 [3].
The approximation ratio for this problem was improved
to 1/3 by Newman [4]. The algorithm presented in [3]
can be generalized to an approximation algorithm for
the problem on the 3D cubic lattice. In [6], a general
method for protein folding on the HP model was pre-
sented by Hart and Istrail. This method can be applied to
a large class of lattice models. Hart and Istrail [7] provided
the first approximation algorithn for the problem on the
side-chain model which can be applied to 2D square, 3D
cubic lattices, and FCC lattices. The approximation ratio
achieved by [7] remains the best ratio for an approxima-
tion algorithm in any 3D HP-models to date. In [7], the

© 2013 Islam and Rahman; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/2.0

Islam and Rahman Algorithms for Molecular Biology 2013, 8:30 Page 2 of 14
http://www.almob.org/content/8/1/30

authors also illustrate the transformation of approxima-
tion algorithm from lattice models to off-lattice models.
Another approximation algorithm, based on different geo-
metric ideas was presented in [5]. Heun [8] presented a
linear-time approximation algorithm for protein folding in
the HP side chain model on extended cubic lattice having
approximate ration 0.84. In [9], the authors presented an
approximation algorithm with approximation ratio 0.17
that folds an arbitrary protein sequence in the 2D hexag-
onal lattice HP-model. Readers are referred to a survey of
Istrail and Lam [10] for further reading.

In [11], the authors proposed a genetic algorithm for the
protein folding problem in HP model in 2D square lat-
tice. In [12,13], hybrid genetic algorithm was presented
for HP model in 2D triangular lattice and 3D FCC lat-
tice. The authors in [14] first proposed the pull move set
for rectangular lattices, which is used in the HP model
under a variety of local search methods. They also showed
the completeness and reversibility of the pull move set for
rectangular grid lattices. In [15], the authors extended the
idea of pull move set in local-search approach for finding
an optimal embedding in 2D triangular grid and the FCC
lattice in 3D.

In this paper, we present an approximation algorithm for
protein folding in 2D-triangular lattice. To the best of our
knowledge the best approximation ratio for this problem
was obtained by Agarwalla et al. [2], which is 6

11 . For our
algorithm we do a probabilistic analysis and deduce that
the expected approximation ratio of our algorithm is 1 −
2 log n
n−1 for n ≥ 6, where n2 is the total number of H in a

given HP string. Clearly our approximation ratio depends
on n, which in turn depends on the number of H in the HP
string. For large values of n, this ratio tends to reach 1. So
it can be expected that our algorithm would provide very
close to optimal results for large values of n.

The rest of the paper is organized as follows. In
Section ‘Preliminaries’, we define some notations and
notions. Section ‘Our approach’ describes our approach
to solve the problem. In Section ‘Expected approximation
ratio’ we deduce the expected approximation ratio. We
briefly conclude in Section ‘Conclusion’.

Preliminaries
In this section, we present some notions and definitions
(mostly in relation to the underlying lattice) that we need
to explain our algorithm. In a triangular lattice, each lat-
tice point has six neighbouring lattice points [2]. In the
literature it is also called a hexagonal lattice. Note that,
by definition, a lattice is infinite. However, in what fol-
lows, when we refer to a lattice we will refer to a finite
part of it. This finite part of the lattice would essentially
be a hexagon. We now define some notions related to
a hexagon in the context of our approach. Note that a

hexagon is said to be perfect (or regular) if it has six equal
sides and six equal angles. Throughout the paper, when
we refer to a hexagon we assume that the opposite sides of
it are parallel having the same length. Also, when we con-
sider a non-regular hexagon we assume that the sides of it
can be grouped into two groups based on their length. In
particular, two of its sides (that are parallel to each other)
have a particular length, say p and the other four sides have
a different length, say m. Clearly, when p = m, we have a
regular hexagon. Following the above discussion, it would
be useful to define the former couple of sides of the (non-
regular) hexagon (i.e., that having a length of p each) as
D-sides and the latter four sides (i.e., that having a length
of m each) as Q-sides.

The discussion that follows can be better understood
with the help of Figure 1. As has been mentioned above
the finite portion of the lattice of our interest can be seen
as a hexagon, the boundary of which consists of those lat-
tice points that have fewer than six neighbours within the
hexagon. An edge is formed by two neighbouring lattice
points. If the lattice points are filled by H, the two neigh-
bouring H’s also form an edge. If two H’s are non-adjacent
in an HP string and placed on neighbouring lattice points
to form an edge, they form a bond. The points on the
boundary are referred to as the boundary points. The
depth of a point in a lattice is the minimum number of
points it needs to traverse to reach any boundary point.
Naturally, the depth of a boundary point is 0. The depth
of a hexagon is the maximum depth of all points in the
hexagon. In Figure 1, the depth of the hexagon is 2.

The length of the hexagon (or lattice) is the total number
of points along the D-sides. Figure 1, shows a hexagon of
length 6. A region in the hexagon is a group of the lattice
points such that each point in it has at least two neigh-
bours from within it. Similar to the boundary of a hexagon
we also define the boundary of a region. The boundary
of a region consists of those lattice points that have fewer
than six neighbours within the region. A region must not
contain any point such that deleting that point creates
two separate regions. From a graph theoretic concept, the
region cannot have a cut vertex. Also all the lattice points
inside the boundary of a region are parts of the region.
So, by definition, only the boundary itself cannot be con-
sidered as a region unless there are no points inside the
boundary at all. In Figure 1, the black vertices comprise
a region (which has only one point inside the boundary).
The size of a region is the total number of lattice points
inside it including the boundary points.

We also introduce a notion of a bend for a hexagon if it’s
length is greater than it’s depth. A bend refers to the com-
bined bent line along the 2 Q-sides to the right (a bend
could be defined identically considering the two Q-sides
to the left as well. However, for our purpose, we exclude
that option from our definition). A bend is illustrated in

Islam and Rahman Algorithms for Molecular Biology 2013, 8:30 Page 3 of 14
http://www.almob.org/content/8/1/30

Figure 1 Lattice. In this figure, a lattice and some related notions are illustrated.

Figure 1. Notice that if the depth of such a hexagon is x,
then a bend contains 2x + 1 points. There is a total of �

bends in a hexagon, where � is the length of the hexagon.
Removing all bends from the hexagon leaves a total of x2

lattice points (see Figure 1).
Now we define a new notion of a distorted hexagon as

follows. Suppose we have a hexagon having length � and
depth x; so each bend contains 2x + 1 points. Now we can
increase its length to get a new hexagon of length � + 1 by
adding a new bend. Similarly by adding succesive bends
we can continue to increase the length of a hexagon. If
within such a process the last added bend has fewer than
2x + 1 points, then we refer to the hexagon as a distorted
hexagon. An example of a distorted hexagon is shown in
Figure 2.

We use the usual notion of a run in an HP string. In par-
ticular, a run in an HP string denotes the consecutive H’s
or P’s. For example, in the HP string HHHPPHHPHHHH,
we have a run of 3 H’s, followed by a run of 2 P’s and so
on. Here the run-length of the first run of H (P) is 3 (2).
We sometimes will use the term H-run (P-run) to indicate
a run of H’s (P’s). The longest H-run (P-run) of a string
denotes the run of H (P) which has the highest run-length
among all the H-runs (P-runs) of the string. For the sake
of conciseness, the HP strings shall often be represented
as H’s and P’s with the corresponding run-lengths as their
powers. So, the HP string S = HHHPPHHPHHHH will
often be conveniently represented by Ŝ = H3P2H2P1H4.
Further, we use S(i), 1 ≤ i ≤ |S| to denote the ith charac-
ter of the HP string S . Similarly, Ŝ(j) denotes the jth run
of Ŝ . For example, Ŝ(1) refers to H3, Ŝ(2) refers to P2 and
so on. We will use SumH as the sum of the run-lengths of
all the H-runs of a given string Ŝ . We end this section with
a formal definition of the problem we handle in this paper.

Problem 1. Given an HP string Ŝ , the problem is to place
the HP string on a triangular lattice such that the total
number of bonds are maximized.

Our approach
Our approach is a simple and intuitive one. Our idea is
to identify the length and depth of a suitable hexagon and
then try to put all the H’s of a particular H-run inside the
hexagon and put the P’s of the following P-run (if any) out-
side that hexagon. The length and depth of the hexagon
depend on SumH. The motivation here is to get the maxi-
mum number of bonds between H’s. Note carefully that if
we can fully fill a hexagon with z lattice points with a single
H-run and get a total of k edges, the number of total bonds
will be k − z + 1. And if the number of H-run is n(H) then
in this case the total number of bonds will be k −z+n(H).
We illustrate the approach with an example below. In the
figures throughout this paper the bonds and edges are not
shown explicitly. A connection between 2 lattice points
indicate the presence of 2 H’s that are adjacent in the input
HP string.

Example 1. Suppose we have an HP string as follows:

Ŝ = H6P5H2P6H4P5H6P3H2P5H4PH7P6H2P2H4.

Figure 3 gives us a suitable regular hexagon for Ŝ on the
underlying lattice. Our approach starts with the longest H-
run of Ŝ . In Figure 4 the longest H-run, i.e, Ŝ(13) = H7, is
first positioned within the hexagon. Then, in Figure 5, the
subsequent P-run is positioned outside the hexagon. Sim-
ilarly the approach continues through Figures 6, 7 and 8
where we illustrate the positioning of H-runs and P-runs
up to Ŝ(17). Then we wrap around and start with Ŝ(1) in

Islam and Rahman Algorithms for Molecular Biology 2013, 8:30 Page 4 of 14
http://www.almob.org/content/8/1/30

Figure 2 Distorted hexagon. In this figure, a distorted hexagon is illustrated.

Figure 9. The final position of all the runs of Ŝ is shown in
Figure 10.

In Figure 10, we have a hexagon of 37 points and after
filling the hexagon fully we get a total of 90 edges. It is easy
to verify that the total number of bonds are 62 which is
equal to k − z + n(H). Notably, if two hexagons have the
same number of lattice points and are filled up fully with
H by a given HP string, the hexagon with higher number
of total edges have the higher number of total bonds as the
difference between the total number of the edges and that
of bonds is a constant.

Figure 3 Lattice points, i.e., Hexagon.

Now that we have discussed our main approach to fill
up the hexagon, we can shift our focus to the question
of whether we can accommodate all the H-runs of the
input HP string within the current hexagon. Recall that
our goal is to increase the number of edges (and hence the
total number of bonds)as much as possible. We have the
following useful lemmas.

Lemma 1. If two hexagons have the same number of lat-
tice points then the hexagon with the higher depth will not
have lesser number of edges.

Figure 4 Positioning Ŝ(13) = H7.

Islam and Rahman Algorithms for Molecular Biology 2013, 8:30 Page 5 of 14
http://www.almob.org/content/8/1/30

Figure 5 Positioning Ŝ(14) = P6.

Figure 6 Positioning Ŝ(15) = H2.

Figure 7 Positioning Ŝ(16) = P2.

Proof. We show this by considering a hexagon and
adjusting its depth keeping the total number of points
fixed. We illustrate this scenario in Figure 11. Note that,
the adjustment discussed and shown here does not give us
a hexagon and is only to facilitate better exposition of the
calculation and arguments.

Suppose that the total number of points is z and the
depth of the hexagon x and length �. If we remove the top
and bottom rows and put the corresponding points along
the other rows of the hexagon, new bends to the either
side of the hexagon will be created and each bend will have
2 × (x − 1) + 1 points. The new hexagon will have depth
x − 1 and additional 2�

2x−1 ≥ 1 bends (see Figure 11).
Now deleting two rows decrease 2 × (2� + � − 1) or

6�−2 edges. On the other hand, increasing the 2�
2x−1 bends

will increase 2�
2x−1 × ((2x − 2) + (2x − 1) + (2x − 2)) or

2�
2x−1 ×(6x−5) or 2�

2x−1 ×(3(2x−1)−2) or 6�− 4�
2x−1 edges.

This is clearly less than or equal to 6� − 2 as 4�
2x−1 − 2 ≥ 0

or 2�
2x−1 ≥ 1. Hence the result follows.

Lemma 2. Suppose we have a regular hexagon H1 con-
taining N points. Now we reduce the length of this hexagon
to get another hexagon H2 such that H2 contains N points

Islam and Rahman Algorithms for Molecular Biology 2013, 8:30 Page 6 of 14
http://www.almob.org/content/8/1/30

Figure 8 Positioning Ŝ(13) = H4.

as well. Then H2 will have lesser number of edges inside it
than that of H1.

Proof. Suppose that the depth of the regular hexagon H1
is x. So the length is x + 1. To reduce the length of H1,
while keeping the total number of points intact, we have
to remove a bend of H1 and distribute the points on that
bend over the adjacent sides (See Figure 12). Hence H2
will be a non-regular hexagon. Note that a bend in a regu-
lar hexagon contains 2x + 1 lattice points. After reducing
the length, new length will become x − 1 as follows. By
deleting one bend we reduce the length of adjacent sides
by one. So they will now have x lattices points. After plac-
ing the removed lattice points over these sides the new
side will definitely have x − 1 lattice points.

Now deleting a bend decreases 2 × 2x + 1 + 2x or 6x + 1
edges. Out of the 2x + 1 points of the bend, 2x − 2 points
will create new sides. These points create additional 2 ×
(2 × (x − 1) + x − 2) or 6x − 8 edges. And the rest of the 3
points can contribute to at most 8 edges. So we get at most
a total of 6x edges whereas we loose 6x + 1 edges. Hence
the result follows.

Lemma 3. Assuming that we can fill up all the points
of the hexagon, the total number of edges (as well as the

Figure 9 Positioning Ŝ(13) = H6.

Figure 10 Final state.

Islam and Rahman Algorithms for Molecular Biology 2013, 8:30 Page 7 of 14
http://www.almob.org/content/8/1/30

Points
to be
deleted

New points
forming
bends

Figure 11 Figure for Lemma 1. This figure aids in understanding the proof of Lemma 1.

total number of bonds) will be maximum if, and only if, the
hexagon is a regular hexagon.

Proof. Lemma 3 follows readily from Lemmas 1 and 2.

As has been mentioned before, our algorithm proceeds
in an iterative fashion in order to achieve the highest pos-
sible number of edges by iteratively changing the length
and depth of the hexagon. We start with an appropriate
regular hexagon. Note carefully that, by Lemma 3, if we
can fill the points of a regular hexagon, we get the opti-
mum number of edges. If we fail to fill up all the points

of a regular hexagon we put the rest of the H-runs out-
side the hexagon in a single row (see Figure 13) and finally
compute the total number of bonds. We reduce the depth
of the hexagon and increase its length with the hope that
the number of bonds will increase in the new hexagon.
We continue the iteration (i.e., reducing the depth of the
hexagon and filling it up) until we reach a case when the
total number of bonds decreases than that of the previ-
ous iteration. In that case, we terminate our algorithm and
return the result of the previous iteration.

Notably, to fill up a regular hexagon with depth x at least
one H-run having length 2x + 1 is needed. Besides, we
need at least two H-runs of length 2x, three of length 2x−2,

Figure 12 Figure for Lemma 2. This figure aids in understanding the proof of Lemma 2.

Islam and Rahman Algorithms for Molecular Biology 2013, 8:30 Page 8 of 14
http://www.almob.org/content/8/1/30

Figure 13 Ŝ of Example 2 cannot properly fill the hexagon. This figure illustrates that Ŝ of Example 2 cannot properly fill the hexagon.

three of length 2x − 4 . . . three H-runs of length 1 or 2
(depending on the size of x) in the input. The string in
Example 1 presented before meets this criteria assuming
x = 3. To explain a bit more, note that, in the HP string
of Example 1 we have one H-run with run-length 7, two
H-runs with run-length 6, three H-runs with run length
4 and the rest of the H-runs have run-length 2. Another
example is given below where we cannot put all H’s in a
regular hexagon.

Example 2. Consider an HP string

Ŝ = H6P3H4P4H3P6H4P3H2P4H2P3H6P2H5P2H2PH3.

For this string, the length of a suitable regular hexagon is 4
(i.e., depth is 3) as SumH is 37. But in Figure 13 we can see
that we cannot properly fill the hexagon. So we put the rest
of the H-runs outside the hexagon in a single row. In such
a case we have to increase the length of the hexagon to 6 as
well as decreasing its depth to 2. The new hexagon is shown
in Figure 14. It is evident from Figure 14, that we can now
fill the hexagon properly with Ŝ and thus increase the total
number of bonds.

Figure 14 Ŝ of Example 2 can fill the adjusted hexagon. This
figure illustrates that Ŝ of Example 2 fill the adjusted hexagon.

Steps of the algorithm
Now we describe the steps of our algorithm below.

Step 1 Let SumH of the input HP string Ŝ is z and the
longest H-run is Ŝ(i) having run-length k.

Compute x = � 1+
√

1+ 4×(z−1)
3

2 �. Set globalB = 0.
Step 2 Set � = � z−x2

2x+1� and construct a hexagon with
length � and depth x where each bend will
contain 2x + 1 points. If z ≥ �(2x + 1) + x2 then
add new p bends such that
(�+p)(2x+1)+x2 ≥ z ≥ (�+p+1)(2x+1)+x2.
If z > (� + p)(2x + 1) + x2 then create a
distorted hexagon having the last bend (i.e., on
the boundary of the hexagon) containing
z − (� + p)(2x + 1) + x2 points.

Step 3 For each of the H-runs and P-runs, starting from
Ŝ(i) and wrapping around the end (if applicable)
execute the following steps. For an H-run,
execute Step 3.a, Step 3.b and Step 3.c; for a
P-run execute Step 3.d.

Step a [for H-runs] If the run length of the
H-run is less than 3 then we take
lattice points on the boundary of the
hexagon. Otherwise, we try to find a
region from the remaining
unoccupied points as follows. Here
the total number of points in the
region must be equal to the
run-length of the current H-run and
at least two of these points must be
boundary points of the hexagon. We
find the region executing the
following steps (Steps 3.a.i to 3.a.iv).
We ensure that the region property

Islam and Rahman Algorithms for Molecular Biology 2013, 8:30 Page 9 of 14
http://www.almob.org/content/8/1/30

is maintained as we proceed by
including the points one after
another. In the following steps we
will use R to refer the the region we
are constructing iteratively.

Step i Take two points on the
boundary of the
hexagon. These are the
first two points of the
region R.

Step ii Identify the
unoccupied points in
the hexagon such that
each of those has two
neighbouring lattice
points in R. Find the
point having the
highest depth among
these points (breaking
ties arbitrarily) and
add this point to R.
Thus we increase the
size R (by one).

Step iii If no such point is
found then go to Step
3.b.

Step iv If the size of R is still
less than the run
length of the current
H-run, go to Step 3.a.ii.

Step b [for H-runs]Fill up the lattice points
of the identified region (R) with the
H-run.

Step c [for H-runs]Put the rest of the
H-runs (if any) outside the hexagon
in a single row.

Step d [for P-runs]Put the P-run outside
the hexagon in two rows. The first P
of the run will be a neighbour of the
previous H-run’s last H, while the
last P of the run will be a neighbour
of the next H-run’s first H.

Step 4 Count the total number of bonds, B.
Step 5 If globalB > B, return globalB.
Step 6 Otherwise set globalB = B and x = x − 1.
Step 7 If x = 1, return B; otherwise go to Step 2.

A brief discussion on Step 3.a.ii is in order. In Step 3.a.ii,
our algorithm always chooses the points having the higher
depths, with ties broken arbitralily. In some cases, some
lattice points may remain unoccupied. Example 2 elabo-
rates such cases. If some lattice points remain unoccupied

we continue the algorithm. Some H-runs or part thereof
may lie outside the hexagon (Step 3.c of the algorithm).
We count the total number of bonds and compare it with
previous/latter hexagon (increased or decreased depth) as
applicable. So, if the algorithm fails to insert all the H-runs
within a hexagon it does not mean it fails in total, as we
put the rest of the H-runs or parts thereof (as appropriate)
outside the hexagon. The algorithm is formally presented
in Algorithm 1.

Algorithm 1 Finding the Folding
1: z ← SumH of Ŝ

2: x ← � 1+
√

1+ 4×(z−1)
3

2 �
3: globalB ← 0
4: repeat
5: � ← � z−x2

2x+1�
6: Find p such that (� + p)(2x + 1) + x2 ≥ z ≥ (� +

p + 1)(2x + 1) + x2

� See Step 2 of Section ‘Steps of the algorithm’
7: Create a hexagon H with length � + p and depth x
8: if z > (� + p)(2x + 1) + x2 then
9: q ← z − (� + p)(2x + 1) + x2

� Determine the size of the bend having fewer
than 2x + 1 points

10: Add a bend with q points on H
� Creates distorted hexagon

11: end if
12: for each of the H-runs and P-runs, starting from

Ŝ(i) and wrapping around the end (if applicable)
do

13: for H-runs follow Steps 3.a, 3.b and 3.c of
Section ‘Steps of the algorithm’

14: for P-runs follow Step 3.d of Section ‘Steps of the
algorithm’

15: end for
16: B ← the total number of bonds in H
17: if globalB < B then
18: globalB ← B
19: x ← x − 1
20: end if
21: until globalB ≥ B or x = 1
22: return globalB

In Figure 15 a folding produced by Algorithm 1 for
the HP string Ŝ1 = H3P3H3P4H3P6H3P3H20P4H3P3H4

P2H2P2H5PH3PH3P2H6 is shown for a hexagon with
depth 3. The folding is not optimal for a hexagon with
depth 3 as is evident from Figure 16, which shows the
optimal folding. Now Algorithm 1 will count the total
number of bonds and continue to the next iteration by

Islam and Rahman Algorithms for Molecular Biology 2013, 8:30 Page 10 of 14
http://www.almob.org/content/8/1/30

Figure 15 Folding produced by Algorithm 1 with a hexagon
havig depth 3 for Ŝ1. This figure illustrates the folding produced by
by Algorithm 1 of Ŝ1 of Section ‘Steps of the algorithm’ for hexagon
having depth 3.

reducing the depth by 1. The new folding produced in
the next iteration is shown in Figure 17. Since the num-
ber of bonds in this folding is less than that of Figure 15,
Algorithm 1 will choose the folding of Figure 15. So, as
expected, Algorithm 1 may not produce the optimal fold-
ing for a hexagon with a given depth but it compares the
folding produced by different hexagon having different
depths and choose the best folding among there. As will
be proved later, the folding produced by Algorithm 1 is
expected to be quite near to optimal for long HP string.
Now we present and prove the following theorem which
basically proves the correctness of our approach.

Theorem 1. Given a region consisting of lattice points, a
starting and an ending points such that those are boundary
points of the hexagon, there always exists a path that starts
at the starting point, ends at the ending point visiting each
point in the region exactly once.

Figure 16 Optimal folding for hexagon with depth 3 for Ŝ1. This figure
illustrates the optimal filling of Ŝ1 of Section ‘Steps of the algorithm’ for
hexagon having depth 3.

Proof. We can traverse the points row wise from left to
right within the region starting from, say, Row i and then
right to left in Row i + 1 and so on. If the number of
rows are even, then, in this manner we can traverse all the
points (see Figure 18). If it is odd then we traverse in a
similar way except for the last two rows, where we simulta-
neously traverse those in a zigzag fashion (see Figure 19).
So filling up a region appropriately can be done in linear
time with respect to the run-length of the corresponding
H-run.

Our algorithm runs in polynomial time as discussed
below. Firstly, the algorithm iterates over at most x times.
Now we have x ≤ √

z, because, z = 3×x×(x+1) which is
proved in Lemma 4 in the following section. In each iter-
ation we have to find a region for the current H-run. If
a H-run has run-length �, then Step 3.a in the algorithm
needs O(�2) time as Step 3.a.ii needs at most O(�) time. So
total time needed to perform this operation in each iter-
ation, is at most O(z2). As each of the other steps need
constant time, the complete runtime of the algorithm is
O(z2 × √

z).

Expected approximation ratio
In this section, we are going to deduce the expected
approximation ratio of our algorithm. As the total number
of H-runs and run-lengths thereof may vary, in this anal-
ysis, we will find the expected number of H-runs and the
expected run-length of each of those. These two values
will depend only on SumH. Consider a regular hexagon
with depth x. Assume that the total number of points in
the hexagon is z. Then we have the following lemma.

Lemma 4. Suppose we have a regular hexagon with
depth x and z points. The total number of bonds, B, is 6x2

when all the points are filled with H’s of a single H-run.

Proof. A regular hexagon with depth 1 have 1 + 6 = 7
points. We can increase its depth from x−1 to x by adding
6x new points each having depth 0. Since we have z points
in the hexagon, so we must have:

z = 1 + 6 × 1 + 6 × 2 + 6 × 3 + . . . + 6 × x
⇒ z = 1 + 6 × (1 + 2 + 3 + . . . + x)

⇒ z = 1 + 6 × (x + 1)x/2
⇒ z = 1 + 3 × x(x + 1)

Now we will count the total number of possible edges,
E. Note that each of the points except those in the perime-
ter can contribute to six edges. Among the points on the
perimeter, the six corner points can only contribute to
three edges whereas the others can contribute to four
edges. Since each edge is formed by two points, to prevent

Islam and Rahman Algorithms for Molecular Biology 2013, 8:30 Page 11 of 14
http://www.almob.org/content/8/1/30

Figure 17 Folding produced by Algorithm 1 with a hexgaon having depth 2 for Ŝ1. This figure illustrates the folding produced by by
Algorithm 1 of Ŝ of Section ‘Steps of the algorithm’ for hexagon having depth 2.

double counting, we have to divide the total count by two.
So we have the following:

2 × E = 6 × (3 × x × (x + 1) + 1) − 6 × 3 − 6 × 2
× (x − 1)

⇒ 2 × E = 2 × 3 × (3 × x × (x + 1) + 1) − 9 + 6 − 6x
⇒ E = 3 × (3 × x × (x + 1) + 1) − 3 − 6x.

Now we focus on calculating the total number of bonds B.
Recall that according to our approach, only H’s are placed
inside the hexagon. Since an H can have at most 2 H’s adja-
cent to it in an HP string, once placed inside the hexagon
an H can only have at most 2 edges that would not be
counted as bonds. So to compute B we simply need to
deduct the total number of points from E. So we have:

B = E − z + 1
⇒ B = 3 × (3 × x(x + 1) + 1) − 3 − 6x − (3 × x(x + 1)

+ 1) + 1
⇒ B = 2 × (3 × x(x + 1) + 1) − 3 − 6x + 1
⇒ B = 6 × x(x + 1) + 2 − 3 − 6x + 1
⇒ B = 6x2

This completes the proof.

Figure 18 For even number of rows. This figure illustrates how to
traverse all the points in a region with even number of rows.

Now the following lemma considers non-regular hexa-
gons as well.

Lemma 5. Consider a hexagon (either regular or non
regular) having n2 points. Then, the total number of bonds
B is less than or equal 2 × n(n − 1).

Proof. According to lemma 4 for a regular hexagon with
1 + 3 × x × (x + 1) points, the total number of bonds is
6x2. Or replacing n = x + 1 we get, for a regular hexagon
with 1 + 3 × n × (n − 1) points, the total number of bonds
is 6 × (n − 1)2. So, clearly we have:

B ≤ n2 × (6 × (n − 1)2)/(3 × n(n − 1) + 1)

⇒ B ≤ n2 × (6 × (n − 1)2)/(3 × n(n − 1))

⇒ B ≤ 2 × n × (n − 1)

Hence the result follows for regular hexagons. Clearly, by
Lemma 3 the result applies for non-regular hexagons as
well.

We will now deduce the approximation ratio based on
an expected value of the total number of bonds. We
assume that all H-runs have equal length. This assump-
tion is valid in the context of our analysis and does not

Figure 19 For odd number of rows. This figure illustrates how to
traverse all the points in a region with odd number of rows.

Islam and Rahman Algorithms for Molecular Biology 2013, 8:30 Page 12 of 14
http://www.almob.org/content/8/1/30

lose generality as follows. In what follows, we will be work-
ing with the expected number of H-runs and the expected
length (say kEx) of an H-run. Hence in our analysis, each
H-run will be assumed to have length kEx. We will now
compute the expected values of the total number of edges
(bonds), EEx (BEx) under this assumption.

From Figure 1, we can see that, the length of the hexagon
is � and depth is x. So each bend contains 2x + 1 points
and there are a total of � bends. There are x2 remaining
lattice points outside the � bends. So if the total number
of points are z (see Figure 1) then,

z = (2x + 1) × � + x2 (1)

So for a given z and x we can get,

� = (z − x2)

2x + 1
(2)

To calculate the total number of edges, at first we have
to identify how many edges can be formed by individual
points. The arguments of Lemma 4 for calculating E and
B also apply here. Note that, on the perimeter, aside from
the corner points, total number of points are 2 × (�− 2)+
4 × (x − 1). So EEx can be computed as follows:

2EEx = 6 × ((2x + 1) × � + x2) − 6 × 3 − 2
× (2 × (� − 2) + 4 × (x − 1))

⇒ 2EEx = 2 × 3 × ((2x + 1) × � + x2) − 9
− (2� − 4 + 4x − 4)

⇒ EEx = 3 × ((2x + 1) × � + x2) − 1 − 2 × (� + 2x)

And BEx can be computed as follows:

BEx = EEx − z
BEx = 3 × ((2x + 1) × � + x2) − 1 − 2 × (� + 2x)

− ((2x + 1) × � + x2)

⇒ BEx = 2 × ((2x + 1) × � + x2) − 2 × (� + 2x) − 1

Hence, we get the following equation.

BEx = 2z − 2 × (� + 2x) − 1 (3)

Note that according to our approach, the value of x is
dependent on SumH. For this analysis, we now derive
the expected run-length of H for a given HP string
where SumH is n2. This problem can be mapped into the
problem of Integer Partitioning as defined below.

Problem 2. Given an integer Y, the problem of Integer
Partitioning aims to provide all possible ways of writing Y,
as a sum of positive integers.

Note that the ways that differ only in the order of
their summands are considered to be the same partition.

A summand in a partition is called a part. Now, if we
consider SumH as the input of Problem 2 (i.e., Y) then
each run-length can be viewed as parts of the partition.
So at first, we have to find the expected number of parti-
tions, i.e., the expected number of runs of H. Kessler and
Livingston [16] showed that to get an integer partition of
an integer Y, expected number of required parts is:

√
3Y
2π

× (log Y + 2γ − 2 log
√

π

6
),

where γ is the famous Euler’s constant.
For our problem Y = SumH = n2. If we denote E[P] as

the expected number of H-runs then,

E[P] =
√

6
π

× n × (log n + γ − log
√

π

6
).

Now, as (log n+γ − log
√

π
6) ≤ (

√
2π
3 × log n) for n ≥ 5,

we can say that

E[P] ≤ 2n × log n.

Since SumH is n2, expected value of each part, i.e.,
expected length of each run is greater than or equal to

n2

2n×log n = n
2 log n . Since all the H-runs are assumed to have

the same length so each of them will construct a bend of
2x+1 points in the lattice. So we must have 2x+1 ≥ n

2 log n .
Hence we get the following equations:

x ≥ n
4 log n

− 1
2

(4)

� ≤
n2 − (n2

16(log n)2 − n
4 log n + 1

4)

n
2 log n

(5)

Now, let us consider a hexagon H1 with length �max =
n2 − (

n2

16(log n)2 − n
4 log n

+ 1
4
)

n
2 log n

and depth xmin =

n
4 log n

− 1
2

. Now, in H1 we also must have n2 points. So,

from Lemma 1 and Equations 4 and 5, clearly the num-
ber of bonds in H1 is less than or equal to than that in the
hexagon having length � and depth x. So from Equation 3
we have the following:

BEx ≥ 2n2 − 2 × (2n log n − n
8 log n

− log n
2n

+ 1
2

+ n
2 log n

− 1) − 1

⇒ BEx ≥ 2n2 − 2 × (2n log n + 3n
8 log n

− log n
2n

)

Islam and Rahman Algorithms for Molecular Biology 2013, 8:30 Page 13 of 14
http://www.almob.org/content/8/1/30

Now from Lemma 5, recall the upper bound for the total
number of bonds, which is as follows: B ≤ 2 × n(n − 1).
Hence we get the following expected approximation
ratio:

BEx
B

≥
2n2 − 2 × (2n log n + 3n

8 log n
− log n

2n
)

2n × (n − 1)

⇒ BEx
B

≥
n − 2 log n − 3

8 log n
+ log n

2n2

n − 1

As the term
log n
2n2 is very small we can ignore it from the

final result. Hence we have:

BEx
B

≥
n − 2 log n − 3

8 log n
n − 1

As,
3

8 log n
≤ 1 for n ≥ 2, so,

BEx
B

≥ n − 2 log n − 1
n − 1

or

BEx
B

≥ 1 − 2 log n
n − 1

for n ≥ 6.

This is the final expected approximation ratio.
Note that the ratio increases significantly with the

increase of the value of n as presented in Table 1. So we can
see that for large values of n, expected approximation ratio
tends to 1. So for large n it is expected that our algorithm
will outperform the approximation algorithm presented in
[2]. Recall that the approximation ratio of the algorithm of
[2] is 6

11 , i.e., around 0.55.

Conclusion
In this paper, we have given a novel approximation algo-
rithm to solve the protein folding problem in HP model
introduced by Dill [1]. Our algorithm is polynomial and

the expected approximation ratio is 1 − 2 log n
n − 1

for n ≥

Table 1 Expected approximation ratio for different values
of n
log n n z = n2 Ratio

3 8 64 0.142

4 16 256 0.466

5 32 1024 0.677

6 64 4096 0.809

This table illustrates the expected approximation ratio for different values of n.

6 where n2 is total number of H in a given HP string.
For larger HP strings it is expected that our algorithm
will give better result than the algorithm provided in [2],
which currently gives the best approximation ratio for
2D-triangular lattice. Additionally, our expected approxi-
mation ratio tends to reach one for large values of n. Hence
our algorithm is expected to perform very well for larger
HP strings.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ASMSI proposed the algorithms. MSR verified the correctness of the algorithm
and analysis. Both the authors read and approved the manuscript.

Acknowledgements
The authors would like to thank Md. Mahbubul Hasan for fruitful discussions.
The authors gratefully acknowledge the fruitful comments and suggestions of
the anonymous reviewers which aided in improving the presentation of the
paper. This research work was conducted as part of the M.Sc. Engg. thesis
work of Islam under the supervision of Rahman.

Received: 6 March 2013 Accepted: 20 November 2013
Published: 26 November 2013

References
1. Dill KA: Theory for the folding and stability of globular-proteins.

Biochemistry 1985, 24(6):1501–1509.
2. Agarwala R, Batzoglou S, Dancík V, Decatur SE, Hannenhalli S, Farach M,

Muthukrishnan S, Skiena S: Local rules for protein folding on a
triangular lattice and generalized hydrophobicity in the HP model.
J Comput Biol 1997, 4(3):275–296.

3. Hart WE, Istrail S: Fast protein folding in the hydrophobic-hydrophillic
model within three-eights of optimal. J Comput Biol 1996, 3:53–96.

4. Newman A: A new algorithm for protein folding in the HP model.
In SODA ACM/SIAM 2002:876–884.

5. Newman A, Ruhl M: Combinatorial problems on strings with
applications to protein folding. In LATIN , Volume 2976 of Lecture Notes
in Computer Science. Springer; 2004:369–378.

6. Hart WE, Istrail S: Invariant patterns in crystal lattices: implications for
protein folding algorithms (Extended abstract). In CPM , Volume 1075
of Lecture Notes in Computer Science. Springer; 1996:288–303.

7. Hart WE, Istrail S: Lattice and off-lattice side chain models of protein
folding: linear time structure prediction better than 86% of optimal.
J Comput Biol 1997, 4(3):241–259.

8. Heun V: Approximate Protein Folding in the HP Side Chain Model on
Extended Cubic Lattices. In Lecture Notes in Computer Science 1643:
Proceedings of the 7th Annual European Symposium on Algorithms.
Springer-Verlag; 1998:212–223.

9. Jiang M, Zhu B: Protein folding on the hexagonal lattice in the Hp
model. J. Bioinformatics Computat Biol 2005, 3:19–34.

10. Istrail S, Lam F: Combinatorial algorithms for protein folding in lattice
models: a survey of mathematical results. Commun Inf Syst 2009,
9(4):303–346.

11. Unger R, Moult J: Genetic algorithms for protein folding simulations.
J Mol Biol 1993, 231:75–81.

12. Hoque T, Chetty M, Dooley LS: A hybrid genetic algorithm for 2D FCC
hydrophobic-hydrophilic lattice model to predict protein folding.
In Australian Conference on Artificial Intelligence, Volume 4304 of Lecture
Notes in Computer Science. Springer; 2006:867–876.

13. Hoque T, Chetty M, Sattar A: Protein folding prediction in 3D FCC HP
lattice model using genetic algorithm. In IEEE Congress on Evolutionary
Computation. IEEE; 2007:4138–4145.

14. Lesh N, Mitzenmacher M, Whitesides S: A Complete and Effective Move
Set for Simplified Protein Folding. In 7th Annual International

Islam and Rahman Algorithms for Molecular Biology 2013, 8:30 Page 14 of 14
http://www.almob.org/content/8/1/30

Conference on Research in Computational Molecular Biology (RECOMB) 2003.
ACM Press; 2003:188–195.

15. Böckenhauer HJ, Ullah AZMD, Kapsokalivas L, Steinhöfel K: A local move
set for protein folding in triangular lattice models. In WABI, Volume
5251 of Lecture Notes in Computer Science. Springer; 2008:369–381.

16. Kessler I, Livingston M: The expected number of parts in a partition
of n. Monatshefte für Mathematik 1976, 81(3):203–212.

doi:10.1186/1748-7188-8-30
Cite this article as: Islam and Rahman: On the protein folding problem in
2D-triangular lattices. Algorithms for Molecular Biology 2013 8:30.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Keywords

	Background
	Preliminaries
	Our approach
	Steps of the algorithm

	Expected approximation ratio
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 793.440]
>> setpagedevice

