
RESEARCH ARTICLE
www.advancedscience.com

Dynamic Chromatin States Coupling with Key Transcription
Factors in Colitis-Associated Colorectal Cancer

Lin Chen, Zhihui Luo, Chen Zhao, Qinglan Li, Yingjie Geng, Yong Xiao, Ming-Kai Chen,
Lianyun Li, Zhen-Xia Chen,* and Min Wu*

Inflammation is one of the critical risk factors for colorectal cancer (CRC).
However, the mechanisms for transition from colitis to CRC remain elusive.
Recently, epigenetic changes have emerged as important regulatory factors for
colitis-associated cancer. Here, a systematic epigenomic study of histone
modifications is performed, including H3K4me1, H3K4me3, H3K27ac,
H3K27me3 and H3K9me3, in an AOM-DSS-induced CRC mouse model. In
combination with transcriptomic data, the authors generate a dataset of 105
deep sequencing files and illustrate the dynamic landscape of chromatin
states at five time points during inflammation-cancer transition. Functional
gene clusters are identified based on dynamic transcriptomic and epigenomic
information, and key signaling pathways in the process are illustrated. This
study’s results reveal that enhancer state regions play important roles during
inflammation-cancer transition. It predicts novel transcription factors based
on enhancer information, and experimentally proves OTX2 as a critical tumor
suppressive transcription factor. Taken together, this study provides
comprehensive epigenomic data and reveals novel molecular mechanisms for
colitis-associated cancer.

1. Introduction

Colorectal cancer (CRC) is one of the most common cancers in
the world. CRC develops in ≈5% of the adults in the United
States, and ≈50% of the patients die from the disease.[1] The
risk of CRC is much higher in patients with inflammatory bowel
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disease (IBD) than the general population,
and inflammation is considered as one of
the critical tumor-promoting factors and
now the mechanisms are under extensively
investigation.[2] Transcription factors, such
as NF-𝜅B, are highly involved in colitis-
associated CRC through promoting a local-
ized inflammatory response and enhancing
the growth and survival of tumor cells.[3,4]

However, it remains elusive whether other
transcription regulators are involved in the
process.

Epigenetic features frequently change
in CRC tissues and multiple epigenetic
genes have been reported to be associ-
ated with CRC[5,6] Recently aberrant DNA
methylation and regulation of enhancer ac-
tivity have emerged to be important fea-
tures in CRC. DNA methylomes have been
extensively investigated in CRC patients
and methylated DNA fragments of specific
genes have been developed as diagnosis
markers for CRC.[5,7] Genome-wide profil-
ing of active enhancers also turns out to be

a powerful tool to identify tumor-specific enhancers and tran-
scription factors.[8,9] However, profiling of one single chromatin
modification does not reflect the complete features of genome
loci, and sometimes the information could be misleading.
Moreover, patient samples usually hardly provide mechanistic
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information for disease development, and studies in animal
models are urgent to reveal the underlying mechanisms.

Histone modifications are critical marks for the functions and
features of certain chromatin elements. H3K4me1 is the mark for
primed enhancers; H3K4me3 usually marks transcription start
sites (TSS); H3K27ac is distributed on both active enhancers and
promoters; H3K27me3 covers transcription repressed regions,
and H3K9me3 is for heterochromatin[10,11] To fully understand
chromatin functions, a software called ChromHMM was devel-
oped to determine chromatin states by considering the impacts
of multiple chromatin modifications.[12,13] Although it is not per-
fect to describe and explain every chromatin event, it is useful
to summarize the genome-wide chromatin features and predict
novel regulators. The approach has been used in the studies in
cell lines, human tissues, and animal models.[14] Recent studies
have tried to investigate a genome-wide enhancer state in CRC
patient tissues or organoid derived from patient cells.[15,16] How-
ever, it is not clear how dynamic chromatin states contribute to
inflammation-cancer transition in colitis-associated CRC.

In the current study, we performed epigenomic and transcrip-
tome studies in an colitis-associated CRC mouse model induced
by azoxymethane (AOM) and dextran sodium sulfate (DSS).[17]

Combining these data, we generated the genome wide landscape
of chromatin states during inflammation-cancer transition. Our
study provides important datasets for CRC studies, and reveals
new regulatory mechanisms and potential targets for clinical in-
vestigation.

2. Results

2.1. Animal Model of Colitis-Associated Cancer and Experimental
Design

To study the epigenomic changes during inflammation-cancer
transition of colitis-associated cancer, we used an AOM-DSS in-
duced colitis-associated CRC mouse model. Colon or tumor tis-
sues were collected at time points of 2, 4, 7, and 10 weeks af-
ter AOM injection and the control group was raised to the same
time as the 10-week group. Three mice for each time point were
subjected for sequencing study (Figure 1A and Figure S1A, Sup-
porting Information). The animal body weight decreased after be-
ing fed with DSS at each round, and inflammation and tumors
were observed in mouse tissues (Figure S1B–F, Supporting Infor-
mation). Then RNA-seq, and ChIP-seq of H3K4me1, H3K4me3,
H3K9me3, H3K27me3 and H3K27ac were performed with Illu-
mina NovaSeq platform. Including input samples for ChIP-seq,
totally 105 samples were deep sequenced and the original data
have been uploaded to GEO database.

2.2. Transcriptomic Changes during Inflammation-Cancer
Transition of Colitis-Associated Cancer

We first determined that the sequencing depth and mapping ra-
tios of our RNA-seq data. The read numbers for all samples were
above 20 m and their mapping rates were all ≈75%, indicating the
quality was good enough for further data analysis (Figure S2A,B
and Table S1, Supporting Information). We then calculated the

correlation of our RNA-seq results, which showed that samples
at 2- and 4-week were clustered together and those at the 7- and
10-week were clustered together (Figure S2C, Supporting Infor-
mation). PCA (principal components analysis) indicated the sim-
ilar result (Figure 1B). Functional analysis of different expressed
genes (DEGs) compared with control tissues showed that DEGs
of the 2- and 4-week samples were enriched in inflammation
pathways, and those of the 7- and 10-week samples were enriched
in inflammation and cancer-related pathways (Figure 1C–G and
Figure S2D–H, Supporting Information). Based on the above,
we considered that the 2- and 4-week represented the inflamma-
tion stage, and the 7- and 10-week for tumor stage. To confirm
our deduction, we compared our data with a previous study in
mouse models.[18] PCA showed that our data at the 2- and 4-week
were grouped with their inflammatory bowel disease (IBD) sam-
ples and those at the 7- and 10-week with CRC samples (Figure
S2I, Supporting Information). These indicated that our transcrip-
tomic data are reliable. Totally, our analyses identified 1041 up-
regulated and 1309 down-regulated DEGs in inflammatory stage,
and 2010 up-regulated and 2526 down-regulated DEGs in tumor
stage (Figure 1C–E).

2.3. Chromatin State Dynamics during Inflammation-Cancer
Transition

To investigate the chromatin states in our model, we performed
ChIP-seq of H3K27ac, H3K4me1, H3K4me3, H3K27me3 and
H3K9me3 with tissues collected at the 5 time points. The map-
ping rate, read number, and peak number of each sample were
shown (Figure S3A–C and Table S1, Supporting Information).
Correlation analysis of genome distribution showed high corre-
lation among the same modification of 15 samples, as well as
among three active transcription marks (Figure S3D, Support-
ing Information). PCA also grouped samples of the same mod-
ification together nicely (Figure S3E, Supporting Information).
All the above indicates that our ChIP-seq data were reliable for
further analysis, and ChIP-seq intensity of each modification in-
dicated that all modifications changed dynamically during tran-
sition (Figure S3F–J, Supporting Information).

To determine the landscape of chromatin states, we defined
13 states with different combinations of modifications as be-
low: quiescent state regions (no detected modifications), hete-
rochromatin state regions (dominant H3K9me3), transcription
repressed regions (dominant strong or weak H3K27me3), ac-
tive enhancer state regions (high H3K4me1 and H3K27ac),
poised enhancer state regions (high H3K4me1 and low
H3K27ac), bivalent enhancer state regions (H3K4me1, H3K27ac,
and H3K27me3), weakly active enhancer state regions (low
H3K4me1 and H3K27ac), active promoter state regions (totally
four types of regions were identified which all have H3K4me3
and are close to TSS), and poised promoter state regions (high
H3K4me3 and H3K27me3) (Figure 2A). The genome distribu-
tion of promoter state regions was all enriched on CpG islands
and TSS, and others were widely dispersed all over the genome
(Figure 2B), which fit our expectation. The expression of genes
within dominant promoter state and enhancer state regions was
higher than those in other regions, which also fit our expec-
tation (Figure 2C and Figure S4A, Supporting Information).
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Figure 1. Transcriptomic and epigenomic analysis in the AOM-DSS induced CRC model. A) Experimental workflow for studying comprehensive epige-
nomic landscape of colitis-associated cancer. Each mouse was intraperitoneally injected with AOM (10 mg kg−1), followed by 2.5% DSS fed in feeding
water. The tissues were collected and sequenced at the indicated time points. Three biological replicates were assayed for each time point. B) PCA plot of
RNA-seq data. Five time points were clustered into three stages; control, inflammation (2- and 4-week), and tumor (7- and 10-week). Green represents
the control, light green for 2-week, purple for 4-week, pink for 7-week, and orange for 10-week. C–E) Volcano plots to show the fold change (FC) and
p-value of DEG expression between inflammation stage and control groups (C), tumor stage and control groups (D), and tumor and inflammation stage
groups (E). A threshold of (twofold change and −log10 p-value) is used for defining significant changes. Red dots represent up-regulated genes, blue
dots for down-regulated genes, and grey dots for genes not significantly changed. F) Overlap of up-regulated DEGs in tumor and inflammation stages.
G) GSEA analysis to show the enriched pathways for DEGs of inflammation and tumor stages, in comparison with control group.

Interestingly, we found that the promoter state regions with
strong H3K27ac covered CpG islands and vice versa. Since DNA
methylation on CpG islands represses transcription, it probably
suggests a possible link between DNA methylation and H3K27ac
on CpG islands.

Then we compared the chromatin states at different time
points, we found that all the above chromatin state regions
were highly dynamic during inflammation-cancer transition
(Figure 2D–G and Figure S4B–L, Supporting Information). The

enhancer state regions kept increasing during transition, espe-
cially at the late tumor stage (Figure 2E). Most of the quiescent,
repression and promoter regions at the 10-week were similar to
control tissues, while a large percentage of enhancer state re-
gions at the 10-week originated from quiescent and promoter
regions of control group. Moreover, many heterochromatin re-
gions transited from quiescent state regions (Figure 2F). A pie
chart showed that 22.7% of enhancer state regions at the 10-week
were originated from quiescent regions, 15.6% from promoter
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Figure 2. Dynamic chromatin states during inflammation-cancer transition. A) Chromatin state definitions based on histone modification enrichment
determined by ChromHMM software. The genome is divided into 13 chromatin states, which is further summarized into five chromatin states and
highlighted with different colors, quiescent in grey, heterochromatin in purple, transcriptional repressed in blue, enhancer in red and promoter in green.
B) Chromatin state enrichments on various genomic elements. FE means fold enrichments. C) Boxplot shows difference of all gene expression (FPKM)
within particular chromatin state regions based on RNA-seq of control tissues (gene body ± 2 kb). D) Alluvial plots showing the whole genomic dynamic
changes of chromatin states during the development of Colitis-Associated Cancer. E) Line chart shows the percentages of chromatin regions of five
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regions, and 4.7% from repressed regions of control tissues (Fig-
ure 2G). Genes within the 10-week enhancer state regions tran-
sited from quiescent regions were enriched with processes re-
lated with mRNA processing and DNA repair (Figure 2H,I); and
those transited from promoter regions were enriched with genes
related with ribosome biogenesis, cell fate determination, and
apoptotic signaling (Figure 2J,K). These suggested that acquisi-
tion of enhancer state regions is an important feature during
inflammation-cancer transition.

2.4. Functional Gene Sets Determined by Transcriptome-Based
Dynamic Gene Analysis

Although we analyzed the functions of DEGs, it was still difficult
to obtain a comprehensive picture of the dynamic change during
inflammation-cancer transition. So, we used maSigPro software
to determine functional gene clusters based on their dynamic ex-
pression levels. We successfully divided all dynamic genes into
four clusters (Figure 3A–P and Table S2, Supporting Informa-
tion), and the intensity of histone modifications of each cluster
changed dynamically (Figure S5A–D, Supporting Information).
Genes of cluster 1 expressed low in normal and inflammatory
stages and increased dramatically in cancer stage (Figure 3A).
They were enriched in cancer-related pathways, especially WNT
signaling pathway and immune response (Figure 3B). Enhancer
state regions were significantly enriched on these genes, and all
the other states decreased (Figure 3C). According to TCGA data,
the orthologues of cluster 1 genes expressed higher in tumor tis-
sues than normal tissues in patients (Figure 3D). Genes of cluster
2 increased their expression at the 2-week, maintained at the in-
flammation stage and decreased at the tumor stage (Figure 3E).
These genes were enriched in metabolic pathways (Figure 3F).
Genes of cluster 3 increased at the 2-week and then gradually
decreased later (Figure 3I), and were enriched in the processes
related with transportation and inflammation (Figure 3J). En-
hancer state regions also increased for genes of cluster 2 and 3
(Figure 3G,K); and the expression of their human orthologues de-
creased in tumor tissues according to TCGA data (Figure 3H,L).
Genes of cluster 4 decreased during all the stages and were en-
riched in processes involved in normal tissue functions, such as
muscle contraction and blood circulation (Figure 3M,N). The ex-
pression of their orthologue genes also decreased in tumor tis-
sues (Figure 3P). The transcription repression state regions on
them increased but enhancer regions did not, which was differ-
ent from the above three clusters (Figure 3O).

2.5. Functional Gene Clusters Identified with H3K27ac on
Enhancers

We successfully clustered dynamic genes into four clusters with
distinguished functions, then we explored whether we could

classify the genes into functional gene sets with dynamic chro-
matin states or histone modifications. Since it is difficult to quan-
tify chromatin states, we applied the above analysis based on
the RPM (reads per million) values of histone modifications on
genes. Because histone modifications around gene body may also
regulate gene expression, it is better to integrate the signals on
gene bodies and regions close to them. After comparing the ana-
lytical results of different ranges, we used the signal within gene
body flanked ±2 kb for the following analyses; while for analy-
sis of histone modifications on enhancers, signals close to TSS
were excluded (see the Experimental Section for details). All the
above modifications were investigated and we found that the clas-
sification with H3K27ac on enhancers was mostly meaningful.
It supports the recently raised hypothesis that enhancer activa-
tion is one of the important features for cancer[10,19] The dynamic
genes were divided into 9 clusters according to their H3K27ac
signal on enhancers (Figure 4A and Table S3, Supporting Infor-
mation). Since the above analysis suggested the increase of en-
hancer state regions was associated with inflammation-cancer
transition, we focused on the functions of three clusters 3, 4
and 8, which showed elevated H3K27ac during transition (Fig-
ure 4A–E and Figure S6A–N, Supporting Information). Genes
of cluster 3 were enriched in cell cycle and DNA repair pro-
cesses, closely related with cancer (Figure 4B,C). Genes of cluster
4 were enriched in inflammation and cancer related processes,
such as NF-𝜅B pathway (Figure 4D,E), which has been proved
to be critical for colitis-associated CRC.[4] Genes of cluster 8 were
enriched in processes related with lipid metabolism and PKA sig-
naling, which is also involved in CRC (Figure S6F,M, Supporting
Information).[20] Our analysis suggested that the information of
histone modifications on function chromatin elements can be
used to identify functional gene sets. The biological processes
and pathways enriched in other clusters may be also informative
to CRC studies.

We used the genes of cluster 3 to further investigate the re-
lationship between gene expression and chromatin states. The
dominant chromatin states on a gene (gene body ± 2 kb) were
used to represent its chromatin states. A large portion of genes
of cluster 3 showed a high level of enhancer state, and we took
those showing conversion from quiescent to enhancer state to
investigate the relationship between chromatin states and gene
expression. Although the expression of some genes was not al-
ways correlated with their dominant chromatin state, most of
them showed high expression at the cancer stage (7- or 10-week),
suggesting the elevated H3K27ac on these genes were associ-
ated with tumorigenesis (Figure 4F). These suggested chromatin
state analysis could provide additional information other than
transcriptomic studies. Tyrosine 3-monooxygenase/tryptophan
5-monooxygenase activation protein (Ywhaq, 14-3-3) is a cancer-
related gene[21] and selected as a representative to show the dy-
namic change of chromatin states and histone modifications
(Figure 4G). H3K27ac signal on the enhancer of YWHAQ in CRC

chromatin states at 5 time points. F) A stacked bar chart displays the percentage of each chromatin state regions at 10-week transformed (gene body
± 2 kb) from those in control tissues. G) The percentage of 10-week enhancer state regions originated from the chromatin state regions of control
tissues. H) Dynamic expression (FPKM) of 3887 genes within the regions of control quiescent state transformed to 10-week enhancer state. I) Biological
process analysis of genes in (H). J) Dynamic expression (FPKM) of 2757 genes within the regions of promoter state regions in control transformed to
10-week enhancer state. K) Biological process analysis of genes in (J). H,J) Wilcoxon rank sum test. (Mann–Whitney U test) ∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001, ns: no significance.
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Figure 3. Functional gene clusters identified using dynamic transcriptomic analysis. Four cluster genes identified by dynamic transcription level at
five-time points, A–D) cluster1, E–H) cluster 2, I–L) cluster 3, and M–P) cluster 4. B,F,J,N) Biological process analysis of the 4 gene clusters. Bar plot
gradient color fill with the p-value. C,G,K,O) The proportion of 5 chromatin states of the genes in four clusters at different time points. Quiescent: grey,
heterochromatin: purple, repressed: blue, enhancer: red, promoter: green. D,H,L,P) Boxplots show expression (FPKM) of the 4 cluster genes in human
CRC (n = 599) and normal (n = 42) tissues. The RNA-seq datasets of human colorectal cancer (COAD) were downloaded from TCGA database. Statistical
analysis was performed using an unpaired student’s t test. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001, ns: no significance.

patient samples also increases compared with the adjacent tis-
sues (Figure 4H).[16]

2.6. Chromatin State Dynamics of WNT Signaling Target Genes

WNT signaling is an important pathway in CRC. Our transcrip-
tomic analysis using maSigPro revealed cluster 1 genes were
enriched in the WNT signaling pathway (Figure 3B). To investi-
gate the potential functions of dynamic chromatin states in CRC,

we took the genes of cluster 1 belonging to the WNT pathway
(totally 44 genes) and analyzed their relationship with chromatin
states. Out of the 44 genes, 12 genes were enriched with a
dominant enhancer state in control tissues, then the number
increased to 24 genes at 10-weeks. For other states, such in-
crease was not observed (Figure S7A, Supporting Information).
Analysis of histone modification intensity showed that H3K27ac
signal increased during inflammation-cancer transition on these
genes (Figure S7B, Supporting Information). The 24 genes with
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Figure 4. Identification of functional gene clusters based on dynamic H3K27ac signal. A) We calculated H3K27ac enrichment (RPM) on enhancer region
for each gene on TSS ± 10 kb to TSS ± 1.5 kb. Then we used maSigPro software and divided these genes into 9 clusters by dynamic H3K27ac signal. The
control group data were as control, others as treatment. Each group had 3 biological replications. Red lines represented H3K27ac signal at 4 time points
(2, 4, 7, and 10-week). Grey lines represented control group data. The enriched genes were identified by R after scaling count data. Expression value
was evaluated by maSigPro. B–E) Biological process and KEGG analyses of genes in cluster 3 and 4, by R package clusterProfiler. F) Gene expression
heatmap (left) and its corresponding chromatin state (right) of cluster 3 genes whose chromatin states were transit from quiescent in control to enhancer
at 10-week. G) The UCSC browser view shows H3K27ac, H3K4me1, and H3K4me3 enrichments around Ywhaq. H) The UCSC browser view for H3K27ac
enrichment around YWHAQ of 3 pairs of normal and colon tumor patient tissues.
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dominant enhancer state at the 10-week had higher expression
in CRC tumor tissues according to TCGA data (Figure S7C,
Supporting Information). Among the above 24 genes, 11 genes
kept their dominate enhancer state from control to 10-weeks,
and others were transited from other chromatin states (Figure
S7D, Supporting Information). AXIN2 is a typical WNT pathway
target gene and was used as a representative gene to show its
expression, histone modifications, and chromatin states during
transition (Figure S7E–G, Supporting Information). Our recent
study in CRC patient samples also showed its H3K27ac around
AXIN2 (Figure S7H, Supporting Information).[9] These suggest
that enhancer chromatin states are involved in the regulation of
WNT target genes in colitis-associated CRC.

2.7. Enhancer State Regions Are Correlated with Expression of
NF-𝜿B Target Genes

The NF-𝜅B transcription factor plays critical roles in colitis-
associated CRC.[4] In our analysis of gene clusters with dynamic
H3K27ac, we found that genes of cluster 4 were enriched in
NF-𝜅B signaling pathway (Figure 4D). To further investigate
the relationship between NF-𝜅B and chromatin states during
inflammation-cancer transition, we analyzed the dynamics of
NF-𝜅B downstream genes identified from one of our previous
studies (Figure 5A and Figure S8A, Supporting Information).[22]

Interestingly, gene clustering analysis clearly divided the over-
lapped genes into three groups, which were specifically expressed
in three stages (Figure 5A, left panel, and Figure S8B–D, Support-
ing Information). It indicated that NF-𝜅B regulated distinct tran-
scription programs in the three stages, and transition of NF-𝜅B
target genes might be important for inflammation-cancer transi-
tion. To investigate whether chromatin states or histone modifi-
cations were involved, we calculated the correlation of H3K27ac,
H3K4me1, and H3K4me3 with the dynamic gene expression
level of each gene, respectively. For cluster 1 and 2, whose ex-
pression were highest at tumor or inflammation stage, H3K27ac
had the highest correlation; for cluster 3, whose expression was
highest in normal tissues, all three modifications showed relative
high correlation (Figure 5A, right panel). C-X-C motif chemokine
ligand 5 (Cxcl5), NIPA-like domain containing 1 (Nipal1), and
lipoma HMGIC fusion partner-like 2 (Lhfpl2) were selected as
the representative genes of each cluster to show their expres-
sion at 5 time points and their orthologues in patient samples
(Figure 5B,C). Chromatin state analysis showed that among all
the dynamic genes regulated by NF-𝜅B, only those within en-
hancer state regions showed an increasing trend during transi-
tion, which further supported the important roles of enhancer
state (Figure S8E, Supporting Information). Among them, 39.6%
genes were transited from quiescent state genes (Figure S8F,
Supporting Information). These results suggest that H3K27ac
dynamics on enhancers is associated with transition of NF-𝜅B
target genes.

2.8. Predictions of Functional Transcription Factors with
Enhancer Regions

Transcription factors (TFs) play key roles in multiple biological
processes, and their functions are tightly related with enhancer

activation and regulation. To further explore the molecular mech-
anisms of colitis-associated cancer, key TFs specifically involved
in each stage were analyzed by motif analysis with the corre-
sponding enhancer regions. The top 10 TFs enriched on vari-
ant enhancers of the 10-week versus control, together with the
TFs validated experimentally, are shown (Figure 6A, and Figure
S9A–C and Table S4, Supporting Information). The top TFs were
enriched in several protein families, such as AP-1 and ETS fam-
ilies, whose functions in cancer have been well established. We
selected ≈10 TFs for validation, which were not well character-
ized, and tried to knock them down with siRNAs. We successfully
knocked down OTX2, RUNX1, MAZ,s and MAFK in HCT116
colorectal cancer cells, respectively. For other TFs, either their ex-
pression levels were very low in cells, or siRNAs did not work
(Figure S9, Supporting Information). We then explored their
functions in CRC experimentally. Knockdown of MAZ or RUNX1
impaired cell migration, indicate they both contained oncogenic
functions, which are consistent with previous publications;[23]

and MAFK knockdown had no effects on either proliferation or
migration.

CERES score has been used to predict the potential roles of
a gene in cancer,[24] and we found that OTX2 might play a tu-
mor suppressive role (Figure 6B). From the predicted TF table, we
also found that the score of Otx2 was high in tumor stages (Ta-
ble S4, Supporting Information). We further found that knock-
down of OTX2 in HCT116 with sgRNAs enhanced cell migration
ability but did not affect proliferation significantly (Figure 6C–
E). To confirm it, we knocked down OTX2 in RKO cells with
CRISPR, or in HCT116 cells with siRNAs. The same pheno-
types were observed (Figure S10A–I, Supporting Information).
Then xenograft experiments were performed with HCT116 cells
containing OTX2 sgRNAs. The results indicated that OTX2 de-
ficiency enhanced tumor formation of HCT116 (Figure 6F–H).
These data together demonstrated that OTX2 is a tumor suppres-
sive TF in CRC.

2.9. Otx2 Represses Tumorigenesis through IFITM Family Genes

To investigate the potential mechanisms for OTX2 in CRC, we
used OTX2 ChIP-seq data from a previous report.[25] Since no
Otx2 ChIP-seq experiment were conducted on mouse colon or
human colon tissue, we selected the ChIP-seq data generated
from mouse embryonic stem cells by Buecker et al. OTX2 target
genes for this data had been detected by Cistrome Data Browser.
We downloaded and used the top 200 genes as potential Otx2 tar-
get genes in mouse CRC, among which 171 genes were finally
used in the assay after being merged with our result (Figure 7A).
Interestingly, the expression of Otx2 target genes also showed
periodic expression at three stages, suggesting it might be a
common phenotype for functional transcription factors involved
in colitis-associated cancer. We then verified the expression of
the predicted target genes in human CRC cells. We found that
the mRNA of IFITM1, IFITM2, IFITM3, MTA3, PMEL, GIPR,
and CD52 decreased after OTX2 knockdown (Figure 7B,C). Our
prediction of Otx2 binding sites suggested it was recruited to
the above genes (Figure 7D). To investigate whether OTX2 di-
rectly regulates the above genes, we established a Flag-OTX2
stable cell line from HCT116, and performed ChIP-PCR study
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Figure 5. Enhancer state regions are associated with selectively activation of NF-𝜅B target genes. A) The heatmap (left) shows the gene expression
regulated by NF-𝜅B signal pathway at five time points. Correlations between dynamic gene expression and the corresponding H3K27ac, H3K4me1, and
H3K4me3 signals (RPM, gene body ± 10–100 kb) (right panel) were calculated, respectively. Genes reported to be involved in CRC were marked in blue.
B–G) Gene expressions of representative genes for each cluster (B,D,F), and the corresponding gene expression in TCGA database (C,E,G). H) The
UCSC browser view shows H3K27ac, H3K4me1, and H3K4me3 enrichment on Cxcl family locus. I) The UCSC browser view for H3K27ac enrichment
of 3 pairs of normal and colon tumor patient tissues around CXCL family locus. An unpaired student’s t test was used. ∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001, ns: no significance.

Adv. Sci. 2022, 9, 2200536 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2200536 (9 of 15)



www.advancedsciencenews.com www.advancedscience.com

Figure 6. Identification of Otx2 as a tumor suppressive transcription factor. A) The top 10 TFs enriched on variant enhancers of 10-week versus control,
and TFs selected for experimental validation. B) CERES score of OTX2 in COLO320 cell line. C–E) OTX2 was knocked down by sgRNA in HCT116 cells.
The typical images (C) and statistical analysis (D) of cell migration, and OTX2 protein level (E) were shown. The results represent the means (± SD) of
at least three independent biological replicates. F–H) OTX2 stably knockdown HCT116 cells used in above experiments were injected into nude mice
(1× 106 cell pear mouse, n = 11). Tumors were pictured (F), and tumor weight (G) and growth curve (H) were shown as mean (± SEM). Statistical
analysis was performed using ordinary one-way ANOVA (G) plotted by software prism9 and an unpaired student’s t test (H) by R. ∗ p-value ≤ 0.05,
∗∗ p-value ≤ 0.01, ∗∗∗ p-value ≤ 0.001.

(Figure 7E,F). The result indicated that Flag-OTX2 was bound
to IFITM1, IFITM2, IFITM3, GIPR, and CD52. IFITM family
genes are localized together in a genome locus (Figure 7D). They
are involved in the suppression of immune response, and their
deficiency leads to increased susceptibility to colitis; but contro-
versial evidence exists for their roles in colorectal cancer.[26,27] Our
data suggest that Otx2 possibly represses colitis-associated CRC
through mediating the transcription of tumor suppressive genes,
such as IFITM family genes.

3. Discussion

Inflammation is one of the critical risk factors for cancer, but
the mechanisms of how the inflammatory state promotes tu-
morigenesis in colitis-associated CRC remain elusive. In the
current study, we perform transcriptomic and epigenomic stud-
ies and reveal the dynamic landscapes of chromatin states dur-
ing inflammation-cancer transition in a colitis-associated CRC

mouse model. We discover that dynamic chromatin states are
critical and enhancer state regions increase significantly during
transition, which are associated with gene transcription regulated
by key signaling pathways, such as WNT, NF-𝜅B and metabolic
pathways. These indicate that enhancer activation plays impor-
tant roles in CRC, which supports the hypothesis raised recently
that acquisition of active enhancers and H3K27ac elevation are
important features for cancer.[10,19,28]

Our transcriptomic analysis using maSigPro for different
stages divides the dynamic genes into four groups with distinct
functions, including cancer-related genes, metabolic genes, in-
flammatory genes and intestine functional genes. Cancer-related
genes are low at inflammation stage and high at cancer stage,
as expected. Intestine functional genes keep decreasing at both
stages, indicating the transformation of intestine normal cells
to tumor cells. Metabolic genes, transportation and inflamma-
tion genes increase at inflammation stage but decrease at can-
cer stage, suggesting besides inflammation, change of metabolic
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Figure 7. OTX2 regulates IFITM family genes in colitis-associated CRC. A) Heatmap (left) to show the expression of potential Otx2 target genes at five
time points. Pearson correlation coefficient between dynamic gene expression and the corresponding H3K27ac, H3K4me1, and H3K4me3 signals (right)
were calculated, respectively. Genes reported to be involved in CRC were marked in blue, and genes confirmed as Otx2 target genes were marked in red.
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program and regulation of material transportation are also im-
portant for colitis-associated CRC. These provide a comprehen-
sive picture for functional genes involved in colitis-associated
CRC.

We also identify important gene clusters using maSigPro
based on dynamic H3K27ac on genes, which divided genes into
9 clusters. Genes in cluster 3, 4, and 8 showed increasing trends
at inflammation and cancer stages. The three clusters were en-
riched with genes regulating cell cycle, NF-𝜅B signaling, and
lipid metabolism. Genes of cell cycle regulation are critical for
tumor cell proliferation, and NF-𝜅B is known to be a key TF for
colitis-associated CRC.[4] Lipid metabolism has been shown re-
cently to be critical for tumorigenesis. Our study showed the fea-
sibility to use epigenomic data to identify functional pathways
in biological processes. Beyond the above, our analysis identified
multiple genes and pathways potentially involved in the process,
such as JAK-STAT pathway, PKA pathway and metabolic path-
ways of amino acids (Figure S6, Supporting Information). These
provide important candidate genes and pathways for future stud-
ies, and indicated that epigenomic information can also be used
to identify functional gene clusters. Though enhancer activation
is tightly associated with transcription activation, its activation
does not always lead to gene expression. Enhancer profiling pro-
vides one more layer of information for identifying functional
pathways and genes.

Besides H3K27ac, we also tried to perform the similar analy-
sis with other modifications. We just show the analyzed results
of enhancer state, because we feel enhancer state dynamics show
higher correlation with gene expression than others. The reason
might be that H3K27ac on enhancers is more sensitive to signal-
ing variation, or the ChIP-seq data for H3K27ac is relatively better
than others. If one method could be developed to quantify chro-
matin states, then it will be very powerful to annotate chromatin
functions by combining the two approaches together.

Combining transcriptomic and epigenomic data, we predicted
the potential target genes of NF-𝜅B in our mouse model. Inter-
estingly, NF-𝜅B target genes show a periodic expression pattern
and are selectively activated at inflammation and cancer stages.
It needs to be determined whether the pattern is due to the dif-
ferent composition of cell types at different stages, or different
transcriptional programs in the same cells. Nevertheless, it is im-
portant to investigate the exact roles and the underlying mecha-
nisms for NF-𝜅B at different stages, whether other factors func-
tion through the similar ways, and the functions of epigenetic
factors in regulating the process.

Using the information about the dynamic enhancer regions
at different stages, we further predicted multiple TFs, and then
identified Otx2 as one novel TF involved in CRC, which plays
a tumor-suppressive function. IFITM family genes are localized
closely in one genome locus. They act as a suppressor of the im-
mune response and are involved in CRC. In most of the cell-
based studies, IFITM genes behave as oncogenes, and their de-
ficiency impaired cell growth and invasion[26,29] However, in an

IFITM3 knockout model induced by AOM/DSS, its deletion led
to enhanced colitis and enlarged tumor number and size, sug-
gesting it is a tumor suppressor.[27] Then it is possible that IFITM
family genes play opposite roles in different types of CRC. In
our study, we used AOM/DSS to induce colitis-associated CRC
model, so our study implies that Otx2 represses colitis-associated
CRC through regulating gene expression, such as IFITM family
genes. Then our study provides novel mechanistic insights for
the research of colitis-associated CRC.

Taken together, our work provides an important resource
for studying epigenetic regulation in colitis-associated col-
orectal cancer, revealing the potential functions of enhancer
states regions in NF-𝜅B-dependent selective transcription during
inflammation-cancer transition, and identifies the tumor sup-
pressive functions of OTX2 in CRC. All these provide important
information for future studies in colitis-associated colorectal can-
cer.

4. Experimental Section
Reagents and Cell Lines: Antibodies recognizing H3K4me3 (Mil-

lipore, 04–745, RRID: AB_1 163 444), H3K4me1 (CST, 5326, RRID:
AB_10 695 148), H3K27me3 (clone C36B11, CST 9733, RRID:
AB_2 616 029), H3K9me3 (Abcam, ab176916, RRID: AB_2 797 591),
H3K27ac (Abcam, ab4729, RRID: AB_2 118 291), and OTX2 (Abclonal,
A4351, RRID: AB_2 863 244) were purchased from indicated com-
mercial sources. Protein G-Sepharose beads (GE Healthcare), AOM
(Sigma-Aldrich, 25843-45-2), and DSS (MP Biomedicals, 160 110) were
purchased from the indicated companies. PCR primers were custom syn-
thesized by BGI and siRNAs by GenePharma. HCT116 and RKO Cell lines
were purchased from Cell Bank of Chinese Academy and cultured under
recommended conditions according to the manufacturer’s instruction
with 10% FBS.

Animal Housing and Ethics Approval: Mice were purchased from Bei-
jing HFK Bioscience. All the mice were born and maintained under
pathogen-free condition at ≈20–24 °C with a humidity of ≈40–70% and a
12/12-hours dark/light cycle (lights on at 7:00 AM, lights off at 7:00 PM),
with free access of water and food (Animal Center of College of Life Sci-
ences, Wuhan University).

All the animal operations were following the laboratory animal guide-
lines of Wuhan University and were approved by the Animal Experimenta-
tions Ethics Committee of Wuhan University (Protocol NO. 14110B). No
patient study was involved and the consent to participate is not applicable.

Generation of Colitis-Associated Colorectal Cancer Mice Model: The 8-
week-old C57BL/6J male mice were randomly divided into four experimen-
tal groups (2 weeks, 4 weeks, 7 weeks, 10 weeks) and one control group
(n = 5 per group). Mice in the experimental groups were given a single
intraperitoneal injection of AOM (10 mg kg−1 body weight). Seven days
after the AOM injection, the mice were given 2.5% DSS (w/v) in drink-
ing water for 7 days. Then mice of the 2-week group were sacrificed. The
other three groups were fed with distilled water for 14 days and then the
4-week group was sacrificed. The DSS/water cycle was repeated and mice
were sacrificed at the 7- and 10-week, respectively. The control group mice
were fed with distilled water for 70 days and sacrificed. The colorectal tis-
sues were divided to distal, middle and proximal fragments, and the distal
colon fragments were collected for experiments. Tumors were observed in
the mice of the 7- and 10-week groups and only tumors were collected for

B) Expression of potential OTX2 target genes was measured in OTX2 knockdown HCT116 cells. The results represent the means (± SD) of at least three
independent biological replicates. Statistical analysis was performed using an unpaired Student’s t test. ∗ p < 0.05, ∗∗ p < 0.01, ns: no significance. C)
OTX2 protein level assayed with western blotting after knockdown by siRNAs. D) The UCSC browser view to show Otx2 binding, H3K27ac, H3K4me1,
and H3K4me3 enrichment around Ifitm family locus. E) Flag-OTX2 was stably expressed in HCT116, and ChIP analysis was performed with anti-Flag
antibody and assayed with quantitative PCR. F) Expression of Flag-OTX2 assayed with western blotting.
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further analysis for the two groups. A small number of mice did not sur-
vive randomly after the whole procedure, then we choose 3 mice of each
group for further analysis.

ChIP Assay: ChIP assay was performed as previously described.[30]

Briefly, ≈60 mg of each tissue were cut into 1 mm3 pieces in PBS with
protease inhibitor. Tissue pieces were cross-linked for 10 min at room tem-
perature in 1% formaldehyde and then quenched with 0.125 m of glycine
for 5 min. Cross-linked tissues were triturated for 30s and then centrifuged
at 12 000 rpm, 4 °C for 5 min. Supernatant with massive oil was discarded
and the precipitates were lysed with 1 mL lysis buffer (50 mm Tris-HCl pH
8.0, 0.1% SDS, 5 mm EDTA) for 4 min with gentle rotation. After centrifu-
gation at 12 000 rpm, 4 °C for 2 min, the pellet was washed once with
digestion buffer (50 mm Tris-HCl pH 8.0, 1 mm CaCl2, 0.2% Triton X-100),
incubated in 630 μL digestion buffer with 1 μL MNase (NEB, M0247S) at
37 °C for 20 min, and quenched with 8 μL 0.5 m EDTA. The resulted mix-
ture was sonicated and the pellet was discarded after centrifugation. 30 μL
supernatant was taken for checking the efficiency of digestion. Immuno-
precipitation was performed with 150 μL sheared chromatin, 2 μg antibody,
50 μL Protein G beads, and 800 μL dilution buffer (20 mm Tris-HCl pH 8.0,
150 mm NaCl, 2 mm EDTA, 1% Triton X-100, 0.1% SDS) overnight at 4 °C.
Next day, the beads were washed once with Wash buffer I (20 mm Tris-HCl
pH 8.0, 150 mm NaCl, 2 mm EDTA, 1% Triton X-100, 0.1% SDS), once
with Wash buffer II (20 mm Tris-HCl pH 8.0, 500 mm NaCl, 2 mm EDTA,
1% Triton X-100, 0.1% SDS), once with Wash buffer III (10 mm Tris-HCl
pH 8.0, 250 mm LiCl, 1 mm EDTA, 1% Na-deoxycholate, 1% NP-40), and
twice with TE (10 mm Tris-HCl pH 8.0, 1 mm EDTA). The beads were eluted
twice with 100 μL elution buffer (1% SDS, 0.1 m NaHCO3, 20 mg mL−1

Proteinase K) at room temperature. The elution was incubated at 65 °C for
6 h and then purified with the DNA purification kit (TIANGEN DP214-03).
Primers for ChIP-qPCR are listed in Table S5, Supporting Information.

Library Preparation for ChIP-Sequencing: ChIP-seq libraries were con-
structed with ChIP and input DNA using VATHS Universal DNA Library
Prep Kit for Illumina (Vazyme ND606). Briefly, 50 μL of DNA (8–10 ng)
was end-repaired for dA tailing, followed by adaptor ligation. Each adap-
tor was marked with a barcode of 8 bp DNA. Adaptor-ligated DNA was
purified by AMPure XP beads (1:1) and then amplified by PCR of 9 cycles
with the primer matching with adaptor universal part. Amplified DNA was
purified again using AMPure XP beads (1:1) in 35 μL EB elution buffer. For
multiplexing, libraries with different barcodes were mixed with equal mo-
lar quantities (30–50 million reads per library). Libraries were sequenced
by Illumina Nova-seq platform with pair-end reads of 150 bp.

RNA-Sequencing: RNA extraction was performed using Ultrapure
RNA Kit (CWBIO, CW0581M). Briefly, ≈40 mg tissues were triturated for
30 s in 1 mL TRIzon provided in the kit, incubated at room temperature for
5 min, added with 200 μL chloroform and shaken drastically. After centrifu-
gation at 12 000 rpm, 4 °C for 10 min, the upper water phase was moved
into an adsorption column provided by the kit. The column was then eluted
with 50 μL RNase-free water. RNA-seq libraries were constructed by NEB-
Next Poly(A) mRNA Magnetic Isolation Module (NEB E7490) and NEB-
Next Ultra II Non-Directional RNA Second Strand Synthesis Module (NEB
E6111). mRNA was purified with poly-T magnetic beads and first and sec-
ond strand cDNA was synthesized. The resulting cDNA was purified by
AMPure XP beads (1:1) and eluted in 50 μL nucleotide-free water. The
subsequent procedures were the same as described in ChIP-seq library
construction, except that the sequencing depth was 20 million reads per
library. RNA-seq libraries were sequenced by Illumina Nova-seq platform
with pair-end reads of 150 bp.

ChIP-Seq Data Analysis: ChIP-seq raw fastq data used FastQC (version
0.11.5, https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to
quality control. Clean data were obtained by removing adapter with
Cutadapt (version 1.16, http://cutadapt.readthedocs.io/en/stable/guide.
html, parameters were “-u 4 -u -35 -U 4 -U -35 -m 30”). Cleaned reads were
aligned in paired-end mode to mouse UCSC reference genome mm10
with BWA mem[31] (version 0.7.15, http://bio-bwa.sourceforge.net). Du-
plicate reads were removed by samtools rmdup (version 1.4.1, https:
//github.com/samtools/).[32] Only unique mapped reads were used in fol-
lowing work. Peaks were called by MACS2 (version 2.1.1, https://github.
com/taoliu/MACS, with parameters “–nomodel –keep-dup all -p 1E-10

–broad –broad-cutoff 1E-10 –extsize 147”) at false discovery rate (FDR)
< 0.01.[33]

RNA-Seq Data Analysis: RNA-seq cleaned fastq data were obtained
in the same way as ChIP-seq data (parameters were “-u 4 -u -10 -U
4 -U -10 -m 30”). Quality control is done with FastQC (version 0.11.5,
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and Mul-
tiqc (version 1.7, https://multiqc.info/docs/#examples). Cleaned reads
were aligned against the mouse UCSC mm10 genome with TopHat2 (ver-
sion 2.1.1, http://ccb.jhu.edu/software/tophat/index.shtml).[34] The gene
annotation file was used UCSC mm10 genome. Differential expression
genes were calculated by Bioconductor package DESeq2 (version 1.30.1,
https://bioconductor.org/packages/release/bioc/html/DESeq2.html) at a
fold change > 2 and p-value less than 0.01.[35] The gene expression level
was normalized as fragments per kilobase of bin per million mapped
reads (FPKM) by Cufflinks (version 2.2.1, http://cole-trapnell-lab.github.
io/cufflinks).[36]

Chromatin State Annotation: To capture histone modifications com-
bination, we used ChromHMM (version 1.11) to get chromatin state by
training a hidden Markov model.[12] The mapped bed files of all five his-
tone modification markers (H3K27ac, H3K4me1, H3K4me3, H3K27me3,
and H3K9me3) across five CRC development stages was binned into non-
overlapped 200-bp intervals using Bedtools software (version 2.29.2). The
whole-cell extract signal (input alignment files) were used as control data,
providing background signal level to adjust the binarization criteria. The
model was trained with a range of chromatin states from 10–15, and fi-
nally selected the 13 states model in subsequently analysis as it could
sufficiently capture the key interactions between all histone modification
markers (Figure 2A). With the chromatin state pattern and the enrichment
of each state on genomic annotation regions calculated by ChromHMM,
each state was labelled with a functional annotation. Next, these 13 chro-
matin states were classified into five categories (enhancer, promoter, tran-
scription repressed, heterochromatin, and quiescent) based on their func-
tion annotation. ChromHMM annotated all the 200-bp intervals with a
specific chromatin state across each stage in CRC development. With this,
a m × n matrix represented all states were created, where m denoted the
200-bp intervals and n is the time point. The state change across all time
points was described for every 200-bp interval within the entire genome
using a Sankey diagram (https://plotly.com/python/sankey-diagram/). A
gene was assigned to a specific chromatin state when the 200-bp bins an-
notated by this state had the highest frequency in ± 2 kb of the gene body
region. This highest frequency state was defined as the dominate chro-
matin state of a gene.

Dynamic Gene Analysis: To obtain dynamic expression genes across all
time points in mouse CRC development, a time course regression analy-
sis was conducted using maSigPro (version 1.58.0) implemented in R.[37]

In briefly, the expression of RNA was normalized to TMM by edgeR (ver-
sion 3.32.1),[38] and then fitted to a polynomial model with degree 4. The
goodness-of-fit (R2) would be calculated for all genes, and only those with
R2 > 0.7 would be identified as dynamic expression genes. Next, a K-means
clustering analysis for these dynamic expression genes was performed us-
ing maSigPro, with the param k from three to nine. Four distinct clusters
with obvious different expression patterns were gotten at last (Figure 3A).

In H3K27ac signal density dynamic analysis, the gene signal density
was normalized to RPM within the region of the gene body±1.5–10 kb. The
dynamic H3K27ac signal density in genes was identified in the same way
with RNA dynamic analysis. At last, nine distinct clusters were obtained.

Transcript Factor Enrichment: For H3K27ac in each mouse CRC devel-
opment stage, peaks calling by MACS2 across all replicates were merges
to obtain a non-redundant enhancer region list. Furthermore, the TSS
± 2 kb were removed to exclude an affect from the nucleosome free re-
gions. Then motif enrichment analysis was performed with the regions in
all five stages. The findMotifsGenome.pl module in HOMER (version 4.11,
http://homer.ucsd.edu/homer/) was used to identify transcript factor mo-
tifs, with the size parameter 600 bp.

To investigate regulation network of the transcript factor Otx2, a pub-
lic ChIP-seq data of Otx2 (GSE56098) generated from mouse embryonic
stem cells by Buecker et al. was selected.[25] The bigwig file of Otx2 from
their work was used to display the signal track in The UCSC browser view
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figures. To investigate regulation network of transcript factor identified, the
transcript factor putative target gene list from Cistrome Data Browser was
downloaded.[39]

Correlation Analysis between Histone Modifications and RNA Expression:
To evaluate the regulation of histone markers to gene RNA expression,
the average signal density RPM for each marker across TSS ± 1.5 kb, TSS
± 1.5–10 kb and TSS ± 10–100 kb regions around the gene promoter was
calculated. For OTX2 and NF-𝜅B target genes, Pearson correlation coef-
ficient in R between the gene expression level FPKM and marker’s signal
density RPM was calculated. In each time point, the gene’s FPKM and RPM
were averaged across all replicates.

Gene Function Analysis: Differential expression genes detected in the
2-, 4-, 7-, and 10-week versus control were used to perform gene set en-
richment analysis (GSEA) with R packages fgsea (version 1.16.0). Six CRC
related pathways and five immune related pathways were selected to clas-
sify the sample stages. For the genes with different dominate chromatin
state across CRC development stages, the chromatin state change profile
between two stages was summarized. New enhancer state genes at 10-
weeks, original from quiescent or promoter state genes, were used in bio-
logical process analysis. Genes in each cluster identified by RNA dynamic
analysis or H3K27ac dynamic analysis were used to conduct BP and KEGG
pathway analysis, which was performed by R package clusterProfiler (ver-
sion 3.18.1).[40]

ChIP-Seq and RNA-Seq Data Visualization: UCSC genomic track for hi-
stone marks, RNA expression and chromatin state beyond the RefSeq gene
model were drawn by karyoploteR,[41] using the alignment file of chro-
matin markers and state annotation bed files produced by ChromHMM.
Histone marker’s signal density panel across TSS and gene body were
plotted by in house R script, using the density matrix data produced by
deeptools (version 3.3.2).[42]

Reverse Transcription and Quantitative PCR: Cells were scraped down
and collected with centrifugation. Total RNA was extracted with RNA ex-
traction kit (Aidlab) according to the manufacturer’s manual. Approxi-
mately 1 μg of total RNA was used for reverse transcription with a first
strand cDNA synthesis kit (Toyobo). The resulted cDNA was then assayed
with quantitative PCR. 𝛽-actin was used for normalization. The sequences
of primers are in Table S5, Supporting Information. Assays were repeated
at least three times. Data were shown as average values ± SD of at least
three representative experiments. p-value was calculated using student’s
t test.

Cell Proliferation Assay: The cell proliferation was measured using the
MTT assay. Briefly, 1000 cells were seeded into 96-well plate per well. Six
well of each group were detected every day. MTT (0.25 μg) was put into
each well and incubated at 37 °C for 4 h. The medium with the formazan
sediment was dissolved in 50% DMF and 30% SDS (pH 4.7). The ab-
sorbance was measured at 570 nm. Assays were repeated at least three
times. Data were shown as average values ± SD of at least three represen-
tative experiments and p-value was calculated using student’s t test.

Transwell Assay: 1× 105 HCT116 cells were plated in medium with-
out serum or growth factors in the upper chamber with a Matrigel-coated
membrane (24-well insert; pore size, 8 μm; BD Biosciences), and medium
supplemented with 10% fetal bovine serum was used as a chemoattrac-
tant in the lower chamber. After 36 h of incubation, cells that did not invade
through the membrane were removed by a cotton swab. Cells on the lower
surface of the membrane were stained with crystal violet and counted. As-
says were repeated at least three times. Data were shown as average values
± SD of at least three representative experiments and p-value was calcu-
lated using student’s t test.

Xenograft Experiments in Mice: The 5-week-old male BALB/C nude
mice were purchased from Beijing HFK Bioscience Co. Ltd. Colon can-
cer model was established by injecting subcutaneously 2× 106 HCT116
cells per site into the flank regions of the mice. Tumor volumes were mea-
sured twice a week using calipers. Tumor volumes were calculated as V =
0.5× length×width2. After 24 days of injection, the tumors were harvested
and weighed.

Availability of NGS Data: All the deep sequencing data generated
in the current study have been submitted to GEO database, with the
Acc. NO. GSE178145 (RNA-seq) and GSE178144 (ChIP-seq). Publicly

available AOM/DSS RNA-seq data are available under GEO Acc. NO.
GSE57533. ChIP-seq data for CRC patients are accessible at GEO Acc. NO.
GSE156614. The remaining data are available within the article, Support-
ing Information, or available from the authors upon request.

Code Availability: The code for all analyses presented in this paper is
available from the authors upon request.
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Supporting Information is available from the Wiley Online Library or from
the author.
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