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We propose a new method for EEG source localization. An efficient solution to this problem requires choosing an appropriate
regularization term in order to constraint the original problem. In our work, we adopt the Bayesian framework to place
constraints; hence, the regularization term is closely connected to the prior distribution. More specifically, we propose a new
sparse prior for the localization of EEG sources.)e proposed prior distribution has sparse properties favoring focal EEG sources.
In order to obtain an efficient algorithm, we use the variational Bayesian (VB) framework which provides us with a tractable
iterative algorithm of closed-form equations. Additionally, we provide extensions of our method in cases where we observe group
structures and spatially extended EEG sources. We have performed experiments using synthetic EEG data and real EEG data from
three publicly available datasets. )e real EEG data are produced due to the presentation of auditory and visual stimulus. We
compare the proposed method with well-known approaches of EEG source localization and the results have shown that our
method presents state-of-the-art performance, especially in cases where we expect few activated brain regions. )e proposed
method can effectively detect EEG sources in various circumstances. Overall, the proposed sparse prior for EEG source lo-
calization results in more accurate localization of EEG sources than state-of-the-art approaches.

1. Introduction

Brain imaging techniques are important tools since they give
us the ability to understand the neural mechanisms of
complex human behavior in cognitive neuroscience. Also,
they have clinical applications in patients with brain tumors
and epilepsy where functional brain imaging is useful for
neurosurgical planning and navigation [1–4]. Among var-
ious brain imaging techniques, electroencephalography
(EEG) is preferable due to the low cost of EEG devices, the
high temporal resolution of EEG signal, and the portability
of EEG devices. )e EEG is a noninvasive brain imaging
technique that measures the scalp electric potentials pro-
duced by the firing of a very large number of neurons
functioning inside the brain. )e identification of firing
neurons is very crucial since it gives us the ability to study
brain dynamics in time scales of milliseconds. )e identi-
fication of the electric current sources responsible for the
electrical activity inside the brain based on the EEG activity
recorded at the scalp (through electrodes) is one of the major

problems in EEG processing. )is problem is referred to as
the EEG source localization [3, 4] or EEG inverse problem
[3, 5].

)e EEG inverse problem involves the calculation of
locations and amplitudes of EEG sources given the EEG
activity and the geometry and conductivity properties of the
head. During the last two decades, a wide range of methods
have been developed for the identification of EEG sources.
)ese can be classified into two large groups: (a) dipole-
fitting models and (b) distributed-source models. Dipole-
fitting models represent the brain activity using a small
number of dipoles and try to estimate the amplitudes, the
orientations, and the position of a few dipoles that explain
the data [4, 5]. However, these methods are sensitive to the
initial guess of the number of dipoles and their initial lo-
cations. On the other hand, distributed-source methods use
a large number of dipoles with fixed positions and try to
estimate their amplitudes by solving a linear inverse problem
[4, 5]. )e EEG linear inverse problem is ill-posed since the
number of EEG sources is much larger than the number of
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EEG sensors. Also, the problem is becoming more difficult
due to the presence of noise.

)e distributed-source methods can be divided into two
large families, reflecting how they deal with the dimension of
time. From one side, we have methods that estimate the
spatial source distribution instant by instant [3], while on the
other side, we have the spatiotemporal modelling ap-
proaches [3, 4]. Both families have their advantages and
disadvantages. For example, instant-by-instant (or instan-
taneous) methods are suitable for continuous brain scanning
[3], while spatiotemporal methods are suitable for EEG
sources with oscillatory activity [3]. Among the first reported
instantaneous methods is that of the Minimum Norm Es-
timation (MNE) [6]. However, this method tends to prefer
low-activity EEG sources close to the surface over strong-
activity EEG sources in depth. To correct this problem,
various methods have been proposed including weighted
minimum norm, Loretta [7] and sLoretta [8]. )e above
methods need to adjust the regularization parameter
through a cross-validation procedure or the L-curve method
[5]. To account for the time evolution of an EEG source,
authors have used spatiotemporal models [4, 9, 10]. Rep-
resentative algorithms of this family are the Multiple Sparse
Priors algorithm [11], the Champagne algorithm [12], and
algorithms based on the Kalman Filtering [9]. Assuming that
we have much larger time points than sensors, these algo-
rithms provide us with accurate estimates on how a source
evolves across time.

EEG sources could possess various properties related to
the induced brain activity. For an EEG source, it is critical to
know if it is focal or not [13, 14], its spatial pattern (how its
neighborhood is affected) [11, 15, 16], and if the oscillatory
activity is present or not across time [3, 9–11, 15]. Fur-
thermore, a combination of EEG sources produces complex
brain activity that spans across multiple spatial (and/or time)
scales [15]. All these properties could be observed either in
conjunction or in disjunction depending on the underlying
EEG study. Furthermore, these properties are included in
the overall analysis through the assumed EEG sources’
model and various assumptions about the model. Clearly,
the linear observation model [17, 18], the linear dynamical
model (or Kalman Filters) [17, 18], and the multiple mea-
surement vector (MMV) model [19] make different gen-
erative modelling assumptions about the underlying
mechanisms that produce the EEG data.

)e spatial properties of EEG sources are encoded into
the linear observation model through the use of prior dis-
tributions or regularization terms. In cases where we expect
localized activity (i.e., in certain types of epilepsy), a suitable
assumption is to assume that EEG sources are sparse,
meaning that a few of them are activated at a specific time
instant. In that case, sparse prior distributions could be used
[13] or regularization terms in the form of L1-norm [14, 20].
However, EEG sources can also be both sparse and spatially
distributed. Based on that, many authors develop various
sparsity-promoting methods by including in their method
the spatially diffused property by segmenting the brain into
different predefined regions [11], by using regularization
terms that take into account the spatial extension of EEG

sources [21], by extending the lead field matrix to multiple
spatial scales [15, 16]. However, the spatial scale over which
sparsity might apply remains an area of investigation.

In the present work, we propose a new framework to deal
with localized (focal) activity, which can be extended in
multiple spatial scales. Our contributions, with respect to the
EEG source localization, are (a) a new sparse prior for the
localization of EEG sources [22] and its extension to include
group-sparse structures, (b) an extended (or modified) lead
field matrix for the case of spatially extended EEG sources,
and (c) extensive experiments using three real EEG datasets
with various properties and differences between them. A
preliminary version of this work has been reported in [22].
)e remainder of this paper is organized as follows. In
Section 2, we describe the proposed algorithmic approach
for the solution of the inverse EEG problem.)en in Section
3, we present the experiments of our approach on synthetic
and real EEG data. Also, a comparison of our algorithms
with baseline and state-of-the-art algorithms is provided.
Finally, in Section 4, we discuss our conclusions and future
directions of our work.

2. Materials and Methods

2.1. Linear Observation Model. In EEG inverse problem, we
desire to find the brain activity given the EEGmeasurements
and the geometry and conductivity properties of the head. In
our work, we use the distributed-source model. )is means
that we use a finite number of dipoles in the cortex at given
locations. Hence, the potential at the scalp is a linear
combination of dipoles amplitudes, represented by the
following equation:

y � Hx + e, (1)

where y ∈ RN is the EEG measurement vector acquired by
the N electrodes, x ∈ R3M contains the amplitudes of M

dipoles along the three spatial dimensions, and H ∈ RN×3M

is the lead field matrix that describes the propagation of
electromagnetic field from the sources to the sensors and it
contains information related to the geometry and conduc-
tivity properties of the head.)e vector e is an additive white
Gaussian noise.)e EEG inverse problem of the observation
model of equation (1) consists of estimating the vector x
given the data y and the lead field matrix H. In the next
subsection, we describe an approach for this process by using
the variational Bayesian (VB) framework. More specifically,
we define the hierarchical sparse prior over the amplitudes of
EEG sources, the likelihood of the model, and its hyper-
parameters. Also, we can observe here that our instanta-
neous linear observationmodel is suitable for cases where we
do not have a correlation between time samples, the noise,
and sources which are nonstationary quantities, and the
number of time samples is smaller than the number of
sensors.

Distributed EEG source localization represents a highly
ill-posed problem since themeasurements are in order of 102
while unknowns are in order larger than 104. One approach
to reducing the complexity of the problem is to restrict the
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solutions space by reducing the number of unknowns. In
this direction, two approaches are used considerably: the
restriction of solutions (or EEG sources) to the cortical
surface of the brain and the placement of constraints in
dipole orientation [23, 24]. )e above restrictions are re-
flected in the construction of the lead field matrix H. In our
work, we examine both the aforementioned cases.

2.2. Sparse Bayesian Learning. From a machine learning
perspective, sparsity is a very helpful property since the
processing is faster in a sparse representation where few
coefficients reveal the information we are looking for. Hence,
sparse priors help us to determine the model order in an
automatic way and reduce its complexity. In addition to the
above, from a brain imaging perspective, the motivation of
using sparse priors is based on the localized (or focal) activity
that can be observed in certain types of epilepsy and on
observed sparse activations in the brain during high cog-
nitive processing as revealed by various brain imaging
techniques. In [13], sparse priors, based on a Bernoulli
Laplacian prior, are used resulting in a posterior distribution
where the estimators cannot be computed with close-form
expressions. For this reason, the authors in [13] use the
Markov Chain Monte Carlo framework.

In this work, the EEG sources x are treated as a random
variable following a Gaussian distribution of zero mean and
variance a−1

i λ−1
i :

p(x|a; λ) � N(x|0,Λ) � 􏽙
3M

i�1
N xi|0, a

−1
i λ−1

i􏼐 􏼑, (2)

where N is the symbol for Gaussian distribution. In Sparse
Bayesian Learning literature [18, 25, 26], a common approach is
to assume that the covariancematrixΛ is a diagonal matrix with
elements a−1

i , i � 1, . . . , 3M. Each parameter ai, which controls
the prior distribution of the EEG sources x, follows a Gamma
distribution, so the overall prior over all ai is a product of
Gamma distributions given by p(a) � 􏽑

3M
i�1 Gamma(ai;ba,ca).

However, in our study, we introduce one more parameter into
the distribution.More specifically, we assume that the covariance
matrix Λ is a diagonal matrix with elements
a−1

i λ−1
i , i � 1, ... ,3M. In our analysis, parameters λi are assumed

to be known and deterministic quantities.
At this point, it is worth examining the marginal prior

distribution of EEG source xi by eliminating the hyper-
parameters ai:

p xi; λi( 􏼁 � 􏽚 p xi|ai; λi( 􏼁p ai( 􏼁dai

� 􏽚N xi|0, a
−1
i λ−1

i􏼐 􏼑Gamma ai; ba, ca( 􏼁dai

∝
λi

ba

􏼠 􏼡

1/2

1 +
λix

2
i

ba

􏼢 􏼣

− ca+1/2( )

.

(3)

Equation (3) can be recognized as a Student-t dis-
tribution with zero mean, shape parameter ca, and scale
parameter ba/λi. We can see that parameter λi controls
the scale of the Student-t distribution. In addition, by
adopting a procedure similar to [25], we can show that
the EEG sources have the improper prior
p(xi)∝ 1/(λ

1/2
i · |xi|). Now, by setting λi⟶ 1/|xi|, we

obtain p(xi)∝ 1/ · |xi|
1/2 which can be recognized as an

extremely “sparse” prior.
)e overall precision (inverse variance) β of the noise

follows a Gamma distribution: p(β) � Gamma(β; b, c) �

(1/(Γ(c)))((β(c− 1))/bc)exp −β/b􏼈 􏼉, where b and c are the scale
and the shape of the Gamma distribution, respectively. We
use the Gamma distribution for the noise components for
two reasons: first, this distribution is conjugate to the
Gaussian distribution, which helps us in the derivation of
closed-form solutions, and second, it places the positivity
restriction on the overall variance and the scaling
parameters.

So, the overall prior over model parameters x, a, β􏼈 􏼉 is
given by p(x, a, β; λ) � p(x|a; λ)􏽑

3M
i�1p(ai)p(β). )e likeli-

hood of the data is given by

p(y|x, β; λ) �
βN/2

(2π)
N/2 · exp −

β
2
(y − Hx)

T
(y − Hx)􏼨 􏼩.

(4)

To apply the VB methodology [17], we need to define an
approximate posterior based on one factorization over the
parameters x, a, β􏼈 􏼉. In our study, we choose the following
factorization: q(x, a, β; λ) � q(x|a; λ)􏽑

3M
i�1q(ai)q(β).

Applying the VB methodology and taking into account
the above factorization, the following posteriors are
obtained:

q(x) � N 􏽢x,Cx( 􏼁,

q(β) � Gamma β; b′, c′( 􏼁,

q(a) � 􏽙
D

i�1
Gamma ai; bai

′ , cai
′􏼐 􏼑.

(5)

)e moments of each distribution are calculated by
applying iteratively the following equations until
convergence:

C(k+1)
x � 􏽢β

(k)
HTH + 􏽢Λ(k+1)

􏼒 􏼓
−1

, (6)

􏽢x(k+1)
� 􏽢β

(k)
HTH + 􏽢Λ(k+1)

􏼒 􏼓
−1

􏽢βHTy, (7)

1

b
(k+1)′
ai

�
λ(k+1)

i

2
􏽢x

(k+1)
i􏼐 􏼑

2
+ C(k+1)

x (i, i)􏼒 􏼓 +
1
ba

, (8)
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c
(k+1)′
ai

�
1
2

+ ca,

q(a) � 􏽙
D

i�1
Gamma ai; bai

′, cai
′􏼐 􏼑,

1

b
(k+1)′
β

�
1
2
y − Hx(k+1)

􏼐 􏼑
T
y − Hx(k+1)

􏼐 􏼑 + tr HTHC(k+1)
x􏼐 􏼑 +

1
b
,

c
(k+1)′
β �

N

2
+ c,

􏽢β
(k+1)

� b
(k+1)′
β c

(k+1)′
β .

(9)

In the above equations, the matrix 􏽢Λ(k+1) is a diagonal
matrix with 􏽢a

(k)
i · λ(k+1)

i in its main diagonal. For λ(k+1)
i , we

follow the considerations of [27] and we set them to 1/|􏽢x(k)
i |.

With respect to other similar approaches [25, 28], we can
observe the difference in equations (7) and (8). More spe-
cifically, in our approach, the parameter bai

′ is weighted by
the corresponding parameter λi. Observe here that this
parameter is affecting the scale of marginal Student-t dis-
tribution (see equation (3)).

2.3. Group-Sparse Priors. In the subsequent analysis, we
assume that the EEG sources x have a group structure. More
specifically, we define G groups of EEG sources such that the
vector xg contains dg coefficients assigned to group g.
Sparsity between groups can be achieved by selecting
carefully the prior distribution over them. Assuming a priori
independence between groups and that each group follows a
Gaussian distribution with zero mean and covariance matrix
a−1

g Idg
, the prior over coefficients is given by

p(x|a) � 􏽙
G

g�1
N xg | 0dg

, a
−1
g Idg

􏼒 􏼓, (10)

where N is the symbol for Gaussian distribution. Fur-
thermore, we assume that each parameter ag, which controls
the group sparsity of the EEG sources x, follows a Gamma
distribution, so the overall prior over all ag is a product of
Gamma distributions given by p(a) �

􏽑
G
g�1 Gamma(ag; ba, ca). )e above hierarchical prior be-

longs to the family of conjugate distributions and it is well
known for its sparse properties [25, 26] with respect to the
groups. As before (see Section 2.2), we change the above
prior by introducing one more parameter. More specifically,
we assume that the prior covariance matrix is a diagonal
matrix with elements a−1

g λ−1
g . In our analysis, parameters λg

are assumed to be known and deterministic quantities. Now,
the prior distribution of coefficients is given by

p(x|a; λ) � 􏽙
G

g�1
N xg | 0, a

−1
g λ−1

g Idg
􏼒 􏼓. (11)

Using the above group-sparse prior and following a
similar VB procedure as that in the previous section, we can
derive an iterative algorithm. More information about the
derivation of the group-based algorithm can be found in

[29]. Also, with respect to the above algorithm, a coefficient
could potentially belong to several groups. Overlapping
between groups is permitted; however, special care must be
taken in order to reflect the anatomical and functional
properties of the brain.

It interesting at this point to examine possible group
strategies with respect to the inverse EEG problem. We can
observe here that in equation (1) each dipole is represented by
three components in the lead field matrix, one for each of the
three spatial dimensions. So, an obvious choice of grouping is
to define one group for each dipole. In that case, we have
G � M and dg � 3 for the group-sparse prior. Another choice
of grouping is to use an anatomical (or functional) template
(or brain maps) to define the groups. Finally, a third option is
to define the groups by using a criterion based on distances
between the dipoles (i.e., dipoles in close distance are expected
to behave in a similar fashion). Observe here that the first two
group creation strategies are based on information related to
the brain’s structure, organization, and function. Also, in
these cases, one dipole belongs only to one group (the groups
are disjointed sets and there is no overlap between them),
while in the distance-based grouping, one dipole could belong
to various groups (overlapping between groups exists). In all
the above cases, the structure of groups is considered known
before the application of the algorithm.

2.4. Spatially Extended EEG Sources. In the above sections,
we have assumed that the EEG sources are focal in nature and
we examined their sparseness in the original EEG source
domain. However, EEG sources could be spatially extended in
cases such as in cognitive tasks or spontaneous states [3]. In
this subsection, we borrow one of the general ideas from the
Compress Sensing framework [30]. More specifically, we
assume that EEG sources, x, are sparse in another domain
which we call it ψ-domain. In our approach, the ψ-domain
could be the wavelet domain, Fourier domain, discrete cosine
domain, or any other linear transformation and it is repre-
sented by the matrixΨ. )e EEG sources, x, can be written as

x � Ψz, (12)

where z is a vector that contains the coefficients of EEG
sources in the ψ-domain and also this vector has sparse
nature due to the assumption of sources’ sparseness in the
ψ-domain. Now, the basic equation of our work (equation
(1)) can be written in the ψ-domain as

y � Hx + e

� HΨz + e

� Hψz + e.

(13)

We can observe here that the original lead field matrix
has been modified by the transformation matrix Ψ,
Hψ � HΨ. Using one of the previous algorithms (or any
other sparsity induced algorithm), we can find the coeffi-
cients z, and finally, the EEG sources can be obtained by
using equation (12).

)e choice of ψ-domain (which is reflected in the
structure of matrix Ψ) is crucial for the properties of
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original EEG sources, x. Also, this choice must incor-
porate some prior knowledge about the original EEG
sources. Observe here that the EEG sources are positioned
on a grid in 3D space; hence, direct use of wavelet
transform or Fourier transform is not an easy task.
Furthermore, interpretation of the results from a neu-
rophysiological viewpoint is more difficult. Since our goal
is to find spatially extended EEG sources, we adopt a local
spatial smoothing kernel [16]. More specifically, for i-th
EEG source, we define

ψij �
1, if i � j,

exp −r · d
2
ij􏼐 􏼑, if i≠ j,

⎧⎨

⎩ (14)

where dij, i � 1, . . . , N, j � 1, . . . , N is the spatial distance
between the i-th and j-th EEG sources, while r is a parameter
that controls the extension of spatial smoothness between
individual EEG sources. In our work, the parameter r is
assumed to be known; however, we can estimate it by using a
cross-validation approach or methods based on multiple
kernel learning [31, 32]. Looking at equation (12), we can
verify that the original EEG sources are spatially extended
due to Ψz and the properties of the vector z (sparsity) and
the matrix Ψ (spatially extended).

Concluding this section, we want to mention that
three approaches, using the Bayesian framework, are
provided.)e first approach (we call it Fan) is described in
Section 2.1 and it presents the backbone of our overall
methodology. )is method is suitable for finding focal
EEG sources due to its sparse properties. )e second
approach (we call it FanGr) is an extension of Fan ap-
proach. )e main characteristic of this method is that now
we can define groups over EEG sources. Finally, the third
approach (we call it FanSmooth) is similar to the first
approach but with one critical difference in the lead field
matrix. In this last approach, we use a modified lead field
matrix using ideas from CS framework.

3. Experiments and Results

In this section, we present our experiments with the cor-
responding results using synthetic EEG data and real EEG
data from three EEG experiments. )e real EEG data are
produced due to the presentation of auditory and visual
stimulus on the participants. In all our experiments, we have
used the FieldTrip toolbox [33] to preprocess the EEG data
and to construct the lead field matrices. In our study, we
adopted two approaches for the construction of lead field
matrices, the cortical-based approach, and the volumetric-
based approach.

3.1. Experiments Using Synthetic EEG Data. Synthetic data
with few pointwise source activations (see equation (1)) were
generated using realistic head models with electrodes placed
according to the 10–10 international system of electrode
placement. In our study, we investigate two cases of, with
respect to the number of channels, 128 channels and 256
channels.

3.1.1. Activations. In our work, we investigated two different
kinds of activations: (1) single dipole activations, and (2)
multiple dipole activations. )e first case represents a sit-
uation where one dipole is activated among many, and the
second case represents a situation where many dipoles
(possibly distant) are activated. )e amplitudes of active
EEG sources were samples from aGaussian distribution with
zero mean and variance one. Finally, with respect to EEG
measurements, we examine two cases: noise-free measure-
ments and noisy measurements. In noisy measurements, we
added white Gaussian noise and the signal-to-noise ratio
(SNR) was defined to 60 dB.

3.1.2. Lead Field Matrix. With respect to the lead field
matrix, we examined two cases for its construction: the
cortical-based case and the volumetric-based case. Cortical
based: in this case, the dipoles are placed on a spatial grid
covering the cortical surface. )e positions and orientations
of dipoles are fixed. In addition, orientations are normals to
the cortical surface [13, 24]. Finally, from the perspective of
neurophysiology, the source space is the cortex (i.e., we
assume that the observed electrical activity is produced by a
specific brain structure). )e number of dipoles was 5124;
hence, the resulting lead field matrix is H ∈ R128×5124 or
H ∈ R256×5124. Volumetric (or grid) based: in this case, the
dipoles are placed on a spatial grid covering the entire brain.
Also, the positions of dipoles are fixed but the orientations
are free. In addition, the source space includes the cortex,
subcortical structures, and the cerebellum. )e grid reso-
lution was set to 1 cm resulting in 2020 dipoles; hence, the
resulting lead field matrix is H ∈ R128×6060 or H ∈ R256×6060.
Overall, in this set of experiments, we examine configura-
tions of inverse EEG problems with respect to the number of
channels, the type of lead field matrix, the presence (or not)
of noise, and the type of activations. Each configuration is
repeated 50 times in order to obtain averaged results with
respect to the performance of each method.

3.1.3. Performance Measures. In order to evaluate the per-
formance of an algorithm, we adopt the following measures.
Reconstruction error: we use the reconstruction error be-
tween the true EEG sources, xtrue, and the estimated EEG
sources, xest, given by ‖xest − xtrue‖

2
2/‖xtrue‖

2
2. )is measure

will determine whether the algorithm recovers the source
energy. Localization error [20]: we use the Euclidean dis-
tance between the simulated source and the maximum of the
estimated activity within the sphere neighboring the sim-
ulated source. )is measure will determine whether the
algorithm is able to find the point of the simulated source. In
our study, the neighbor was set to 25mm [20]. A′ metric
[16]: this metric is computed as A′ � ((HR − FR)/2) + (1/2),
where HR is the hit rate and FR is the false positive rate. )is
measure estimates the area under the Receiver Operator
Characteristic (ROC) curve and it is related to the detection
accuracy of the algorithm (if the area under the ROC is large,
then the hit rate is high compared to the false positive rate).
In order to define the hit rates, we follow a similar procedure
to that of [16], where we included in the calculation of hit
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rates voxels that are at least 0.1% of the maximum activation
of the localization result. Finally, we compared our methods
with the following approaches: (a) the Minimum Norm
Estimator (MNE) [4, 6], a classical approach for the EEG
inverse problem, (b) the Relevance Vector Machines using
the VB approach (RVM-VB) [28], and (c) the plain
Champagne (Champ) [4, 12] using the available code from
the NUTMEG toolbox [34].

3.1.4. Results on Synthetic EEGData. In Figure 1, we provide
the obtained results when a cortical-based lead field matrix is
used with respect to all performance measures. )e results
are shown with respect to the measures, the number of active
EEG sources, the number of channels, and the presence (or
not) of noise. We can see that the proposed approach
presents the best performance compared to other methods.
More specifically, the proposedmethod presents the smallest
reconstruction and location error and the highest value for
A′ metric. )is is observed in all cases irrespective of the
number of active EEG sources or the number of channels or
to the presence of noise. Additionally, in Figure 2, we present
the obtained results when the volumetric-based lead field
matrix is used. In this set of experiments, we use, also, the
group version of our method since one dipole can be

considered as a group of three elementary dipoles (one for
each of three spatial dimensions). We observe that both
versions of our approach present better performance (in
terms of reconstruction error, location error, and A′ metric)
than the other methods. Also, we can see that, for the
majority of activation profiles, the adoption of grouping
structures increases the performance of our analysis, espe-
cially when we have multiple activations. Clearly, the pro-
posed approach is able to reconstruct more accurately the
spatial pattern of EEG sources without introducing error in
the location of EEG source(s) resulting in high detection
accuracy.

3.2. Experiments Using Real EEG Data. In this section, we
provide our results from experiments using real EEG data
from three EEG datasets. )e EEG experiments were
designed to study brain responses with respect to auditory
and visual stimuli. Furthermore, in this section, we include
in our analysis the FanSmooth (r � 0.05) method. )e value
for spatial smoothness r has been determined after the
empirical evaluation of obtained brain maps.

3.2.1. Experiments Using Auditory EEGData. In this section,
we perform experiments using EEG data that corresponds to

128 channels 256 channels 128 channels 256 channels
1.2

1

0.8

0.6

0.4

0.2

0
0 1 1053

# sources
2

Re
co

ns
tr

uc
tio

n 
er

ro
r

MNE
Champ

RVM–VB
Fan

1.2

1

0.8

0.6

0.4

0.2

0
0 1 1053

# sources
2

A
′
 m

ea
su

re

MNE
Champ

RVM–VB
Fan

1.2

1

0.8

0.6

0.4

0.2

0
0 1 1053

# sources
2

A
′
 m

ea
su

re

MNE
Champ

RVM–VB
Fan

1.2

1

0.8

0.6

0.4

0.2

0
0 1 1053

# sources
2

A
′
 m

ea
su

re

MNE
Champ

RVM–VB
Fan

1.2

1

0.8

0.6

0.4

0.2

0
0 1 1053

# sources
2

A
′
 m

ea
su

re
MNE
Champ

RVM–VB
Fan

25

20

15

10

5

0
0 1 1053

# sources
2

Lo
ca

tio
n 

er
ro

r

MNE
Champ

RVM–VB
Fan

25

20

15

10

5

0
0 1 1053

# sources
2

Lo
ca

tio
n 

er
ro

r

MNE
Champ

RVM–VB
Fan

25

20

15

10

5

0
0 1 1053

# sources
2

Lo
ca

tio
n 

er
ro

r

MNE
Champ

RVM–VB
Fan

25

20

15

10

5

0
0 1 1053

# sources
2

Lo
ca

tio
n 

er
ro

r

MNE
Champ

RVM–VB
Fan

1.2

1

0.8

0.6

0.4

0.2

0
0 1 1053

# sources
2

Re
co

ns
tr

uc
tio

n 
er

ro
r

MNE
Champ

RVM–VB
Fan

1.2

1

0.8

0.6

0.4

0.2

0
0 1 1053

# sources
2

Re
co

ns
tr

uc
tio

n 
er

ro
r

MNE
Champ

RVM–VB
Fan

1.2

1

0.8

0.6

0.4

0.2

0
0 1 1053

# sources
2

Re
co

ns
tr

uc
tio

n 
er

ro
r

MNE
Champ

RVM–VB
Fan

Noise free Noisy

Noise free Noisy

Noise free Noisy

Figure 1: Obtained performance measures in the case of cortical-based lead field matrix.
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an auditory oddball paradigm and they can be downloaded
from the homepage of the FieldTrip toolbox2. )e raw EEG
data consist in 600 trials. )e duration of each trial was
2 secs, 1sec of EEG data preceding the acoustic stimulus, and
1sec of EEG data following the stimulus. )e EEG activity
was recorded using 128 channels at 1000Hz. )e EEG trials
were band-pass filtered at 1–40Hz and downsampled at
250Hz. A realistic head model was used based on cortical
surface approach. )e number of dipoles was 5124; hence,
the resulting lead field matrix is H ∈ R128×5124. ERPs were
formed by averaging over all trials. In this experiment, brain
sources are detected by algorithms for the time point that
corresponds to the peak of the electrical activity in the
frontal-central scalp in the time range between 100ms and
200ms.

)e estimated brain activity using the aforementioned
methods is shown in Figure 3. )e Fan, FanSmooth, RVM-
VB, and Champmethods present activations in the temporal
lobe, as expected in auditory experiments. However, the Fan,
the FanSmooth, and the Champmethods provide activations
on both hemispheres of the temporal lobe, while the RVM-
VB method provides activations only to the right temporal

lobe. )e MNE method does not show activation in the
temporal lobe. In addition to the above, we observe that all
methods, besides Champ, present activations in the right
frontal lobe.)is type of activation is not unusual in auditory
experiments, especially when deviant tones are involved
[35, 36].

3.2.2. Experiments Using Visual (Facial) Evoked Potentials
EEG Data. )e EEG data used in this section is part of the
Multimodal Face Dataset available in the SPM software 3.
)is dataset was acquired from a face perception study in
which the subject had to judge the symmetry of a mixed set
of faces and scrambled faces. More details about the dataset
can be found in [37]. )e EEG acquisition system was a 128-
channel ActiveTwo Biosemi system with a sampling fre-
quency equal to 2048Hz. )e data were downsampled to
256Hz, and after artifact rejection, the 309 epochs were
averaged and low-pass filtered at 20Hz. A realistic head
model was used based on cortical surface approach. )e
number of dipoles was 5124; hence, the resulting lead field
matrix is H ∈ R128×5124.
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Figure 2: Obtained performance measures in the case of volumetric-based lead field matrix.
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)e estimated activities from all methods are shown in
Figure 4 (at 100ms). Careful inspection of these images
reveals that all methods present their primary activations on
the occipital lobe as expected in this kind of experiment.
However, we can also observe substantial differences with re-
spect to the type of activation. More specifically, the RVM-VB
and the Fan methods present the most compact activated area
compared to other methods. Additionally, the Fan, the FanS-
mooth, and the Champ methods present bilateral activation on
the occipital lobe, while the RVM-VB and the MNE methods
present activation only to the right occipital lobe. Furthermore,
the Fan and theMNEmethods present secondary activations on
the frontal lobe. In addition to that, the MNE method presents
activations to the Supplementary Motor Area.

3.2.3. Experiments Using Steady-State Visual Evoked Po-
tentials EEG Data. In this subsection, the EEG data corre-
sponds to a Steady-State Visual Evoked Potentials (SSVEP)
Brain-Computer Interface (BCI) paradigm [38]. In this dataset,
40-target visual stimuli were presented on a 23.6 in LCD
monitor.)irty-five healthy subjects with normal or corrected-
to-normal vision participated in this study. EEG data were
recorded with 64 electrodes according to an extended 10–20
system in order to record whole-head EEG. Data epochs were
extracted according to event triggers generated by the stimulus
program. All data epochs were downsampled to 250Hz. )e
EEG data have been band-pass (zero phases) filtered from 4Hz
to 90Hz with an infinite impulse response (IIR) filter (by using
the filtfilt function in MATLAB). From this dataset for our

(a)

(b)

(c)

(d)

(e)

Figure 3: Brain maps showing EEG sources in the case of auditory
EEG data. (a) Fan. (b) Fan smooth. (c) MNE. (d) RVM-VB. (e)
Champ.

(a)

(b)

(c)

(d)

(e)

Figure 4: Brain maps showing EEG sources in the case of Visual
(Faces) EEG data. (a) Fan. (b) Fan smooth. (c) MNE. (d) RVM-VB.
(e) Champ.
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analysis, we have used the EEG trials from the first subject
which are corresponding to the first target.

In this experiment, brain sources are detected by cal-
culating the average scalp electrical activity between 1 sec
and 4 sec. )e estimated brain activity for all algorithms is
shown in Figure 5. We can observe that all algorithms
provide activated areas in the left part of the occipital lobe. In
addition to that, the MNE methods provide also activations
on the right part of the occipital lobe. Furthermore, we can
observe activations on the frontal lobe from FanSmooth and
MNE methods, while the Fan and FanSmooth methods
provide an additional activation on the temporal lobe.

Concluding this section with real EEG data, it is worth
providing a qualitative comparison between the methods

and their properties. )e Fan algorithm provides the most
compact activated areas compared to other methods due to
their inherent characteristic of sparseness. )is observation
is justified by observing the results when real EEG data are
used as well as the “theoretical” implications of equation (3).
On the other side, the FanSmooth algorithm provides a
spatially extended activated area. Between these two extreme
cases lie the RVM-VB algorithm and the Champ algorithm.
However, this was expected due to the fact that (1) the RVM-
VB algorithm and the Champ algorithm use a similar prior
for EEG sources, which does not encourage sparsest solu-
tions than our proposed prior, and (2) the basic version of
them cannot handle spatially extended sources.

3.2.4. Volumetric Lead Field Matrix. In this section, we
provide experiments using the Faces EEG data. However, we
have used a volumetric lead field matrix where the dipoles
are placed on a spatial grid covering the entire brain. )e
grid resolution was set to 1 cm resulting in 2020 dipoles;
hence, the resulting lead field matrix is H ∈ R128×(3×2020).
Our goal in these experiments is to explore the behavior of
our algorithms when groups of elementary dipoles are
present. We perform a comparison between FanGr, Fan, and
Champ algorithms. )e FanGr algorithm is an extension of
Fan algorithm when we want to utilize groups of dipoles,
while we have used Champ algorithm as a baseline algorithm
for comparative purposes.

In Figure 6, we provide the estimated activity of the
aforementioned algorithms for the Faces EEG data. )e

(a)

(b)

(c)

(d)

(e)

Figure 5: Brain maps showing EEG sources in the case of SSVEP
EEG data. (a) Fan. (b) Fan smooth. (c) MNE. (d) RVM-VB. (e)
Champ.

(a)

(b)

(c)

Figure 6: Brain maps (projected on the cortical surface) showing
EEG sources in the case of Visual (Faces) EEG data when a vol-
umetric-based lead field matrix is used. (a) Fan. (b) FanGr. (c)
Champ.
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preprocessing steps of EEG data are described in Section
3.2.2. We can observe that all algorithms provide activation
in the occipital lobe as expected. However, we can observe
differences in the pattern of activations. )e activated area is
larger in the Champ algorithm, followed by Fan algorithm,
and, lastly, the FanGr algorithm provides the smallest ac-
tivated area in the occipital lobe. We can, also, observe that
the strength of activation is stronger in the left part of the
occipital lobe for the FanGr and Champ algorithms, while
the Fan algorithm presents strong activations on both parts
of the occipital lobe. In addition to the above, we can observe
that the Champ algorithm provides a secondary activation in
the parietal lobe which cannot be justified by the type of
experiments and the results that we obtained by all other
algorithms and the two lead field matrices; hence, we assume
that this activation is a spurious one. Concluding this sec-
tion, we want to mention that both types of lead field
matrices do not affect considerably the obtained results,
irrelevant to the method that it was used to solve the inverse
EEG problem. However, this observation is also affected by
the type of EEG experiment.

4. Conclusions

In this work, we proposed a new algorithm (and its gradual
extensions) to solve the EEG inverse problem. In this type of
inverse problems, crucial part has the regularization term. In
order to regularize the EEG inverse problem, we adopt the
Bayesian approach; hence, regularizations are incorporated
into the overall procedure in terms of prior distributions.
Furthermore, we proposed new sparse priors for the
modelling of EEG sources. )e main contribution of these
priors is that now we are able to examine the notion of
sparseness in EEG source modelling, using structures of
groups. Additionally, the basic idea of CS framework was
used to provide us with modified lead field matrices spe-
cialized in modelling spatially extended EEG sources. Under
the Bayesian formulation, the posterior distribution in our
problem was intractable and to figure out this problem, we
adopted the VB framework.)e proposed Bayesian methods
have been tested using head models with different geome-
tries.)e obtained results, using synthetic and real EEG data,
show the merits of our methods in the estimation of EEG
sources.

In the future, our research will be focused on accurate
modelling of the head’s properties and spatiotemporal ex-
tensions of our method with applications in the BCI domain
[39–41]. More specifically, we intend to combine head
models with different head geometries and tissue conduc-
tivities by adopting the multikernel learning methodology.
)e multikernel approach could lead us to the simultaneous
estimation of the extended (or composite) lead field matrix
and the EEG sources in an iterative fashion. Furthermore,
spatiotemporal versions of our model based on the MMV
model [1, 2, 19] could be devised in order to study EEG
microstates [42] in BCI domain. In addition to the above,
borrowing ideas from image superresolution [43], we could
provide brain imaging techniques with increased spatial
resolution. Finally, the EEG source localization has close

connections with CS theory [30, 44]. However, typical ap-
proaches on the construction of lead field matrix do not
produce a sensing matrix with the two basic properties of CS
theory, the incoherence and the restricted isometry property.
It is important to investigate procedures that could provide
us with a lead field matrix that possesses these two
properties.
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[6] M. S. Hämäläinen and R. J. Ilmoniemi, “Interpretingmagnetic
fields of the brain: minimum norm estimates,” Medical &
Biological Engineering & Computing, vol. 32, no. 1, pp. 35–42,
1994.

[7] R. D. Pascual-Marqui, C. M. Michel, and D. Lehmann, “Low
resolution electromagnetic tomography: a new method for
localizing electrical activity in the brain,” International
Journal of Psychophysiology, vol. 18, no. 1, pp. 49–65, 1994.

10 Computational Intelligence and Neuroscience

http://www.fieldtriptoolbox.org
http://www.fieldtriptoolbox.org
https://www.fil.ion.ucl.ac.uk/spm/data
http://bci.med.tsinghua.edu.cn/download.html
http://bci.med.tsinghua.edu.cn/download.html


[8] R. Pascual-Marqui, “Standardized low resolution brain
electromagnetic tomography (sloreta): technical details,”
Methods and findings in experimental and clinical pharma-
cology, vol. 24, no. 2, pp. 5–12, 2002.

[9] E. Pirondini, B. Babadi, G. Obregon-Henao et al., “Compu-
tationally efficient algorithms for sparse, dynamic solutions to
the EEG source localization problem,” IEEE Transactions on
Biomedical Engineering, vol. 65, no. 6, pp. 1359–1372, 2018.

[10] F. Costa, H. Batatia, T. Oberlin, C. D’Giano, and
J.-Y. Tourneret, “Bayesian eeg source localization using a
structured sparsity prior,” NeuroImage, vol. 144, pp. 142–152,
2017.

[11] K. Friston, L. Harrison, J. Daunizeau et al., “Multiple sparse
priors for the m/eeg inverse problem,” NeuroImage, vol. 39,
no. 3, pp. 1104–1120, 2008.

[12] D. P. Wipf, J. P. Owen, H. T. Attias, K. Sekihara, and
S. S. Nagarajan, “Robust bayesian estimation of the location,
orientation, and time course of multiple correlated neural sources
using meg,” NeuroImage, vol. 49, no. 1, pp. 641–655, 2010.

[13] F. Costa, H. Batatia, L. Chaari, and J.-Y. Tourneret, “Sparse
EEG source localization using Bernoulli laplacian priors,”
IEEE Transactions on Biomedical Engineering, vol. 62, no. 12,
pp. 2888–2898, 2015.

[14] J. C. Bore, C. Yi, P. Li et al., “Sparse EEG source localization
using LAPPS: least absolute l-P (0),” IEEE Transactions on
Biomedical Engineering, vol. 66, no. 7, pp. 1927–1939, 2019.

[15] C. Cai, K. Sekihara, and S. S. Nagarajan, “Hierarchical
multiscale bayesian algorithm for robust MEG/EEG source
reconstruction,” NeuroImage, vol. 183, pp. 698–715, 2018.

[16] C. Cai, M. Diwakar, D. Chen, K. Sekihara, and S. S. Nagarajan,
“Robust empirical bayesian reconstruction of distributed
sources for electromagnetic brain imaging,” IEEE Transac-
tions on Medical Imaging, vol. 39, p. 1, 2019.

[17] C. M. Bishop, Pattern Recognition and Machine Learning
(Information Science and Statistics), Springer, Berlin, Germany,
2007.

[18] W. Wu, S. Nagarajan, and Z. Chen, “Bayesian Machine
Learning: EEG\/MEG signal processing measurements,” IEEE
Signal Processing Magazine, vol. 33, no. 1, pp. 14–36, 2016.

[19] Z. Zhang and B. D. Rao, “Sparse signal recovery with tem-
porally correlated source vectors using sparse bayesian
learning,” IEEE Journal of Selected Topics in Signal Processing,
vol. 5, no. 5, pp. 912–926, 2011.

[20] P. Xu, Y. Tian, H. Chen, and D. Yao, “Lp norm iterative sparse
solution for eeg source localization,” IEEE Transactions on
Biomedical Engineering, vol. 54, no. 3, pp. 400–409, 2007.

[21] S. Castaño-Candamil, J. Höhne, J.-D. Mart́ınez-Vargas,
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