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Kawasaki disease (KD) is an acute systemic vasculitis of childhood with prolonged fever, and the diagnosis of KD is mainly based on
clinical criteria, which is prone to misdiagnosis with other febrile infectious (FI) diseases. Currently, there remain no effective
molecular markers for KD diagnosis. In this study, we aimed to use a relative-expression-based method k-TSP and resampling
framework to identify robust gene pair signatures to distinguish KD from bacterial and virus febrile infectious diseases. Our
study pool consisted of 808 childhood patients from several studies and assigned to three groups, namely, the discovery set
(n=224), validation set-1 (n=197), and validation set-2 (n=387). We had identified 60 biologically relevant gene pairs and
developed a top-ranked gene pair classifier (TRGP) using the first seven signatures, with the area under the receiver-operating
characteristic curves (AUROC) of 0.947 (95% CI, 0.918-0.976), a sensitivity of 0.936 (95% CI, 0.872-0.987), and a specificity of
0.774 (95% ClI, 0.705-0.836) in the discovery set. In the validation set-1, the TRGP classifier distinguished KD from FI with
AUROC of 0.955 (95% CI, 0.919-0.991), a sensitivity of 0.959 (95% CI, 0.925-0.986), and a specificity of 0.863 (95% CI, 0.764-
0.961). In the validation set-2, the predictive performance of classification was with an AUROC of 0.796 (95% CI, 0.747-0.845),
a sensitivity of 0.797 (95% CI, 0.720-0.864), and a specificity of 0.661 (95% CI, 0.606-0.717). Our study reveals that gene pair
signatures are robust across diverse studies and can be utilized as objective biomarkers to distinguish KD from FI, helping to
develop a fast, simple, and effective molecular approach to improve the diagnosis of KD.

1. Introduction

Kawasaki disease (KD) is an acute childhood self-limited
vasculitis syndrome of unknown cause, affecting children
younger than five years old [1, 2]. KD affects small and
medium blood vessels, especially coronary arteries. The
most common sequelae or complications of KD patients
are coronary artery lesions, including coronary artery dila-
tion (CAD) and coronary artery aneurysm (CAA), and
CAA presents in about 25% of untreated children. KD
may be a leading cause of childhood cardiac morbidity in
developed countries [2, 3].

The diagnosis of KD mainly relies on clinical features,
including fever, extremity change, rash, conjunctivitis, oral
changes, and cervical lymphadenopathy [2], which lack speci-
ficity. Despite the current development of guidelines, combined
with clinical features, echocardiography, and laboratory find-
ings for KD diagnosis, KD patients are still easily misdiagnosed
as having febrile infectious diseases such as bacterial infections
and viral infections [4]. Thus, there is an urgent need for labo-
ratory markers that can assist KD diagnosis.

The identification of biomarkers in recent studies helps to
establish a gold standard test for KD diagnosis. The genome-
wide association analysis (GWAS) studies have identified
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susceptibility genes and loci for KD, including FCGR2A,
CASP3, HLA class II, BLK, IPTKC, and CD40 genes [2, 5].
However, none of these genetic signatures associated with
KD can be used as diagnosis biomarkers, because of the low
disease susceptibility [3]. Serum proteins like N-terminal
probrain natriuretic peptide (NT-proBNP) can be used as
useful biomarkers for acute and atypical clinical characteris-
tics of KD [6, 7]. Apolipoprotein family, haptoglobin, and
fibrinogen-related plasma proteins are found to be high-
risk factors and may serve as potential markers of KD [8,
9]. However, these proteins still lack sufficient specificity as
KD diagnostic biomarkers. Studies on the role that gene
methylation and microRNAs play in KD were active in the
past ten years. A recent study found that the methylation
level of the HAMP promoter significantly decreases in KD,
and this hypomethylation feature can serve as biomarkers
for KD diagnosis [10]. Our previous studies found that serum
exosomal microRNAs could serve as candidate biomarkers in
KD [11] and identified microRNAs that are closely related to
coronary aneurysms in KD patients [12]. Although methyla-
tion and miRNA are sufficiently specific as KD-related diag-
nostic biomarkers, they may have limited power due to the
small sample size of these studies.

Global gene expression profiles provide novel insights
about the disease mechanism and possible diagnostic
markers of KD [4, 13-17]. Previous studies used gene expres-
sion features to distinguish KD from other febrile control dis-
eases [4, 14, 15]. With gene expression profiles from 162
patients, a study identified features to distinguish KD from
adenovirus and GAS infections [14], which are the two most
common diseases in KD misdiagnosis. Recently, another
large cohort study, involving more than 600 patients, identi-
fied differential expression gene (DEG) signatures and used a
score-based classifier to distinguish KD from other common
mimicking febrile control diseases [15] and got high predic-
tion performance with AUC of 0.96, a sensitivity of 0.82,
and specificity of 0.93. These studies analyzed the blood tran-
scriptional profiles and identified the KD biosignatures,
which further expanded the scope of KD diagnostic markers.
However, these classification methods are developed specifi-
cally for the platforms, cohort compositions, and data nor-
malization methods, and are difficult to verify with other
public cohort data. Further, the DEG signatures cannot be
directly evaluated and verified by qRT-PCR methods, imped-
ing the clinical applications.

The top-scoring pair (TSP) algorithm, which converts a
gene expression quantitative value into a binary value of rel-
ative expression trends of two genes, provides robust gene
pair features without data normalization and has better com-
patibility in different cohort data [18]. Based on the TSP
method, Tan et al. proposed a classifier called the k-Top
Scoring Pairs (k-TSP) that uses multiple gene pairs to vote
and obtained more accurate results [19]. Afsari et al. had
encapsulated the k-TSP method into a convenient R package
switchBox [20]. The TSP/k-TSP methods can effectively cope
with the data batch effects of different experimental proto-
cols, platforms, and measurement methods [21]. In addition,
gene pair features are the relative expression trend between
two genes, which can be easily measured and evaluated by
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the qRT-PCR method. Because of all these advantages, the
TSP/k-TSP-based methods have been adopted in several
studies [22-25].

In this study, we integrate transcriptional profiling data
from several cohorts of childhood KD and febrile infectious
(FI) disease including defined bacterial (DB) infection and
defined viral (DV) infection and use the k-TSP method and
propose a simple resampling-based framework method to
identify gene pair signatures to distinguish KD from FI.
The new method is robust across diverse studies and should
be promising in clinical application.

2. Materials and Methods

2.1. Data and Preprocessing. In this study, we collected gene
expression data related to childhood patients with KD and
FI including DB and DV patients from the Gene Expression
Omnibus (GEO) database. To identify the robust gene pair
signatures, we divided the KD and FI patients into three
groups according to the cohort studies: the discovery set
(n=224, KD=78, DB=52, DV =94) that consisted of
GSE73461 [15]; the validation set-1 (n=197, KD = 146,
DB =23, DV =28) that consisted of GSE73462 [15] and
GSE73463 [15]; and the validation set-2 (n=387, KD =
118, DB=64, DV =205) that consisted of GSE48498
[16], GSE16797 [17], GSE68004 [14], GSE40396 [26],
GSE38900 [27], and GSE22098 [28]. Table 1 and Supple-
mentary Table 4 show the detailed information for all
data sets.

The inclusion criteria of this study included (1) KD, viral
infection, and bacterial infection childhood patients; (2)
patients in the acute phase of KD or infection and not treated;
and (3) patients with whole blood expression profile data,
which contain the expression intensity of each gene. In order
to eliminate the occurrence of duplicate data, we had checked
the raw data using the same chip platform. We have collected
808 samples from 9 data sets that met the above criteria,
including 342 cases of KD, 139 cases of DB, and 327 cases
of DV (see Table 1 and Supplementary Table 4 for details).

For the data accumulated from the Affymetrix platform
GPL570, we downloaded their original chip data format
(.cel file) and processed them using the R package affy (ver-
sion 1.58.0) [29]. For data accumulated from the Illumina
platforms GPL10558, GPL6947, and GPL6884, we down-
loaded the raw data and processed them using the R package
limma (version 3.38.3) [30]. In gene annotation, unannotated
probesets, as well as probesets that are mapped to multiple
genes, were filtered. If several probesets were mapped to the
same gene, the highest mean intensity probeset was kept in
the data and represented the gene expression value. A total
of 16004 common genes across 9 data sets were extracted
for subsequent analysis.

2.2. Gene Pair Signature Identification. We used the TSP/k-
TSP method [18, 19] to transform the gene expression value
into the binary values of the gene pair (if the expression of
Genei > Genej, the value is 1, else 0). A gene pair-based
method has the advantage of reducing platform bias and
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TaBLE 1: Description of data sets used in this study.

Data sets Accession Platform  Total (N) Sex males (%) KD (N) DB(N) DV (N) Ref.
Discovery set Validation ~ GSE73461  GPL10558 224 56.2 78 52 94 Wright et al. [15]
£1 GSE73462 GPL6947 51 52.9 0 23 28 Wright et al. [15]
set-
GSE73463  GPL10558 146 59.4 146 0 0 Wright et al. [15]
GSE48498 GPL570 12 NA 12 0 Ogihara et al. [16]
GSE16797 GPL570 17 NA 17 0 Ogata et al. [17]
GSE68004  GPL10558 125 58.4 89 17 19 Jaggi et al. [14]
Validation set-2 GSE40396  GPL10558 43 58.1 0 8 35 Hu et al. [26]
GPL6884 3
GSE38900 GPL10558 151 51.0 0 0 151 Mejias et al. [27]
GSE22098 GPL6947 39 48.7 0 39 0 Berry et al. [28]

potential batch effects and is robust to any data processing
that preserves the gene order [21, 31, 32].

In the discovery set (n = 224), we randomly divided 80%
of the samples as train data and 20% of the samples as test
data for 10,000 times (Figure 1(a)). In each run, we selected
the top 100 score gene pairs from KD vs. DB and KD vs.
DV in the train data (Figure 1(b)), using Wilcoxon rank-
sum method as the filtering function in the switchBox pack-
age (version 1.12.0) [20], which is for k-TSP development.
Then, we used the combined 200 gene pairs as restricted pairs
to reselect 100 top score gene pairs form KD vs. FI in the train
data (Figure 1(c)). A k-TSP classifier of KD vs. FI was built
from the train data using the 100 top score pairs as features
and was evaluated in the test data. If a gene pair is repeated
multiple times in the 10,000 k-TSP classifiers, then it has a
better classification performance. We collected the gene pairs
from the 10,000 runs and selected 60 gene pairs with repeat
probability of more than 0.1 as the top-ranked gene pairs
(Figures 1(c) and 1(d)).

2.3. Random Gene Pair Feature Testing. To test whether the
gene pairs with prediction value could be generated by ran-
dom chances alone, we implemented a permutation test in
which the gene symbols and gene expression values were ran-
domly shuffled. We generated 10,000 random discovery sets,
in which we identified the top score gene pairs and estab-
lished k-TSP classifiers as above. We then compared the
scores of the gene pair signatures and prediction perfor-
mance of classifiers from the random discovery set and dis-
covery set.

2.4. Top-Ranked Gene Pair (TRGP) Classifier. We used the
top-ranked gene pair signatures to develop a simple voting
classifier called the top-ranked gene pair (TRGP) classifier.
If the gene pair p; is with the expression Genei> Genej

(Equation (1)), it votes for KD and assigns a value of 1; oth-
erwise, it votes for FI and assigns a value of -1.

1 (Genei> Genej),
Py =
: -1 (Genei< Genej).

N is the number of gene pair signatures. The classifica-
tion score is equal to the average scores of all the gene pairs
(Equation (2)), which is a judgment indicator of the classifier.

Z Di
Classification score = =2

(2)

The higher the score, the higher probability of KD classi-
fication. To determine the optimal number of gene pairs for
the classifier, we used from one to sixty gene pair signatures
to develop the TRGP classifiers. The balanced accuracy and
AUROC on the discovery set were used to evaluate the per-
formance of the TRGP classifier with different number of
gene pairs.

2.5. Linear Discriminant Analysis (LDA), Support Vector
Machines (SVM), and Random Forest Classifier. The 60
top-ranked gene pair signatures were used to construct
LDA, SVM, and random forest classifiers. Tenfold cross-
validation was used to determine the most critical gene pair
features for each classifier that best distinguish KD from FI
patients in the discovery set. The linear SVM function in
caret (version 6.0.84) package [33] was used to identify essen-
tial gene pairs, and then the SVM classifier was built by the
el071 (version 1.7.1) package [34]. The Boruta (version) R
package (version 6.0.0) [35] was used to identify essential
gene pairs, and the random forest classifier was built by the
randomForest (version 4.6.14) R package [36].

2.6. Performance Evaluation. We evaluate the performance
including sensitivity, specificity, accuracy, and AUROC of
the TRGP, LDA, SVM, and random forest classifiers in the
discovery set, validation set-1, and validation set-2. The sen-
sitivity is defined as the proportion of correctly predicted KD
in all actual KD patients, and the specificity is defined as the
proportion of the FI in all actual FI patients. The accuracy is
defined as the proportion of correctly identified patients of all
KD and FI. The balanced accuracy is equal to the mean of KD
prediction accuracy and FI prediction accuracy.

We used the pROC package (version 1.14.0) [37] to ana-
lyze the top-ranked gene pair classifier and calculated the
AUROC in three data sets.
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F1GUrE 1: The workflow of the gene pair identification and evaluation for the KD and FI prediction. The workflow has four major analysis
steps. (a) Resampling sample space of the discovery set by 10,000 times. Each resampled discovery set is divided into the train data and
the test data in a ratio of 8:2. (b) Identification of top score gene pairs. (c) Ranking the repeats of the gene pairs form 10,000 k-TSP
classifiers. (d) The prediction classifier of KD and FI by the top-ranked gene pairs and validation.

2.7. Biological Effects of the Top-Ranked Gene Pairs. To
roughly assess the classification effect of the top-ranked
gene pairs, we performed the t-Distributed Stochastic
Neighbor Embedding (t-SNE) clustering using the Rtsne
(version 0.15) R package [38], setting a perplexity to 60
and a theta to 0.5.

To study the correlation between the 60 top-ranked gene
pairs and the differential expressed genes (DEGs), we used
the limma package (version 3.38.3) [30] to identify DEGs
from KD and FI in the discovery set. DEGs of KD vs. DV
and KD vs. DB were also calculated. Then, we used the red
triangle and green square symbols to represent the top-
ranked gene pairs and draw the volcano map of the log scale
fold change and detection of the P value.

The Clusterprofiler (version 3.8.1) R package [39] was
used for KEGG enrichment analysis for the Gene i from
the left side and Gene j from the right side of 60 top-
ranked gene pairs.

3. Results

3.1. Identification of Diagnostic Gene Pairs. We collected 78
KD and 146 FI including 94 DV and 52 DB childhood
patients from GSE73461 [15] (Table 1) as the discovery set,
from which 2522 top score gene pairs had been identified
(Supplementary Table 1) according to the workflow
described in Figure 1 and Materials and Methods. Most of
the gene pairs have a repetition rate less than 0.01 in the
10,000 k-TSP classifiers generated by the resampling runs,
while 60 gene pairs have a high repetition rate more than
0.1 and the average scores of these gene pairs are about 0.53
(Figure 2(a), Supplementary Table 1). These 60 high
repetition gene pairs are marked as top-ranked gene pairs
and have provided support to the efficient clustering of KD
and FI in the t-SNE plot (Figure 2(b)).

Besides, we found that these top score gene pairs were not
generated by random chances. The score of gene pairs from
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FiGURE 2: The 60 top-ranked gene pairs. (a) The repetition rate and mean scores of gene pairs in 10,000 resampled train data. Each point
represents a gene pair, the red line is the threshold line with a repetition rate of 0.1, and we take a repetition rate greater than 0.1 as the
top-ranked gene pairs. (b) Unsupervised t-SNE classification of the discovery set was performed using 60 top-ranked gene pairs. (c) The
overlap of differentially expressed genes (KD vs. FI in the discovery set) with 60 top-ranked gene pairs, and Gene i (red triangle) and Gene
j (green square) represent the genes to the left and the right of gene pairs, respectively.

random discovery data of 0.35 (95% CI, 0.25-0.42) is signifi-
cantly smaller than the score of 0.57 (95% CI, 0.41-0.70) from
nonrandom  discovery set (P <0.0001, two-sample
Kolmogorov-Smirnov test) (Supplementary Figure S2A).
Gene pairs with higher scores could have better prediction
performance [18, 21]. The number of features of the k-TSP
classifier developed in the random train data is also larger
than that in the nonrandom train data (Supplementary
Figure S2B). Further, the result shows that the AUROC of
the k-TSP classifier in the random train data and test data
reduced from 0.98 to 0.48, while on the discovery set, the
AUROC of the k-TSP classifier in the train and test data
was reduced from 0.95 to 0.89. These results indicated that
the top score gene pairs identified from the nonrandom

data are more robust and yield significantly more predictive
information than in random chances.

3.2. Evaluation of the Biological Effect of Top-Ranked Gene
Pairs. Next, we investigated whether the gene pair signatures
are biologically relevant. We analyzed the overlap of DEGs
and genes from top-ranked gene pairs (Genei> Genej) in
the discovery set and found that nearly all of the Gene i were
upregulated genes, and the Gene j were downregulated genes
(Figure 2(c)) in KD vs. FL. The same trend is found in the
comparison of KD vs. DV and KD vs. DB (Supplementary
Figure S4). These results suggested that the identified top-
ranked gene pairs are biologically related to the DEGs from
KD and control diseases.
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TaBLE 2: The 7 top-ranked gene pairs.
Gene pair IDs Gene i EntrezID Gene j EntrezID Gene i symbol Gene j symbol Repetition rate
GenePairl 9778 9862 KIAA0232 MED24 0.665
GenePair2 9586 3429 CREB5 IF127 0.557
GenePair3 10857 7384 PGRMC1 UQCRC1 0.446
GenePair4 7739 5096 ZNF185 PCCB 0.424
GenePair5 83999 8454 KREMEN1 CUL1 0.397
GenePair6 54602 116832 NDFIP2 RPL39L 0.397
GenePair7 64127 593 NOD2 BCKDHA 0.382
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FiGure 3: The AUROC and balanced accuracy of number features in a k-TSP classifier selected from the 60 top-ranked gene pairs in the
discovery set. We selected gene pairs from 1 to 60 to develop the TRGP classifier and found that the TRGP classifier with seven of the top
gene pairs (dotted line) optimally achieved the best AUROC and balanced accuracy performance.

In addition, functional analysis of the Gene i in 60 top-
ranked gene pairs, which upregulated in KD, shows
enrichment of TNF signaling pathway, PI3K-Akt signaling
pathway, and NOD-like receptor signaling pathway (Supple-
mentary Figure S5A). While functional analysis of the Gene j,
which downregulated in KD and upregulated to FI, shows
enrichment of infection-related pathways such as measles,
influenza A, and Epstein-Barr virus infection pathways
(Supplementary Figure S5B). These results reveal that the
gene pairs we have identified are biologically related to the
functional pathway.

3.3. Evaluation and Validation of the Gene Pair Signatures in
TRGP Classifier. To obtain the best prediction performance
using the 60 top-ranked gene pair features, we constructed
TRGP, LDA, SVM, and random forest classifiers (see
Materials and Methods). Then, we evaluated the predictive
value of the top-ranked gene pairs and classifiers in two
independent validation data sets, including the validation
set-1 (GSE73462 and GSE73463) and validation set-2
(GSE40396, GSE48498, GSE16797, GSE38900, and
GSE22098).

According to the process described in Materials and
Methods, when we selected the first 7 gene pairs
(Table 2) from the 60 top-ranked gene pairs as diagnostic
features, the TRGP classifier achieved the best perfor-
mance in the discovery set, with the AUROC of 0.95
and the balanced accuracy of 0.86 (Figure 3). Increasing
the number of gene pairs to the classifier did not improve
the prediction performance but slightly reduced balance
accuracy (Figure 3).

Based on the voting rules of selected gene pairs, the
TPGP classifier calculates a classification score for each
case, and 0 is the boundary threshold for KD and FI
The larger score of the subject, the greater the probability
of KD, otherwise of FI. There were significant differences
in the classification scores of KD and FI patients both in
the discovery set (P < 0.0001, two-tailed unpaired Student’s
t-test) and two of the validation sets (P < 0.0001 for vali-
dation set-1 and P <0.0001 for validation set-2; two-
tailed unpaired Student’s t-test) (Figure 4(c)). The classifi-
cation scores of KD patients were significantly higher than
those of the FI patients, including DV and DB patients
(Supplementary Figure S3), in all data sets.
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FIGURE 4: Prediction performance of the TRGP classifier using the seven top-ranked gene pairs. (a) The ROC curve, (b) the prediction
confusion matrix, and (c) the classification scores of FI and KD patients in the discovery set (black), validation set-1 (red), and external
validation set-2 (blue). In box plots (c), the horizontal lines, box edges, and whiskers represent the median, interquartile ranges, and 95%
percentile range, respectively. The dotted line represents the threshold of classification, and the classification scores > 0 are predicted to be
KD, otherwise FI. AUROC: area under the receiver-operating characteristic curve. A two-tailed unpaired Student’s ¢-test was used for
statistical comparison of classification scores between FI and KD patients. *P < 0.05,"*P < 0.01,***P < 0.001, and****P < 0.0001.

We then tested the prediction performance of TRGP clas-
sifier by calculating the AUROC, sensitivity, and specificity
for each dataset separately. In the discovery set, the predic-
tion AUROC was 0.947 (95% CI, 0.918-0.976), with sensitiv-
ity of 0.936 (95% CI, 0.872-0.987) and specificity of 0.774
(95% CI, 0.705-0.836) (Figure 4(a), Table 2). Because of the
higher proportion of the KD case, the predictive performance
was better in the validation set-1, with the AUC of 0.955
(95% CI, 0.919-0.991), sensitivity of 0.959 (95% CI, 0.925-
0.986), and specificity of 0.863 (95% CI, 0.764-0.961). In the
independent validation set-2, the performance was reduced
with the AUROC of 0.796 (95% CI, 0.747-0.845), a sensitivity
of 0.797 (95% CI, 0.720-0.864), and a specificity of 0.661
(95% CI, 0.606-0.717). This performance reduction may be
due to the higher heterogeneity of the validation set-2,
including differences in KD diagnosis and differences of
infectious pathogen composition in DV/DB cases. Nonethe-
less, with the TRGP classifier, we correctly distinguished
79% KD patients and 66.1% FI patients in the validation
set-2 (Figure 4(b)).

In clinical practices, the incomplete KD (inKD) is more
difficult to diagnose than the complete KD (cKD) [2]. We
noticed that in the GSE68004 dataset (validation set-2), there
were no significant differences in the classification scores of
cKD and inKD patients (Supplementary Figure S7A). We
correctly distinguished 73.7% of cKD and 76.9% of inKD
subjects (Supplementary Figure S7B), showing that the
TRGP classifier has a similar predictive performance on
cKD and inKD.

Taken together, these results reveal that the gene pair
signatures and the TPGP classifier can effectively distin-
guish KD and FI in the discovery set and independent val-
idation sets.

3.4. Evaluation and Validation of the Gene Pair Signatures in
Other Classifiers. To compare the performance of other
weighted linear classifier and nonlinear classifiers, we then
applied the 60 top-ranked gene pairs to the LDA, SVM, and
random forest classifiers and compared the performance of
these classifiers. The number of gene pairs was determined
by a 10-fold cross-validation in the discovery set. According
to the cross-validation, the best LDA classifier used all 60
gene pairs, while the best SVM used 12 gene pairs (Supple-
mentary Table 2) and the best random forest classifier used
56 gene pairs (Supplementary Figure S6).

The AUROC was used to evaluate the predictive perfor-
mance of these classifiers. The best performance for discrim-
ination of KD and FI in the discovery set was the random
forest (1.00), followed by LDA (0.980), SVM (0.956), and
TRGP (0.947) (Table 3). In the two validation sets, TRGP
achieved the best performance (with AUROC of 0.955,
0.796), followed by the random forest (0.828, 0.751), SVM
(0.791, 0.671), and LDA (0.860, 0.601). The performance dif-
ferences in the discovery set were small, but the TRGP per-
formed the best overall in the validation data set and used
the least number of gene pairs. These results reveal that the
gene pair signatures can be flexibly applied to different classi-
fiers and achieve similar prediction performance. Notably,
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TaBLE 3: The predictive performance of TRGP, LDA, SVM, and random forest classifier.

Classifier Data sets Number of gene pairs Accuracy Sensitivity Specificity Precision Balanced accuracy AUROC
Discovery set 0.978 0.993 0.949 0.973 0.971 0.980
LDA Validation set-1 60 0.898 0.882 0.904 0.763 0.893 0.860
Validation set-2 0.589 0.543 0.695 0.802 0.619 0.601
Discovery set 0.955 0.979 0.910 0.953 0.945 0.956
SVM Validation set-1 12 0.817 0.980 0.760 0.588 0.870 0.790
Validation set-2 0.698 0.699 0.695 0.839 0.697 0.671
Discovery set 1.000 1.000 1.000 1.000 1.000 1.000
Random forest Validation set-1 56 0.868 0.961 0.836 0.671 0.898 0.828
Validation set-2 0.788 0.866 0.610 0.835 0.738 0.751
Discovery set 0.830 0.936 0.774 0.689 0.855 0.947
TRGP Validation set-1 7 0.934 0.959 0.863 0.952 0.911 0.955
Validation set-2 0.703 0.797 0.662 0.508 0.729 0.796

the TRGP classifier uses the simplest decision rules and the
fewest number of features to achieve a reliable predictive
performance.

4. Discussion

The current guidelines [2, 40] for KD diagnosis only rely on
clinical signs, but there are similar clinical signs between
Kawasaki disease and febrile control diseases, which can eas-
ily lead to either delay of diagnosis for KD or overtreatment
with IVIG for actual benign febrile disease patients [41].
Thus, it is necessary to find laboratory testing markers to
improve the diagnosis of KD. In this study, based on the rel-
ative gene expression analysis method, we integrated the
public data of whole blood gene expression profiles from 9
data sets, then identified 60 gene pair signatures related to
classification of KD and FI, and finally developed a seven
top-ranked gene pair voting classifier TRGP to accurately
distinguish KD from FL

High-throughput transcriptome profiles provide a tre-
mendous amount of information and enable us to collect
molecular markers, discriminate disease subtypes, predict
clinical outcomes, and reveal specific changes to disease pro-
gression. Gene expression data have been used in multiple
studies to distinguish febrile children with bacterial or viral
infection [27, 42]. Popper et al. used 38 gene expression fea-
tures to distinguish KD patients from adenovirus infection
with an overall accuracy of 0.903 in 41 subjects. Subse-
quently, Jaggi et al. developed 25 and 10 gene signature
KNN classifiers to differentiate KD and adenovirus infection
with a sensitivity of 0.92 in the validation dataset and to dif-
ferentiate KD and GAS bacterial infection with a sensitivity
of 0.87, respectively [14]. In a recent study, Wright et al. used
the whole blood expression profiles to identify 13 gene fea-
tures and successfully distinguish acute KD and febrile infec-
tious/inflammatory disease in a large cohort of 606 patients
with a sensitivity of 0.859, a specificity of 0.891, and AUROC
of 0.946 in validation [15]. These studies are very attractive,
demonstrating that we can extract molecular markers of
diagnostic value for KD from transcriptome profiles.

The methods applied in previous studies identified genetic
features whose differential expression is highly correlated with
disease subtypes, such as genes that may be over- or underex-
pressed in KD relative to febrile control disease. In this case, a
gene whose expression level is up- or downregulated above
some certain threshold is considered to be a candidate marker
of the disease. However, many factors, such as study design
and the data normalization methods, largely influence the sta-
tistically significant changes of features in gene expression
analysis. Unfortunately, the identified molecular features are
rarely reproducible or even without overlap in different plat-
forms or in different clinical studies. Thus, the biggest chal-
lenge in identifying useful molecular markers is to develop
robust and accurate classifiers for multiple platforms and stud-
ies. To overcome this challenge, the relative expression analy-
sis framework TSP/k-TSP has been proposed [18, 19], which is
characterized by replacing the expression levels of all the genes
with the relative rankings of expression values, evaluating the
change of relative order among two genes from one phenotype
to another.

In this study, based on the k-TSP method, we applied a
resampling framework to identify robust gene pair features
and distinguish Kawasaki disease from febrile control dis-
ease. The k-TSP methods are parameter-free methods that
only rely on the relative ordering of gene expression values
and are robust to all normalization methods [19]. As the data
normalization is not needed, these methods have therefore
proven to be useful in the integration of data across different
studies and platforms to increase sample size and to avoid
spurious discovery [43]. Ao et al. used the in-sample relative
expression ordering (REO) method, developed based on the
principle of relative expression analysis to integrate the
expression profile data related to cirrhosis and hepatocellular
carcinoma from the GEO and TCGA databases and identi-
fied robust molecular signatures for the early diagnosis of
HCC [24]. Sandhu et al. developed a robust Pancreatic Can-
cer Overall Survival Predictor (PCOSP) model based on the
k-TSP method, integrating multiple datasets including
sequencing and chip array profiles, and achieved better pre-
dictive performance than previous models [25].
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The discovery set and validation set-1 of this study are
derived from Wright’s study [15], compared with which,
the seven top-ranked gene pair classifier achieved a similar
prediction performance, with a sensitivity of 0.959, a spec-
ificity of 0.863, and AUROC of 0.955 in the same valida-
tion set-1 (Table 3). Taking advantage of the TSP/k-TSP
methods, we integrated other six whole blood tran-
scriptome datasets as an independent external validation
dataset (validation set-2, Table 1), in which the prediction
performance of the identified gene pairs were reduced,
with AUROC of 0.796, a sensitivity of 0.797, and a speci-
ficity of 0.662.

The decline performance may be related to the heteroge-
neity between discovery set and the validation set-2.We
noticed that there were differences in the age of KD and FI
patients among the three data sets (Supplementary
Table 4). In the discovery and validation set-1, the median
age of KD was 27 and 34 months [15], respectively. In
validation set-2, the KD patients came from 3 studies and
the weighted median age was 40.7 months [14, 16, 17],
which was larger than in the discovery and validation set-1.
And the age of FI in validation set-2 also varied quite a bit
compared to the discovery and validation set-1
(Supplementary Table 4). Previous studies have shown that
the regulation expression of many functional genes was in
an age-dependent fashion [44, 45]. And the incidence rates
and outcome of coronary artery aneurysms for Kawasaki
disease are age-related [46]; thus, the expression pattern
associated with KD may be also affected by ages. Therefore,
one of the reasons for the prediction performance decline
in validation set-2 may be age differences. In addition to
age, we have also noticed differences of race/ethnicity in the
three data sets. The ethnic proportions of KD in the
discovery set and validation set-1 were relatively uniform;
the main populations were White, Hispanic, and
Asian/other (from 19.4 to 50%) [15], while in validation
set-2, the main populations were White (52%) in Jaggi’s
study [14] and Asian (100%) in Ogihara’s [16] and Ogata’s
[17] studies. Previous studies have shown that there are
certain ethnic expression differences in healthy conditions
and various diseases such as diabetes, breast cancer, and
hypertension [47-49]. The prevalence of KD varies
considerably among races, and it is more common among
Asians [50], which suggests race/ethnicity-related genetic
differences  associated =~ with  susceptibility  variance.
Therefore, the race/ethnicity-related genetic differences may
also partly explain why the prediction performance reduced
in validation set-2. Other differences including diagnosis of
KD, missed diagnosis KD in the FI, and differences of
bacterial infectious subtypes could affect the prediction
performance of the result too. However, prediction of the
TRGP classifier yields AUC =0.795 which is acceptable in
clinical practice and may still improve the diagnosis of KD.
Despite the above deficiencies, our results are sufficient to
demonstrate that the identified gene pairs have robust
predictive value in multiple datasets. Compared to previous
KD studies, our framework enables the integration of
expression profiles from multiple datasets to prove that the
identified characteristic gene pairs are not spurious findings.

BioMed Research International

Notably, the gene pairs identified by the TSP/k-TSP
method can be directly validated by using qRT-PCR [23,
51, 52], a more targeted and affordable technology in clinical
practice. Zak et al. had identified gene pair signatures of
tuberculosis risk from RNA sequencing data and successfully
applied qRT-PCR for validation [23], showing the possibility
of clinical promotion of this framework approach. Previous
studies used chip-detected intensity values as genetic signa-
tures, which usually did not have linear correlations between
different platforms and measurement technologies and could
not be directly verified by the qRT-PCR method. Therefore,
compared with previous studies, the gene pair signatures in
this study are more feasible in further validation studies.

The 60 top-ranked gene pair features achieved similar pre-
diction performance by applying multiple classification algo-
rithms (Table 3), indicating that the signatures are associated
with differentiation between KD and FI. Besides, our results
showed that these gene pairs overlapped with the phenotype-
related DEGs (Figure 2(c), Supplementary Figure S4). And
functional analysis revealed that the genes in Gene i of the 60
top-ranked gene pairs were associated with the TNF signaling
pathway, PI3K-Akt signaling pathway, and NOD-like receptor
signaling pathway (Supplementary Figure S5A). TNF-« is a
pleiotropic inflammatory cytokine in the acute phase of
Kawasaki disease and has essential physiological functions in
vasculitis of KD [53]. The polymorphism of the NODI is
associated with a high risk of KD [54], and the NOD-like
receptor is involved in the physiological process of acute KD
[55]. While the genes in Gene j are associated with infection-
related pathways such as measles, influenza A, and Epstein-
Barr virus infection pathways (Supplementary Figure S5B),
these results indicate that the gene pairs we have identified are
not only statistically related to phenotype but also biologically
relevant to the phenotype.

We recognize several limitations in this study. The het-
erogeneity of the multiple datasets may limit the predictive
performance of this study, as mentioned above. However,
this problem mainly exists in the validation set-2, because
in the discovery set and the validation set-1, the KD and
FI patients are strictly unified, as described in Wright’
study [15]. Second, we lacked detailed clinical information
of the subjects and do not know the days of fever in KD
patients, but all KD patients in this study belong to the
acute phase of fever as the study cohorts described.
Finally, in our study, there is still a lack of transcriptome
data measured using other techniques, such as RNA-Seq
and qRT-PCR. We will recruit subjects to provide this
data in future studies to evaluate the KD diagnostic value
of gene pair features.

In conclusion, our results demonstrate that gene pairs
can be used as robust biomarkers to distinguish between
KD and FI. Furthermore, these gene pair signatures are bio-
logically relevant and can be easily tested and validated by
the qRT-PCR method. The seven top-ranked gene pair
TRGP classifier can also be used as a single sample predictor
in the clinical environment. The above results warrant addi-
tional investigation; if confirmed further, it could help to
establish a rapid and inexpensive diagnostic method to
improve the early diagnosis of KD.
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5. Conclusions

In this study, our results demonstrate that gene pairs can be
used as robust biomarkers to distinguish between KD and
FI. Furthermore, these gene pair signatures are biologically
relevant and can be easily tested and validated by the qRT-
PCR method. The seven top-ranked gene pair TRGP classi-
fier can also be used as a single sample predictor in the clin-
ical environment. The above results warrant additional
investigation; if confirmed further, it could help to establish
a rapid and inexpensive diagnostic method to improve the
early diagnosis of KD.
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