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ABSTRACT

Recent studies have demonstrated that cell cycle plays a central role in development and carcinogenesis.
Thus, the use of big databases and genome-wide high-throughput data to unravel the genetic and
epigenetic mechanisms underlying cell cycle progression in stem cells and cancer cells is a matter of
considerable interest.

Real genetic-and-epigenetic cell cycle networks (GECNs) of embryonic stem cells (ESCs) and HelLa cancer
cells were constructed by applying system modeling, system identification, and big database mining to
genome-wide next-generation sequencing data. Real GECNs were then reduced to core GECNs of Hela
cells and ESCs by applying principal genome-wide network projection. In this study, we investigated
potential carcinogenic and stemness mechanisms for systems cancer drug design by identifying common
core and specific GECNs between Hela cells and ESCs. Integrating drug database information with the
specific GECNs of Hela cells could lead to identification of multiple drugs for cervical cancer treatment
with minimal side-effects on the genes in the common core. We found that dysregulation of miR-29C,
miR-34A, miR-98, and miR-215; and methylation of ANKRD1, ARID5B, CDCA2, PIF1, STAMBPL1, TROAP,
ZNF165, and HIST1H2AJ in Hela cells could result in cell proliferation and anti-apoptosis through NF«B,
TGF-B8, and PI3K pathways. We also identified 3 drugs, methotrexate, quercetin, and mimosine, which
repressed the activated cell cycle genes, ARID5B, STK17B, and CCL2, in Hela cells with minimal side-effects.

ARTICLE HISTORY
Received 6 April 2016
Revised 26 May 2016
Accepted 2 June 2016

KEYWORDS

big database mining; cell
cycle projection method; cell
cycle; carcinogenic
mechanism; genetic-and-
epigenetic cell cycle network;
NGS data; stemness
mechanism; systems
pharmacology

Introduction

In general, the properties of stem cells, called “stemness,” include
self-renewal and differentiation;"* whereas those of cancer non-
stem cells, referred to as “cancerness,” comprise high mutation
rates and cell cycle dysregulation that promotes cell proliferation.
In 2011, Okita and Yamanaka® proposed that the cell cycle
played an important role in generating induced pluripotent stem
cells. Stem cells regulate their cell cycle to undergo periods of
rapid division or quiescence, maintain self-renewal, and avoid
senescence.” The cell cycle appears to influence stemness, cancer-
ness, or both. Furthermore, recent evidence suggests that micro-
RNAs (miRNAs) may control cell proliferation by influencing
the level of a manifold of cell cycle regulators. Additionally, miR-
NAs are critical for human carcinogenesis and have been used as
drug targets to control critical genes in cancer.” It is now appar-
ent that miRNAs play an important role in human carcinogene-
sis and aging.®® However, it is difficult to analyze genetic and
epigenetic regulation simultaneously by applying traditional
experimental analysis. Therefore, the switch between stemness
and cancerness strategies in genetic and epigenetic regulation
during cell cycle progression remains an unresolved issue.

Empirical evidence shows that telomeres, the segments of
DNA at the ends of chromosomes, shorten slightly after each
new cell division until they achieve a critical length, which trig-
gers apoptosis; this phenomenon is called the Hayflick limit.
Embryonic stem cells (ESCs) and cervical carcinoma HeLa cells
present a highly active telomerase during cell division, which
allows them to bypass the Hayflick limit and become immor-
tal.>'® In normal cells, anti-oncogenes or tumor suppressor
genes regulate cell proliferation and cell cycle progression. It
has been observed that cell cycle progression becomes aberrant
or deregulated in nearly all transformed and neoplastic cells."'
Furthermore, recent studies have shown that miRNAs promote
cell cycle progression in ESCs, thereby enabling their rapid pro-
liferation.'” Testis-specific Y-encoded protein enhances cell
proliferation and tumorigenesis by promoting cell cycle pro-
gression in HeLa cells."’ In addition, it has been suggested that
cell cycle plays a major role in driving cervical cancer (ie.,
HelLa cells)."* Both ESCs and HelLa cells are capable of promot-
ing cell cycle progression through genetic and epigenetic regu-
lation. This opens the possibility that a similar association
could exist between ESCs and HeLa cells during cell cycle
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progression, which could be a crucial event to control cell prop-
erties, i.e., stemness or cancerness.

To date, the mechanisms underlying a number of compli-
cated systems, such as ecosystems, biological, economic, and
social systems, remain poorly understood owing to a fragmented
distribution, and inconsistency in data reporting and literature.
Big data has been defined as a set of techniques and technologies
aimed at retrieving hidden information from large datasets that
are diverse, complex, and of massive scale.'” An important issue
that still needs to be addressed is the mining and integration of
information from big data and expanding databases (big data-
base) to construct an explanatory pattern or model (big mecha-
nism) with which to uncover the overall mechanisms of these
complicated systems.”*'*'® Next-generation sequencing (NGS)
and microarray analysis, which can be regarded as big data tech-
niques to a certain extent, still contain considerable amounts of
information and hidden mechanisms that have never been
extracted. Owing to the accuracy of NGS and the low cost of
microarrays, they are commonly used for gene expression meas-
urements. However, their simultaneous use in cellular network
analysis has been rarely advocated. Moreover, the predictive
value of cellular transcription regulation networks can be used
to effectively find useful information and the corresponding
mechanisms from gene expression data.'”'**! Recent evidence
indicates that the pathology of most cancers is a consequence of
small abnormalities in many genes, whose added effect is to per-
turb healthy genetic-and-epigenetic networks.”> Accordingly,
and in terms of treatment, cancer should be considered a sys-
temic disease. Network analysis can provide scientists with a sys-
tematic approach to understand such complex and systemic
diseases, which could not otherwise be understood in terms of a
single target or pathway model.”®

At present, correlation between gene expression coeffi-
cients remains the most widely used method to identify
gene networks.>**® However, correlation networks have
undirected edges and no causality between genes. In this
study, we constructed a dynamic system model that could
characterize causal molecular mechanisms, such as the
genetic regulation exerted by transcription factors (TF) and
miRNAs on target genes. With this model, we applied a
system identification method to identify real genetic-and-
epigenetic cell cycle networks (GECNs) of ESCs and HelLa
cells. This approach allowed us to further investigate carci-
nogenesis in cervical cancer and the stemness mechanism
in stem cells using genome-wide microarray and NGS data.
Furthermore, a systems cancer drug design method was also
applied to the carcinogenic mechanism to select multiple
drugs with minimal side-effects.

In order to investigate carcinogenesis and stemness mecha-
nisms from a cell cycle perspective, the corresponding genes
should first be identified. Hierarchical clustering of gene
expression is the most popular method for identifying genes
expressed during each cell cycle phase.””*® Since these genes
could be expressed in multiple cell cycle phases, in this study,
we apply the cell cycle projection method to the genome-wide
expression data to quantify the phase-specific ability of each
gene at each cell cycle phase. By applying the cell cycle projec-
tion method to 4-phase high-throughput data, we obtained the
cell cycle genes of the GECNs in ESCs and HeLa cells and used

them toward big mechanism analysis of carcinogenic and stem-
ness mechanisms.

Because the further analysis of the genome-wide network is
complex to get more insight into carcinogenic and stemness
mechanisms, we should extract the core networks from the real
GECNs in ESCs and HeLa cells, respectively. Up to now, the
core network was still identified by the connecting numbers of
its nodes.”””! As we could identify the connection weights of
the real GECN using genome-wide expression data, we applied
the principle genome-wide network projection (PGNP) to
extract the core network from the viewpoint of significant
genome-wide network structure. To investigate carcinogenesis
and stemness mechanisms, the cancer-specific GECN, common
core GECN, and stem-specific GECN were obtained through
complexity reduction by applying PGNP to real GECNs of
ESCs and HeLa cells. We could then identify cervical carcino-
genic mechanisms by applying big mechanism analysis to help
design potential multiple drugs for cervical cancer treatment.
The flowchart to identify real GECNs of ESCs and HeLa cells
and their core GECNs is shown in Fig. 1.

Systems pharmacology employs network analysis at multiple
biological levels to understand both the therapeutic benefits and
side-effects of drugs, and to design potential multiple drugs for
cancer treatment.”>>* Based on the concept of systems pharma-
cology, we further designed multiple drugs for the decomposi-
tion of cancer-specific GECNs by integrating cervical
carcinogenic mechanisms and drug databases.

In summary, we investigated the carcinogenic mechanisms
of cervical cancer cells and the stemness of ES cells by applying
big mechanism analysis to cell cycle progression. Based on
these carcinogenic mechanisms, we designed multiple drugs for
the treatment of cervical cancer. The proposed systematic
design method may lead to drugs with high target specificity
and minimal side-effects.

Material and methods
Data retrieval and pre-processing of NGS data in ESCs

Singh et al.*® performed RNA-seq with NGS of ESCs in early G1
(DN), late G1 (KO2), S (AzLo), and G2/M (AzHi) phases. NGS
data were obtained from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/), accession num-
ber GSE53481, in Sequence Read Archive (SRA) format. Reads
were aligned to the human reference genome hgl9 assembly.
Alignment of RNA-seq reads against known genomic annota-
tions downloaded from the University of California Santa Cruz
web site (http://www.genome.ucsc.edu) was performed using
Bowtie version 0.12.7 ** and TopHat version 1.5.0 software.>
We mapped these to gene and miRNA expression data employ-
ing Cufflinks 0.0.7 gene annotation *° on the Galaxy platform.
739 We used cubic spline interpolation to obtain the expres-
sion of genes and miRNAs during G1, S, G2, and M phases.

Data retrieval and pre-processing of microarray data from
Hela cells

Sadasivam et al.* reported the microarray gene and miRNA
expression profiles of cells released from phase synchronization
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Figure 1. Flowchart depicting the strategy to identify core GECN in HelLa and ES cells. In this study, we mined omics information from big databases, such as transcription
and miRNA regulation interactions, to construct real GECNs using genome-wide high-throughput data, a dynamic model, and AIC. For drug screening, information was
integrated from cervical carcinogenic mechanisms in cancer-specific GECN and drug databases for cervical cancer treatment.

at 0 (G1), 2 (S), 4 (S), 6 (G2), 8 (M), and 12 h (G1). In this
study, 3 replicates were obtained from 3 independent experi-
ments. The microarray data were obtained from the GEO data-
base with accession number GSE26922. Gene and miRNA
expression of the 4 cell cycle phases from 3 replications were
obtained also by cubic spline interpolation. The mean expres-
sion of the replicates was then used to identify cell cycle genes
and the real GECN of HeLa cells based on the cell cycle projec-
tion and system identification methods. The strategy to identify
common core and specific GECNs between HeLa and ES cells
based on big data mining, cell cycle projection, and system
identification is summarized in Figure 1.

Data retrieval and pre-processing of methylation profiles
in both Hela and ES cells

To validate the proposed epigenetic regulations, we looked at
the genome-wide methylation profile of 307 human cervical
cancer cell samples from The Cancer Genome Atlas (TCGA;
http://cancergenome.nih.gov/) and 5 human embryonic stem
cell lines (GSE24676) from the GEO database.”’ By applying
one-way ANOVA, we calculated the p-value for each gene (or
miRNA) and confirmed the significance of expression change
between human cervical cancer and ES cells. We used Matlab’s
text file and string manipulation tools in text mining to unify

the gene names based on the gene symbols in the GEO
database.

Cell cycle projection method to determine the cell cycle
phase of each gene

We first applied the cell cycle projection method to the
genome-wide raw data of HeLa and ES cells to determine the
cell cycle phase of each gene (or miRNA). Based on this, we
chose the phase-specific cell cycle genes. Finally, we applied sys-
tem identification and system order detection methods to the
dynamic model of GECN to identify real GECNs.

In order to determine cell cycle phase of the i-th gene (or
miRNA), the projection model of cell cycle phase was charac-
terized by the following expression:

wk  2mt
7_T)+bi, fort=0,...,3 (1)

4

xi(t) = Z a; sin <

k=1

where xi(0), xi(1), xi(2), and xi(3) denote the expression of the
i-th gene (or miRNA) during G1, S, G2, and M phases, respec-
tively; the cell cycle period T = 4 indicates 4 cell cycle phases;
k=1, 2,3, 4 correspond to G1, S, G2, and M phases, respec-
tively; ai,k represents the phase-specific ability of gene i during
the k-th phase; bi denotes the basal level of the i-th gene (or
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miRNA); and sin(7/2-27t/T), sin(w-27t/T), sin(37/2-27t/T),
and sin(27-27t/T) represent the basic functions of G1, S, G2,
and M phases, respectively. Equation (1) can be scaled up as
follows:
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x;(1
X = i(1)
xi(2)
| xi(3)
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where Xi denotes the vector of the i-th gene (or miRNA)
expression during G1, S, G2, and M phases. Accordingly, it was
possible to obtain 4 phase-specific abilities for each gene (or
miRNA). In order to determine the phase of each gene (or
miRNA), we designed the following criterion:

Table 1. Top 5 phase-specific genes in HelLa and ES cells.A complete list of identi-
fied cell cycle genes in Hela cells (303) and ESCs (299) can be found in Tables S1
and S2, respectively.

Hela cells ES cells

Cell cycle gene Cell cycle phase Cell cycle gene Cell cycle phase

CCNE2 G1-phase RNU86 G1-phase
CCNE1 G1-phase HSP90AB1 G1-phase
HIST2H4A G1-phase TMSB4X G1-phase
MAB21L3 G1-phase (D24 G1-phase
HIST1H2BG G1-phase NCL G1-phase
HISTTH2BM S phase HMGA1 S phase
HISTTH1B S phase RNA45S5 S phase
HIST1H4B S phase RPS6 S phase
HIST2H2AB S phase ENO1 S phase
HIST1H2AB S phase GAPDH S phase
TROAP G2 phase ACTB G2 phase
PSRC1 G2 phase KPNA2 G2 phase
CDCA8 G2 phase UBE2C G2 phase
FAM83D G2 phase ACTG1 G2 phase
UBE2C G2 phase TOP2A G2 phase
FNDC7 M phase HSPA8 M phase
RNU4-85P M phase VTRNA1-3 M phase
ZNF382 M phase PCBP2 M phase
RNPS1 M phase ARL6IP1 M phase
LINC00652 M phase SERBP1 M phase

where ai,k™ denotes the maximal phase-specific ability of the i-
th gene (or miRNA). Accordingly, the phase criteria in (3)
allow us to determine the cell cycle phase of each gene (or
miRNA) in the human genome. Moreover, for each gene (or
miRNA) we could obtain 12 (4 x 3) phase-specific abilities
from 3 biological replicates in HeLa cells. The maximal phase-
specific ability of each gene (or miRNA) was used to determine
the cell cycle phase. The top 5 most significant phase-specific
genes in HeLa and ES cells are shown in Table 1. Furthermore,
we defined an upper threshold (> a,,) of the phase-specific
ability to choose the significant cell cycle genes. Tables SI and
S2 show 303 cell cycle genes (a,, = 0.2) in HeLa cells and 299

gene (or miRNA)i cell cycle genes (a,, = 5.2) in ESCs. These genes were validated
by taking into account their expression Z scores (Fig. 2A and B
€ phase k", for k" =argmaxa;; andk=1,---,4 (3) Y g P (Fig >
k respectively).
A HeLa Cells B ES cells Z score
. -0
G1(46)
G1(105) <
S(76)
g
g
=
= S(108) <
262096 <
=
=
~
(rzﬂ
G2(7%
MES) < A
May (2%
Gl s G2 M B Gl s G2 M
Cell cycle phase Cell cycle phase

Figure 2. Identification of HeLa and ESC cell cycle genes after applying the cell cycle projection method. HelLa and ES cells cell cycle genes were selected according to the
maximal phase-specific ability value, i.e., aik™ in (3). The right bar represents the Z score, from maximum (white) to minimum value (black). The phase-shift of cell cycle

genes can be observed as white blocks along the diagonal.



Construction of candidate GECN by the big database
mining method

In order to construct the candidate GECN of human cells,
including transcription and miRNA regulation during cell cycle
progression, we mined the integrated information from the big
database. This encompassed TF-gene association data from the
Integrated Transcription Factor Platform (ITFP),** the Human
Transcriptional Regulation Interactions database (HTRIdb),*
the TRANScription FACtor (TRANSFAC) database,** and
miRNA-target association data from TargetScan.*> TF-gene
association and miRNA-target association data provided
152,828 and 2,477 candidate associations, respectively, includ-
ing experimental and computational results. To evaluate each
association and prune false positives we applied system identifi-
cation and system order detection methods to the dynamic
model of candidate GECN (see below).

Construction of the dynamic model in candidate GECN by
big database mining

To identify regulation mechanisms in the candidate GECN, we
constructed a dynamic model of the GECN in human cells.
The latter characterized the transcription and miRNA regula-
tion of the i-th cell cycle gene by the stochastic discrete equa-
tion as follows:

M;l]-' N[_MIR
xlt+ =%+ D amymlt] =Y binzalt] — Aixilt] + ki + vilt],
m=1 n=1

fori=1,....M (4)

where x;[t], y[t], and z,[t] denote the i-th gene, the m-th TF,
and the n-th miRNA expressions at time t, respectively; a;,, and
-b;, indicate the regulatory abilities of the m-th TF and the n-th
miRNA to the i-th target gene (-b,, < 0), respectively; MTF I
and NMIR I are the numbers of candidate TF and miRNA asso-
ciations with cell cycle gene i obtained from the constructed
candidate GECN, respectively; M represents the number of cell
cycle genes identified by the cell cycle projection method; -4;
denotes the degradation effect of the present state on the next
state (-4; < 0); ; is the basal level of target gene i («; > 0); and
vi[t] represents the stochastic noise due to model uncertainty
and fluctuation.

The biological meaning of (4) is that the mRNA expression
level of the cell cycle gene i at time t+1 is affected by its own
mRNA expression level at time ¢, the transcription level regula-
tion from the associated TFs (Z%Zlaimym [£]), the repression

MIR
N, i

exerted by associated miRNAs (— >, | b;nz,[t]), its own deg-
radation effect (-4;x;[t]) at time ¢, the basal level «; from other
sources, such as DNA methylation and histone modification
among others. We assumed that the basal level «; change of the
i-th gene between 2 cells determined the epigenetic alterations
of gene i. Considering that large-scale measurement of protein
activity has yet to be realized and 73% of the variance in protein
abundance can be explained by mRNA abundance,*® we
employed mRNA expression profiles in lieu of protein expres-
sion profiles.

CELLCYCLE (&) 2597

Identification of the real GECN by pruning false positives in
candidate GECN via the akaike information criterion (AIC)
system order detection method

After constructing the dynamic model of GECN in (4), we
applied the system identification and system order detection
methods to the model to prune the false-positive associations
in HeLa (or ES) cells using their corresponding cell cycle
expression data. To identify the regulatory parameters in (4),
i.e, a;, and b;,, we rewrote the stochastic dynamic model in (4)
as the following stochastic linear regression form:

xi[t+1]
o T
aimre
— by
= )’lm yM’:l‘b[t] Zl[t} ZNIMIR[ﬂ xi[t] 1
_biNA’WIR
1—4
L ki i
+vilt] = ¢;[t]6; + vilt],
M]F NMIR o
0 0 1 o o 00 0
o o -0
Subjectto | ... 0 0 0 1 0 0 0:i<l|ol, Vi
0 0 10 1
K 0 0 —1] 0]
(5)

where ¢;[t] denotes the regression vector of target gene i; ¢;[t]
and x;[t4+1] can be obtained from the gene (or miRNA) expres-
sion data; and 6; indicates the parameter vector of the cell cycle
gene i to be estimated. Moreover, taking the cubic spline method
to interpolate expression data can effectively prevent parameter
overfitting in the parameter estimation process. The inequality
constraint in (5) guarantees that -4; < 0, -b;, < 0 and «; > 0.
Furthermore, the stochastic linear regression equation (5)
can be scaled up along each time point as the following form:

e ] [ ]|
x,»[t.+ 1= &t O+ | wlt] (6)
I x:’[T] ] _¢i[T—l}_ _v,'[T—l]_

where T denotes the number of expression data time points
after using the cubic spline interpolation method.
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For convenience, (6) is represented by the following
equation:

Xi=®,0,+V; (7)

The constrained least square estimation problem in (5) or
(7) relating to the parameter vector of the target gene i was for-
mulated as follows:

1
ming, E ||q>,9, —Xi”z

MiTF NXMIR - -
0 00 1 o o 00 0
o0 0
Subject to | ¢ o 0 0 1 o o |6=<|o],Vi
0 0 10 1
0 0 o0 -1 0
(8)

The problem in (8) can be optimized using the constrained
least-square solver based on a reflective Newton method for
minimizing a quadratic function to identify the parameter 6;
using the MATLAB optimization toolbox.*’

When the regulatory parameters in the candidate GECN
could be identified by solving the problem in (8) one gene at a
time, we applied AIC *® as a system order detection method to
prune false-positive regulations from the candidate GECN.
AIC can simultaneously consider the estimated residual error
and model complexity, and it can estimate the system order of
the dynamic model (ie., the number of regulations MTF i+
NMIRi in this case). For a stochastic discrete equation in (4)
with MTF i+ NMIRi regulatory parameters, AIC could be writ-

ten as follows:

TF 'MIR
AIC(N[® + NMR) =log <% X=X T — X,)) + Z(M—;L,N)
©)

where X; denotes the estimated expression of the i-th target
gene, ie., X;=®;0;, and the estimated residual error
6P =X —X)T(X;—X;) /T. As the residual error &7
decreases, AIC decreases. In contrast, the number of TF and
miRNA regulations, ie., MTF i+ NMIRi, increases and AIC
increases. Therefore, AIC constitutes a trade-off between resid-
ual error and model order, and will achieve the minimum at
the true order, ie., the true regulation number. If AIC in (9)
were minimized, the real GECN *® could be obtained by delet-
ing insignificant TF and miRNA regulations (i.e., the so-called
false-positive regulations) out of the true regulations identified
by AIC. In addition, Student’s t-test was applied to calculate
the p-value of each regulation parameter under the null
hypothesis Hy: a,,, = 0 or Hy: b;,,= 0.*

By applying the regulation parameter estimation in (8) and
the false-positive regulation deletion using AIC in (9) one gene
at a time, we could identify the real GECNs of HeLa and ES
cells in each cell cycle phase (Fig. 3A and B, respectively) from
a candidate GECN using the classified high-throughput expres-
sion data in each cell cycle phase of Hela and ES cells,
respectively.

Identification of core GECN's in the real GECNs of HeLa and
ES cells for the investigation of carcinogenic and stemness
mechanisms and multiple drug design via PGNP

To investigate the carcinogenic and stemness mechanisms in
cervical cancer and ES cells, respectively, we applied PGNP to

A. Real GECN in HeLa cells
A1)

DO0O00

B. Real GECN in ESCs
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Figure 3. Real GECNs of HelLa and ES cells. The number of G1 and S phase TFs and genes, and G2 phase TFs decreased significantly in HeLa compared to that in ES cells;
whereas the number of M phase TFs and genes increased significantly. In addition, the numbers of G1, S, and G2 phase TF regulations in Hela cells also decreased com-
pared to ES cells; whereas the number of M phase TF regulations increased. These results support the immortal nature of Hela cells being due to dysregulation of genes

at the G1/G2 checkpoint and cell cycle exit.



the real GECNs (Fig. 3) to extract the core GECNs. This
included specific GECNs in HeLa and ES cells, and common
core GECN between the 2 cell types. The extracted specific
GECNs in Hela cells were regarded as a cervical cancer-specific
network and the principal regulatory network in the real GECN
of HeLa cells, which should be useful for multiple drug design
of cervical cancer. A PGNP approach based on singular value
decomposition *° was used for the extraction of principal net-
work structure and reduction of network dimension. First, the
regulation matrix R of GECNs, consisting of the regulatory
parameters in (4), i.e., a;,, and b;,,, was set as follows:

ann cc A MTF - b]] - blNMIR

(10)

amn ANMTF — le — bMNMIR
The regulation matrix R can be decomposed by singular

value decomposition method as follows *°:

R= UZVT

where the orthogonal
R(MTF+NMIR)X(MTF+NMIR)

(11)

matrices U € RMM and Ve

with  UTU= Iy
VTV:IMTF+NMIR; = [diag(dl, o dM) OMX(MTF+NMIR) }
with decreasing singular values d; > d, > -+ > d,, > -+ > dy
> 0; diag(d,,--,dy) denotes a square diagonal matrix with the
elements dy, -+, dys Oppx 4 Nry Tepresenting zeros matrix
with dimension M by M™F + N™™®; and Iy |y indicates the
M"™ + NMR by M™ 4+ NMR identity.

Moreover, the eigen expression fraction E,, was defined as
E,=d,* er\fz 142, (i.e., the normalization of singular values).
We could then select the top L singular vectors V; of V such
that Z;ZIE," > 0.85 with the minimal L. Therefore, the L
principal components contained 85% of the principal structure
of the network from the energy viewpoint. Projecting the regu-
lation matrix R to the top L principal singular vectors V; was
performed as follows:

and

S(i,l)=rv, fori=1,...,M, andl=1,...,L (12)
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where r; and v, denote the i-th row vectors of R and the [-th col-
umn vectors of the top L principal singular vectors V7,
respectively.

Finally, we calculated the dependence (or projection) of the
i-th gene relative to the top L principal singular vectors V by
the following 2-norm projection value (or PGNP projection
value):

. 1/2
P(i) = [Z [S(i, l)]zl , fori=1,....M (13)
=1

If the i-th gene has a large P(i), the gene i is more related to
the top L principal singular vectors Vi (i.e., more principal in
the GECN).

We defined an upper threshold (> d,;,) of the PGNP projec-
tion value to choose the core cell cycle genes of the core GECN.
The TFs and miRNAs that regulated core cell cycle genes, were
also considered as the core TFs and miRNAs of the core
GECN, respectively. When we defined d,;, = 0.001 and 0.1 in
HeLa and ES cells, respectively, we obtained the specific GECNs
and the common core GECN (Fig. 4). According to the specific
GECNs in HeLa and ES cells, we could unravel the carcinogenic
mechanism in cervical cells and stemness mechanism in ES
cells. The specific GECN in HeLa cells also allowed us to pro-
pose potential multiple drugs for the treatment of cervical
cancer.

Drug mining and design through the specific GECN of HeLa
cells

To design multiple drugs with minimal side-effects for the
treatment of cervical cancer based on the core GECN in
HeLa cells, we considered 2 databases, the Connectivity Map
(CMap)®" and the Drug Gene Interaction Database (DGIdb).>>
CMap contains the genome-wide microarray data of 5 cell lines
(HL60, MCF7, PC3, SKMELS5, and ssMCF7) in response to
1,327 drugs; while DGIdb comprises a drug-gene interaction
database. Multiple drug therapy induces a genome-wide
response. The strategy of multiple drug screening is that multi-
ple drugs should inhibit the highly expressed cell cycle genes in
the principal GECN of HeLa cells and activate the lowly

Specific GECN
in Hel.a cells

Common core GECN

Specific GECN

< T R

GECN in Hela cells 89 258
GECN in ESCs 94 85
Commos GECN between 2 cells & 10

| Number of cell cycle gepes Number of TFs Nummber of miRNAs Number of TF megulations

in ES L_‘I_:_lls

Number of miENA regulations
10 532 29
13 155 14
L] £ 6

Figure 4. Specific and common core GECNs of Hela cells and ESCs. Specific and common core networks were selected by PGNP with 0.001 (HeLa cells) and 0.1 (ESCs)
thresholds. For each core network, inner circles contain miRNAs; middle circles correspond to cell cycle genes; and outer circles include TFs.
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expressed cell cycle genes, but have no influence on common
core cell cycle genes in the core GECN. The binding protein
substrates of the designed multiple drugs could also be obtained
using the DGIdb. This strategy leads to improved drug safety
and efficacy in the treatment of cervical cancer.

Results and discussion
Results of cell cycle projection

By applying the cell cycle projection method in (3) to genome-
wide high-throughput expression data of HeLa and ES cells
(see Material and Methods), we identified 303 cell cycle genes
(46 in G1; 76 in S; 96 in G2; and 85 in M phase) in HeLa cells
(Fig. 2A and Table S1) and 299 (105 in G1; 108 in S; 73 in G2;
and 13 in M phase) in ESCs (Fig. 2B and Table S2). HeLa and
ES cell cycle genes were validated by their expression Z scores
(Fig. 2A and B, respectively). The five phase-specific genes with
top maximal phase-specific ability, i.e., ai,k™ in (3) in HeLa and
ES cells are shown in Table 1. The identified phase-specific
genes (or cell cycle genes) of HeLa and ES cells are shown in
Tables S1 and S2, respectively. We only identified 13 genes in
the M phase of ESCs. Of these, HSPAS8 has been reported as a
constitutively expressed gene involved in M phase regulation.>
Therefore, we suggest that M phase-specific genes, which may
be the constitutively expressed, could play an important role in
promoting properly timed cell cycle exit.

Real and core GECNs in HelLa and ES cells

We applied system identification and AIC to the dynamic
model of GECN using genome-wide high-throughput data in
HeLa and ES cells. We identified the real GECNs in HeLa and
ES cells based on cell cycle genes resulting from cell cycle pro-
jection (Fig. 3A and B, respectively). We have removed 94
and 24 genes, which were neither regulated by TFs nor by
miRNAs in the real GECNs of HelLa (Fig. 3A) and ES
(Fig. 3B) cells, respectively. The results showed that the num-
bers of G1 and S phase TFs and genes, and G2 phase TFs in
HeLa cells decreased significantly compared to ES cells, while
the numbers of M phase TFs and genes in HeLa increased sig-
nificantly with respect to ES cells. Additionally, the numbers
of G1, S, and G2 phase TF regulations in HeLa cells decreased,
while the number of M phase TF regulations increased com-
pared to ES cells. These results support the notion that the
immortal nature of HeLa cells depends on dysregulation of
genes controlling the G1/G2 checkpoint and cell cycle exit.
Moreover, we identified 3 cell cycle genes expressed in the
same phase in HelLa and ES cells: CCNE1/2 in G1, CDKI in
G2, and CDC20 in M phase. This finding is supported by cell
cycle studies of human cancer ***> and human stem cells.”
By applying PGNP to the real GECNs (Fig. 3 and Material
and Methods), we identified the core GECNSs, including the
specific GECNs of HeLa and ES cells and the core GECN com-
mon to HeLa and ES cells. These networks (Fig. 4) represent
the significant regulation networks of real GECNs (Fig. 3). As
such, they could offer a lot of useful information for carcino-
genesis studies. In the common core GECN, we identified 10
common TFs and 6 common cell cycle genes: PLK1, TOP2A,

AURKB, FAM83D, HIURP, and HMMR, which are involved in
chromosome instability and G2/M checkpoint in HeLa and ES
cells. As a result, we suggest that they are housekeeping genes
for cell cycle progression. The dysregulation of the common
core genes in HeLa cells could promote carcinogenesis during
cellular reprogramming. The common core genes can be con-
sidered in the multiple drug design of cervical cancer to help
avoid side-effects. Additionally, this result showed that the
number of TFs and their regulation increased significantly in
HeLa cells compared to ESCs, while at the same time the num-
ber of miRNA regulations decreased. Therefore, we suggest
that the dysregulations of miRNAs play an important role in
cervical carcinogenesis.

Carcinogenic mechanism of the specific GECN in HeLa cells

In order to unravel the cervical carcinogenic mechanism, we
identified the principal GECN. We defined the principal network
as that containing the cell cycle genes with the top PGNP projec-
tion values and assumed that each of the 4 cell cycle phase groups
involved at least one cell cycle gene. We then identified the prin-
cipal GECN of HeLa cells (Fig. 5A) from its specific GECN
(Fig. 4). Owing to the direct effects of DNA methylation on the
binding affinities of miRNAs, RNA polymerase, and transcrip-
tion factors (TFs) on target genes,”® we assumed that the change
of basal level between HeLa and ES cells in the dynamic model
(4) would indicate the occurrence of methylation on gene i.
Thus, we identified 5 common core cell cycle genes from the
common core GECN as potentially methylated: PLK1, TOP2A,
AURKB, HJURP, and HMMR (Fig. 4). In recent studies, methyla-
tion of PLK1 *’ and genetic mutations of PLK1 ** and TOP2A *
have been reported in human cancers. Furthermore, we used the
genome-wide high-throughput DNA methylation profile of
human cervical cancer from TCGA and ESCs *' to validate our
findings. We found that the identified genes presented a different
DNA methylation pattern between HeLa and ES cells: PLK1 (p-
value < 3.708 x 107%"), TOP2A (p-value < 7.65 x 10~),
AURKB (p-value < 3.18 x 10~"7), HJURP (p-value < 2.73 x
1072%%), and HMMR (p-value < 3.36 x 1071%%). These results
revealed that DNA methylation played a critical role in dysregu-
lating chromosome stability and G2/M checkpoint in HeLa cells.
The dysregulation of miR-100, miR-192, miR-124, and let-7b (p-
value < 1.00 x 107'°) in HeLa cells (Fig. 4) could trigger DNA
repair and cell apoptosis signals to counteract the accumulated
mutations and methylations. However, cervical cancer cells do
not undergo apoptosis,*’ instead leading to chromosome insta-
bility and the accumulation of mutations and methylations that
lead to subsequent phenotypic changes,®** which finally induce
carcinogenesis. Interestingly, we report that the expression of
HMMR changes from G2 phase in ESCs to M phase in HeLa
cells. Normally, HMMR must be degraded in G2/M to prevent
uncontrolled proliferation.” However, in HeLa cells HMMR
expression is enhanced in M phase, which could lead to an
abnormal G2/M checkpoint. We found that miR-99A inhibited
the expression of HMMR (p-value < 1.00 x 10~ '°) in G2 phase
of ESCs whereas HIF1A up-regulated HMMR (p-value < 1.00 x
107'%) in M phase of HeLa cells. Hence, compared to ESCs,
miR-99A and HIFIA dysregulation leads to phase alteration of
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Figure 5. Principal networks of HeLa (A) and ES (B) cells. To find the principal networks, we assumed that they contained cell cycle genes with top PGNP projection values
and that each of the 4 cell cycle phase groups involved at least one cell cycle gene. We identified the principal GECNs from the specific GECNs shown in Figure 4. Genes/
TFs/miRNAs in blue and red denote activated expression in HelLa and ES cells, respectively (p-value < 0.05).

HMMR expression in Hela cells, which may further promote
carcinogenesis of cervical cells.

To date, cervical cancer has been proposed to be a leading
cause of death in women. Current treatment strategies, includ-
ing chemotherapy and surgery, do not provide a permanent
cure but prolong the patient’s survival.**. To unravel carcino-
genic mechanisms underlying cervical cancer and develop a
new drug strategy, we applied the big mechanism analysis to
the principal GECN in HelLa cells (Fig. 5A) using the gene
ontology tool DAVID (https://david.ncifcrf.gov/) (Fig. 6A).%°
We identified 12 cell cycle genes: HISIH2AG, ANKRDI,
ARID5B, HISTIH2AJ, HISTIH4L, CDCA2, NUF2, PIF],
STAMBPLI1, CKAP2L, TROAP, and ZNF165, which could be
methylated due to their basal level changes between HeLa and
ES cells in (4). It has been reported that NUF2, TROAP,
STAMBPLI, and ARID5B can be methylated in cancers.®®®
Furthermore, we used the DNA methylation profile of human
cervical cancer and ESCs to validate our findings. Results indi-
cated that 8 cell cycle genes presented a significantly different
methylation pattern between HeLa and ES cells, including
ANKRDI (p-value < 1.70 x 107%), ARID5B (p-value < 5.00 x
107%*), CDCA2 (p-value < 2.34 x 10~°7), PIFI (p-value < 6.08
x 107%%), STAMBPLI (p-value < 4.31 x 10~**), TROAP (p-
value < 7.65 x 10~°%), ZNF165 (p-value <1.08 x 10~'*), and
HIST1H2A]J (p-value < 7.98 x 107%). In addition, HIST1H4L
was also characterized by a minor change in DNA methylation
pattern (p-value < 2.47 x 107Y). Therefore, we concluded that

the DNA methylation profile of cervical cancer and ES cells
supported our results. To this end, ANKRDI, ARIDS5B,
CKAP2L, and TTK have also been shown to accumulate genetic
mutations in cancers.”*”?

Core TFs/miRNAs identified in the principal GECN of HeLa
cells (Fig. 5A) are summarized in Table S3. By integrating the
results presented in Fig. 5A and Table S3, we obtained macro-
scopic results (i.e., big mechanism for carcinogenesis) (Fig. 6A
and Table S4). We classified these functions into 4 cancer-asso-
ciated biological processes: anti-apoptosis, metastasis, DNA
repair, and proliferation (Table S4).

Cervical cancer cells maintain directly or indirectly the
transduction of proliferation signals during cell cycle progres-
sion. It is likely that miR-98, miR-17, miR-34A and, miR-29C
(p-value < 6.70 x 10~*) do not properly transduce signals
from NF«B and PI3K pathways resulting in uncontrolled pro-
liferation. Therefore, we propose that cervical cancer cells
maintain or enhance their proliferation ability by activating
miR-98, miR-17, miR-34A, and miR-29C.

miR-192, which is affected by the TGF-8 pathway, is
involved in cell metastasis during the intermediate cell cycle
phases, G1 and G2. Our results show that miR-192 could affect
metastasis by regulating FAM111B (p-value < 1.00 x 107'°)
and ARHGAPIIA (p-value < 1.00 x 107'%) in GI and G2
(Fig. 5A). Moreover, most genetic mutations and methylations
could accumulate in S and G2 phase, leading to their dysregula-
tion, which plays an important role in driving carcinogenesis in
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Figure 6. Carcinogenic and stemness mechanisms. (A) Carcinogenic mechanism of HeLa cells and (B) stemness mechanism of ES cells. Carcinogenic and stemness mecha-
nisms were derived by applying big mechanism analysis to the principal GECN in Hela and ES cells, respectively (Fig. 5 A and B), using the gene ontology tool DAVID.
Genes/TFs/miRNAs in blue and red denote activated expression in Hela and ES cells, respectively (p-value < 0.05).

cervical cancer. Therefore, to accumulate genetic mutations and
abnormal epigenetic regulations, cervical cancer robustly
enhances cell survival in the unsTable S and G2 phases by
genetic mutations and methylations.®!

Furthermore, our results revealed that cancer cells enhanced
cell proliferation through cell cycle progression. In normal cells,
the accumulated genetic and epigenetic alterations would trig-
ger DNA repair, which in turn induces apoptosis.”* However,
accumulated alterations in S and G2 in Hela cells trigger anti-
apoptosis mechanisms to avoid cell death. Accumulated geno-
mic mutations and methylations lead to phenotypic changes
characteristic of cervical cancer such as altered metastatic activ-
ity in G1 and G2 phase, which may be related to failure of G1
and G2 checkpoints.

According to the causal and temporal cell cycle interplay,
cervical cancer cells can potentially increase DNA replication
through regulation of miR-98 and miR-34A (p-value < 6.70 x
10~%), as well as methylation. Accordingly, they may further
enhance the cells’ metastatic ability through regulation of miR-
192 in G1 phase. Subsequently, in S phase, cancer cells activate
miR-34A (p-value < 3.06 x 10~°) and accumulate methyla-
tions and genetic mutations ®* to alter histone regulation and
modification. Taken together, these alterations can trigger cer-
vical carcinogenesis. This is also supported by the model simu-
lation of cancer.’ With alterations in histone modifications,
methylated genes, such as STAMBPLI, TROAP, CDCA2, PIF1I,
CKAP2L, and NUF2, in G2 phase could execute numerous
functions to promote carcinogenesis. At the same time, miR-
192 regulates metastasis in carcinogenesis and mitosis. Further-
more, methylations, accumulated genetic mutations, and miR-
192 regulation enhance the anti-apoptotic ability of HeLa cells,
which in turn leads to the accumulation of additional genetic

and epigenetic alterations caused by subsequent chromosome
instability. Cervical cancer cells thus, cause abnormal methyla-
tions and numerous genetic mutations, which finally induce
irreversible damage, i.e., cancer metastasis. At the last stage,
activated miR-17 (p-value < 7.76 x 107®) enhances these aber-
rant proliferations in M phase. Iteratively, normal cells generate
the tumor and finally trigger metastasis.

Additionally, accumulated genetic mutations and DNA
methylation; the dysregulation of miR-29C, miR-34A, miR-98,
and miR-215 during GI, S, and G2 phases; and accumulation
of miR-17 during M phase result in aberrant cell proliferation.
Dysregulation of miR-192 leads to metastatic cervical cancer
during G1 and G2 phases. Moreover, accumulated genetic
mutations and DNA methylation during S and G2 phases, dys-
regulation of miR-34A during S phase, and dysregulation of
miR-192 during G2 phase could trigger ineffective DNA repair
and inhibit apoptosis.

Stemness mechanism of specific GECNs in ESCs

To investigate the mechanism of stemness in ESCs we followed
a similar strategy to that presented earlier for Hela cells and
identified the principal GECN (Fig. 5B) from the specific
GECN (Fig. 4). We again applied the big mechanism analysis
to the specific GECN of ESCs using the DAVID gene ontology
tool. By assessing the basal changes between HeLa and ES cells
in (4), we identified 17 genes in the principal GECN that could
be methylated: RPS9, TMSB4X, DHCR24, OAZ1, EDARADD,
PPIB, COX7C, RPS11, RPS14, RPS24, RPL11, RPL35, RPL36,
RPLP1, ACTGI1, TUBAIB, and FTL (Fig. 6B). The methylation
of EDARADD, RPS11, and RPS14 has been reported earlier in
cancer cells.”””” We found significant changes between the



DNA methylation profiles of human cervical cancer and ESCs
in 14 genes: RPS9 (p-value < 1.91 x 107°), TMSB4X (p-value
< 3.77 x 107%), DHCR24 (p-value < 2.06 x 10~**), EDAR-
ADD (p-value < 4.15 x 1072"), PPIB (p-value < 2.86 x 107>%),
RPSII (p-value < 1.01 x 107"7), RPSI4 (p-value < 4.47 x
107'°"), RPS24 (p-value < 4.03 x 10~%*), RPLII (p-value <
1.37 x 10~°), RPL35 (p-value < 9.37 x 10 '%), RPL36 (p-value
< 245 x 107%®), RPLPI (p-value < 7.90 x 10~%), ACTGI
(p-value < 9.22 x 107*%), and TUBAIB (p-value < 6.32 x
10~"). In addition, COX7C also showed a minor change (p-
value < 0.289) in DNA methylation.

Using DAVID, we classified miRNAs, TFs, and cell cycle
genes of the principal GECN in ESCs into 3 signaling pathways:
steroid hormone-mediated, fibroblast growth factor receptor
(FGFR), and apoptotic; and three biological processes: cell
development, cell differentiation, and cell cycle. It has been
demonstrated that mammary stem cells are highly responsive
to steroid hormone signaling.”® One of the earliest changes in
gene expression affecting the steroid hormone-mediated signal-
ing pathway in response to a differentiation signal has been
observed in mammary stem cells, supporting our findings.” It
has also been reported that induction of human ES cell prolifer-
ation and differentiation promotes steroidogenesis.** It has
been suggested that the FGFR signaling pathway is involved in
the maintenance and proliferation of undifferentiated human
ESCs.”” Furthermore, it has recently been suggested that ESC
differentiation is efficiently maintained by eliminating those
cells that are slow to exit pluripotency, implicating a novel role
for the apoptotic signaling pathway.*’ Therefore, we propose
that the functions of the principal GECN in ESCs should play a
significant role in determining the ESCs mechanisms of
stemness.

miR-100, miR-124, miR-155, and miR-221 have been found
in the principal GECN of ESCs. It has been reported that their
regulations play an important role in modulating cell differenti-
ation, cell migration, and cell proliferation in mammalian
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ESCs.**"™ It has also been observed that genetic and epigenetic
alterations play a critical role in the development of human
ESCs.*® However, ESCs mechanisms of stemness cannot be
uncovered without the use of a systems biology approach from
a genome-wide perspective. According to our analyses we pro-
posed that the development of ESCs through the gap G1/G2
phases, is regulated by the action of E2F1, TP53, and MIR-221,
involved in apoptotic signaling, and the methylation of RPS9,
TMSB4X, DHCR24, OAZ1, RPLPI1, ACTGI, TUBAIB, and
FTL. The methylation of S phase genes EDARADD, PPIB,
COX7C, RPS11, RPS14, RPS24, RPL11, RPL35, and RPL36 may
regulate the timing of locus replication, as previously described
in mouse embryonic stem cells.”

Multiple drug design for cervical cancer treatment by
integrating cervical carcinogenic mechanisms and drug
databases

By integrating the drug CMap and DGIdb databases and the
cancer-specific GECN, we identified a number of drugs: metho-
trexate, quercetin, and mimosine. These target primarily abnor-
mal DNA repair (i.e, ARID5B), significantly truncating
numerous signal transduction proteins (i.e., CCL2). As a result,
the stimulation of cancer genes in S phase is dramatically
reduced; this prevents the accumulation of genetic mutations
that result from chromosome instability caused by phenotypic
changes (i.e., carcinogenesis) in G2 phase. At the same time,
the administration of these agents should inhibit anti-apoptotic
activity in S and G2 phases (i.e., CCL2 and STK17B, respec-
tively). Consequently, abnormal cells cannot rely on apoptosis
to inhibit carcinogenesis. In HeLa cells the identified drugs
repress activated cell cycle genes (ARID5B, STK17B, and CCL2)
(Table 2) and stimulate inhibited cell cycle TFs (PAN4,
PLXNA2, HISTIH4L, and HOXA4). The drug molecules,
methotrexate, quercetin and mimosine, were identified in 3
human cell lines, HL60, MCF-7, and PC3. They showed

Table 2. Proposed multiple drugs for the treatment of cervical cancer.Proposed targets and structures of methotrexate, quercetin, and mimosine derived from the ZINC
database. The identified drugs suppress activated cell cycle genes, such as ARID5B, STK17B, and CCL2, without affecting 6 common core genes, PLK1, TOP2A, AURKB,
FAM83D, HJURP, and HMMR. The ranked list of all drugs in CMap is shown in Table S5. Methotrexate targets abnormal methylation in S phase, quercetin inhibits anti-apo-
ptosis in G2 phase, and mimosine blocks most signal transduction and inhibits anti-apoptosis in S phase. Apoptosis reduces accumulated genetic mutations, abnormal
DNA methylations, and the dysregulation of miRNAs in normal cells; thus, achieving carcinogenesis inhibition.

Drug molecule

Cell cycle gene (PGNP projection value)
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Multiple drug
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minimal side-effects on the 6 common core GECNs of ESCs:
PLK1, TOP2A, AURKB, FAMS83D, HJURP, and HMMR
(Fig. 4). The US Food and Drug Administration (FDA)
approved Methotrexate for the treatment of acute lymphoblas-
tic leukemia, breast cancer, gestational trophoblastic disease,
head and neck cancer, lung cancer, mycosis fungoides, non-
hodgkin lymphoma, and osteosarcoma. Mimosine is FDA
approved for inhibiting hair growth and has been identified as
a cell cycle blocker.”” We assumed that these genes may play
essential roles in cell cycle progression. Additionally, all the
drug molecules in the multiple drugs have exhibited anti-cancer
effects.®**

Conclusions

In this study, we first applied the cell cycle projection method
to genome-wide high-throughput data to identify cell cycle
genes. Next, we applied a systematic method to a dynamic
model of GECN to construct and then compare real GECNs of
HeLa cells and ESCs. Cancer- and stem-specific GECNs were
used to investigate the genetic-and-epigenetic mechanisms of
cervical cancer carcinogenesis and embryonic stemness. By
applying the big mechanism analysis to specific GECNs, cervi-
cal carcinogenesis and embryonic stemness could be uncov-
ered. Furthermore, we showed that in combination with drug
design, core network projection methods could be used to
develop effective anticancer treatments with minimal side-
effects on normal cells. Finally, we designed multiple drugs by
systems pharmacology using the integrated information of cer-
vical mechanisms and drug databases for the treatment of cer-
vical cancer by integrating genetic-and-epigenetic regulations,
omics databases, high-throughput (NGS and microarray) data,
and drug databases.
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