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Abstract

Background: Allergic asthma is a complex process arising out of the interaction between the immune system and
aeroallergens. Yet, the relationship between aeroallergen exposure, allergic sensitization and disease remains unclear. This
knowledge is essential to gain further insight into the origin and evolution of allergic diseases. The objective of this research
is to develop a computational view of the interaction between aeroallergens and the host by investigating the impact of
dose and length of aeroallergen exposure on allergic sensitization and allergic disease outcomes, mainly airway
inflammation and to a lesser extent lung dysfunction and airway remodeling.

Methods and Principal Findings: BALB/C mice were exposed intranasally to a range of concentrations of the most
pervasive aeroallergen worldwide, house dust mite (HDM), for up to a quarter of their lifespan (20 weeks). Actual biological
data delineating the kinetics, nature and extent of responses for local (airway inflammation) and systemic (HDM-specific
immunoglobulins) events were obtained. Mathematical equations for each outcome were developed, evaluated, refined
through several iterations involving in vivo experimentation, and validated. The models accurately predicted the original
biological data and simulated an extensive array of previously unknown responses, eliciting two- and three-dimensional
models. Our data demonstrate the non-linearity of the relationship between aeroallergen exposure and either allergic
sensitization or airway inflammation, identify thresholds, behaviours and maximal responsiveness for each outcome, and
examine inter-variable relationships.

Conclusions: This research provides a novel way to visualize allergic responses in vivo and establishes a basic experimental
platform upon which additional variables and perturbations can be incorporated into the system.
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Introduction

Allergic asthma emerges from the interaction between two

complex dynamic systems, the immune system and the environ-

ment, where aeroallergens exist. These systems are intricate,

comprise multiple parts which are subject to many interactions

and feedback loops and, consequently, contain a broad array of

outputs. The interaction between these already complex systems

generates an even higher degree of complexity. Thus, deciphering

the conditions under which allergic disease evolves would benefit

from the elaboration of models that can explain and/or predict the

potential outputs of that interaction.

Advances in the understanding of disease processes have come in

great measure through experimentation using in vitro and, notably, in

vivo human and animal models. A detailed appreciation of the

immunopathology of asthma, along with the explosion in molecular

immunology has prescribed the modeling strategies to recapitulate

the asthmatic phenotype, particularly in mice. It should be noted

that conventional biomedical modeling greatly differs from

modeling in other scientific domains, such as ecology or economics

in that biomedical models are conceived with a pre-established goal

in mind: to establish a known phenotype. While such an approach

has produced conspicuous benefits, it has inherently prevented an

unbiased, global understanding of the consequences of the

interaction between allergens and the immune system.

Although it is generally thought that there is a reasonable

correlation between early allergen exposure and sensitization

[1,2,3,4] or sensitization and disease [1,5,6], the connection that

may exist between exposure and disease is less clear [1]. The

intrinsic constraints of these clinical and epidemiological studies
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preclude achieving both a longitudinal and quantitative under-

standing of these relationships. Yet, it seems intuitive that such

knowledge is essential to gain further insight into the origin,

evolution and nature of allergic disease.

The strategy that we followed to investigate the relationship

between aeroallergen exposure, allergic sensitization and allergic

disease embraces a computational conception of immune respon-

siveness [7]. In this conception, the view is synthetic rather than

analytical and, therefore, the focus is on system behaviors rather than

specific components, i.e. the complex molecular networks under-

lying the outcomes that we measured. We surmise that this strategy

is justified ad interim given the current state of knowledge in systems

biology in vivo. We present data delineating the kinetics and dose-

responses for local (total inflammation and eosinophilia) and

systemic (HDM-specific immunoglobulins (Ig) G1 and E) events

elicited in mice by extended exposure to house dust mite (HDM).

We developed and refined algorithms defining the behavior of each

outcome that were subsequently used to conduct in silico simulations

to guide new biological experiments and visualize an extensive array

of unknown responses. We propose that the iterative approach

applied to construct the model exhibits considerable fidelity to the

biological structure of the process.

Methods

Animals
Female BALB/C mice (6 to 8 weeks old) were purchased from

Charles River Laboratories. The mice were housed in a specific

pathogen-free environment under 12 h light-dark cycle. All

experiments described in this report were approved by the Animal

Research Ethics Board of McMaster University.

Protocol of respiratory mucosal sensitization
House dust mite extract (Greer Laboratories) was resuspended

in saline (0.9% NaCl Irrigation Solution, Baxter) and serial

dilutions were done to obtain the desired concentrations. This

suspension was delivered to isoflurane-anaesthetized mice intra-

nasally in a 10 ml volume. Mice were exposed daily to HDM for

either 10 consecutive days (short-term protocol) or 5 consecutive

days a week followed by 2 days of rest for a total of 1, 2, 3, 5, 7, 10,

14 and 20 weeks (long-term protocol).

Sample collection
At various time-points, always 72 hours after the last HDM

exposure, mice were sacrificed. Blood was collected by retro-

orbital bleeding. Blood smears where prepared and serum was

obtained by centrifugation of whole blood. Bronchoalveolar lavage

(BAL) was performed as previously described [8,9]. Briefly, the

lungs were dissected, the trachea was cannulated with a

polyethylene tube (BD Biosciences) and two lavages were done

with PBS (0.25 ml followed by 0.2 ml). Total cell counts were then

determined using a hemocytometer and smears were prepared by

cytocentrifugation. Protocol Hema 3 stain set (Fisher Scientific)

was used to stain blood and BAL smears and differential cell

counts ($500 leukocytes) were determined according to a

previously established protocol [9]. The right lobe of the lung

was inflated and fixed in 10% formalin for histological analysis.

HDM-specific Ig measurements
Levels of HDM-specific IgE and IgG1 in serum were measured

using ELISA techniques as previously described in detail [10].

Optical density (OD) was read at 405 nm. HDM-specific IgE titres

(in OD units) were calculated by subtracting from each sample OD

the average OD value of 20 zero standard replicates plus two

standard deviations. HDM-specific IgG1 titers (in relative units)

were calculated using the formula 1/(x/ODx*0.05), where x equals

the dilution factor closest to but greater than double the average OD

value of 20 zero standard replicates, and ODx is the OD reading of x.

Determination of airway responsiveness
Mice were anesthetized with nebulized isoflurane (3% with 1 L/

min of O2), paralyzed with pancuronium bromide (1 mg i.p.),

tracheostomized with a blunted 18-gauge needle, and mechanically

ventilated with a small animal computer-controlled piston ventilator

(flexiVent, SCIREQ Inc.) [11]. Mice received 200 breaths per

minute and a tidal volume of 0.25 ml; the respiratory rate was

slowed during nebulization (10 seconds) to provide 5 large breaths of

aerosol at a tidal volume of 0.8 ml. The response to nebulized saline

and increasing doses (3.125, 12.5 and 50 mg/ml) of methacholine

(MCh, Sigma-Aldrich) was measured. A positive-end-expiratory

pressure of 3 cm of H2O was applied by submerging the expiratory

line in water. Respiratory impedance was determined from 3 second

broadband volume perturbations ranging from 1 to 20.5 Hz every

10 seconds during approximately 2 minutes following each dose of

MCh. The data was fitted with the constant phase model and model

parameters (airway resistance (Rn), tissue dampening (G), tissue

elastance (H) and hysteresivity, a measure of lung heterogeneity

(g= G/H)) were calculated [12]. Model fits that resulted in a

coefficient of determination less than 0.8 were excluded.

Histology and morphometric analysis
Lung tissue was embedded in paraffin and cut at a thickness of

3 mm. Sections were stained with hematoxylin and eosin for

evaluation of the severity and the nature of leukocyte infiltration in

the lungs by light microscopy. Additional sections were stained

with Picro Sirius red to demonstrate the presence of collagen in the

extracellular matrix. Images of main airways were captured with

OpenLab (Improvision) via a Leica camera and microscope

attached to a computer. Analysis was performed on a custom

computerized image analysis system (Northern Eclipse software,

Empix Imaging) as previously described [13]. Briefly, morpho-

metric quantification involved calculation of the percentage of

tissue area that was positively stained within a 40 mm-thick area

from the basement membrane extending into the airway lumen.

Mathematical and computational modeling
All the equations for the mathematical models and analyses

were generated using curve-fitting techniques within FindGraph

software (UNIPHIZ Lab) for each outcome. (All equations and

additional detail on the validation analysis of the model is provided

in an online data supplement)

Data analysis
Data are expressed as means6standard error of the mean

(s.e.m.). Statistical analysis was performed with GraphPad Prism

(GraphPad Software). Results were interpreted by analysis of

variance (one-way ANOVA) followed by the Dunnett post hoc test

to compare HDM exposed groups versus the saline control group.

Differences were considered statistically significant when p values

where less than 0.05.

Results

Dose-response to short-term HDM exposure
We have previously shown that mice exposed intranasally to

HDM at a concentration of 25 mg/day for 10 consecutive days

develop acute airway inflammation [14], and that exposure to

25 mg/day for up to 7 weeks establishes chronic airway
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inflammation associated with remodeling [15]. These static

conditions, fixed times and concentrations, were selected to

achieve desired specific outcomes, thus neglecting the dynamic

nature of a living system. Hence, we initially carried out a dose-

response experiment using a 10,000-fold range, from 0.01 to

100 mg/day, for 10 days. As shown in Figure 1A, the response in

terms of total cell numbers (TCN), eosinophils (EOS) and HDM-

specific serum IgG1 followed a logistic pattern with an incipient

response observed with 1 mg and a plateau after 25 mg. Based

upon these findings, we chose doses of 1 (incipient), 7.5 (moderate)

and 25 mg/day (submaximal) for subsequent experiments utilizing

longer exposure periods.

Modeling the inflammatory response to long-term HDM
exposure

We investigated the impact of exposing mice to those three

concentrations of HDM for up to 14 weeks. As shown in Figure 2A,

repeated allergen exposure initially elicited airway inflammation in

a near-exponential manner that was both dose- and time-

dependent. At 2 weeks, 7.5 and 25 mg led to a distinct peak in

inflammation; from then on, 25 mg maintained a stable level of

maximal inflammation. A similar plateau was also achieved with

7.5 mg only after 7 weeks. Interestingly, exposure to 1 mg of HDM

even for such a protracted period of time did not elicit significant

airway inflammation suggesting that a threshold of responsiveness

for this outcome must be above this concentration.

Once experimental data were collected and analyzed, a bottom-

up model was constructed using mathematical and computational

methods to accurately portray the data and the ensuing dynamics.

Although identical methodology was used for all outcomes (TCN,

EOS and immunoglobulins), detailed steps (Figure 1B) are

presented for only TCN for brevity.

The initial equation was encoded to be used iteratively to

simulate and predict output responses given inputs of dose and

time. Figure 2B shows a retrodiction of the model in which

simulations were compared to actual data and proved to fit fairly

well. Given that lower doses (saline and 1 mg) exhibited a

seemingly different behavior compared to higher doses (7.5 and

25 mg), an intermediate dose of 5 mg was selected to further assess

the model. In this evaluation, a prediction, or interpolation, of a 5 mg

dose was performed and compared to actual data (Figure S1A).

Figure 2C depicts a refined model that incorporates these new

experimental data.

An additional evaluation of the model was also carried out by

extrapolating data up to 20 weeks (Figure S1B). Following

comparison to actual data, the model was further refined to

include all experimental data (Figure 2D), resulting in a final

equation generated from 5 doses and 9 time-points. Equation 1

describes total inflammation (y) as a function of time (t) and dose

(x), while each of the respective co-efficients (xa1, xb1…) represent

dose-dependent quantities (see Methods S1, equations 1.1 to 1.21):

y~f TCN
C x,tð Þ~

xa1zxb1sin z1 x,tð Þð Þ2 , 0ƒtƒ3

xa2zxb2ez2 x,tð Þzxg2tzxh2t2 , 3ƒtƒ7

xa3zxb3ez3 x,tð Þzxg3ez4 x,tð Þ , t§7

8><
>: ð1Þ

While the model visually fit the experimental data, accuracy was

verified and quantified mathematically. Using linear regression, the

initial equation, the revised equation (including the 5 mg data), and

the final equation (including both the 5 mg and 20 week data) yielded

R2 values of 0.987, 0.987 (not shown), and 0.990, respectively

(Figure 2E). Furthermore, 95% confidence intervals (CI) and global

validation metrics were calculated (see online data supplement and

Figure 2F). The latter accounts for experimental uncertainty, error

and chance [16,17,18], and confirmed that not only the model

accurately predicts actual responses but also that an additional dose in

the model did not enhance the accuracy of the system, while the

integration of a further time-point had only a minimal effect.

This complex model accurately mimics varying system dynamics.

However, in order to facilitate the visualization of responses, we

developed a simple model (see online data supplement), represented

by Equation 2, which captures the general features of the system:

y~f TCN
S x,tð Þ~ xazxbtzxct2

1zxd tzxgt2
ð2Þ

To visualize the dynamics of the system, simulations were

performed with both complex and simple models to emulate the

response between 0 and 25 mg, in sequential 0.5 mg increments

over a 20 week period (Figure 3A–B). Further extrapolations were

performed doubling both the highest dose and latest time-point

used to construct the model. Figure 3C shows simulations in three-

dimensions up to 40 weeks (approximately 50% of the lifespan of a

Figure 1. Airway inflammation and systemic immunity in BALB/C mice exposed to HDM for 10 consecutive days. (A) Dose-response:
total inflammation (black bars), eosinophilia (grey bars) and serum HDM-specific IgG1 (solid circles and solid line). Results for cells (n = 5–19 mice/
group) and IgG1 (n = 2–6 mice/group) are expressed as means6s.e.m. (B) Schematic of the steps followed to develop the mathematical models.
doi:10.1371/journal.pone.0002426.g001
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mouse) and 50 mg to further enhance the visualization of the dose-

time-response relationship. The complex model predicts actual data

with slightly greater accuracy than the simple model, as indicated

by an approximate 0.05 increase in the R2 value and an 8.5%

increase in the 95% CI (data not shown and Figure 3D). Such

simulations epitomize visual and numerical information that can

only be derived mathematically and computationally.

Analysis of global inflammation was followed by an evaluation of

airway eosinophilia, a typical hallmark of allergic inflammation. As

illustrated in Figure 4A, eosinophils initially increase in a dose- and

time-dependent fashion but later dramatically decrease to a level of

6–9% of total cells at 20 weeks of exposure. These findings are

supported by a histopathological assessment (Figure 4E). As shown

in the top panels, inflammation at 2 weeks is minimal in mice

exposed to 1 mg of HDM and severe in those exposed to 25 mg. A

graded level of inflammation was evident after exposure to 5, 7.5

and 25 mg (data not shown). Figure 4E (bottom panels) depicts a

comparison of acute versus chronic exposure revealing stable

inflammation over time but a relative decrease in tissue eosinophilia

at later time-points. To note, we also observed a similar decrease in

eosinophils in peripheral blood (data not shown). At variance with

these findings, neutrophils and, particularly, mononuclear cells

increased throughout the entire duration of allergen exposure,

numerically compensating for the decrease of eosinophils and,

hence, maintaining the overall degree of inflammation (Figure 4F).

Again, exposure to 1 mg of HDM for up to 14 weeks did not elicit

any significant changes in eosinophils (Figure 4A), or mononuclear

cells and neutrophils (data not shown).

Using the aforementioned methods, complex and simple models

were constructed for eosinophils, eliciting the equations:

y~f EOS
C x,tð Þ~ xa1zxb1ez1 x,tð Þzxg1ez2 x,tð Þ , 0ƒtƒ7

xa2zxb2tzxc2t2zxd2t3 , t§7

(
ð3Þ

Figure 2. Airway inflammation in BALB/C mice exposed to HDM and subsequent mathematical modeling. (A) Inflammatory response in
the BAL. Mice were exposed intranasally to either saline (solid circles) or HDM, 1 mg (open circles), 7.5 mg (open triangles up) or 25 mg (solid squares)
for up to 14 weeks (5 days of exposure and 2 days of rest per week). Cell numbers are expressed as mean6s.e.m (n = 6–12 mice/group). (B)
Mathematical modeling of the inflammatory response. A mathematical equation was developed from the experimental results (blue lines) based on
dose and length of exposure to HDM. Simulations (red lines) for each of the doses studied experimentally were generated. (C) Results of the first
iteration. Predictions using the first mathematical model were generated for 5 mg of HDM (see Figure S1) and were subsequently evaluated
experimentally. Then, the new 5 mg experimental data (solid triangles down) was used to readjust the previous equation and refine the model. Actual
data (blue lines) and virtual simulations (red lines) are shown for saline, 1, 5, 7.5 and 25 mg of HDM up to 14 weeks. (D) Results of the second iteration.
Predictions using the second mathematical model were generated for all doses studied at 20 weeks of exposure (not shown) and were subsequently
evaluated experimentally. Then, the new 20 week data was used to readjust the previous equation and further refine the model. Actual data (blue
lines) and virtual simulations (red lines) are shown for saline, 1, 5, 7.5 and 25 mg of HDM up to 20 weeks. (E) Regression analysis to evaluate the
accuracy of the mathematical models. Deterministic validation metrics were performed to mathematically measure the agreement between
computational predictions and experimental results. For the line y = x, where y is model data and x is actual data, the coefficient of determination R2

in the first model is 0.987 (solid circles) and 0.990 in the last one (open circles). (F) Confidence intervals (CI) to evaluate the accuracy of the
mathematical models. Non-deterministic validation metrics were also used to account for experimental and computational uncertainties and errors.
The 95% CI for each point depicts uncertainty due to experimental variability. Model data for 25 mg (top) and 1 mg (bottom) accurately predict actual
data, and fall within the 95% CI band.
doi:10.1371/journal.pone.0002426.g002
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y~f EOS
S x,tð Þ~ tzxa

xbzxc tzxað Þzxd tzxað Þ2

�����
����� ð4Þ

Although Equations 3 and 4 represent different functions, they

both maintain relatively high and similar predictive value, yielding

R2 values of 0.968 and 0.938, respectively. Using these equations,

we performed computer simulations in two- and three-dimensions

(Figure 4B–D). These images illustrate that the decrease in airway

eosinophilia occurs throughout the entire range of exposures, and

that is not dependent on eosinophilia reaching an absolute level;

moreover, it is also evident that the higher the eosinophil level, the

sooner the downturn begins. This suggests that part of the

program of the immune-inflammatory response elicited by chronic

allergen exposure may contain an inherent controlling mechanism

to prevent persistent eosinophilia in the lung.

Modeling allergic sensitization to long-term HDM
exposure

Allergic sensitization is a crucial event in allergic asthma.

Hence, we investigated the effect of allergen exposure on defining

features of B cell immunity, namely serum levels of HDM-specific

immunoglobulins. As shown in Figure 5A–D, IgG1 and IgE serum

levels follow a logistic-like behavior similar to that identified for

total airway inflammation. However, there are kinetic differences;

indeed, serum immunoglobulins are detected after 2–3 weeks of

allergen exposure at a time where the inflammatory response has

already reached its peak. Given the nature of the immunoglobulin

response, simple models for both IgE and IgG1 were constructed

and proved to be accurate (R2 values of 0.900 and 0.985,

respectively). Equations 5 and 6 depict the values of IgE and IgG1:

y~f
IgE

S x,tð Þ~ xatxd

xxd
c ztxd

ð5Þ

y~f
IgG1

S x,tð Þ~xaz
xb{xa

1z t
xc

� �xd
ð6Þ

Relationship between allergic sensitization and airway
inflammation

Airway inflammation and allergic sensitization were compared

using two different approaches. First, we considered the threshold of

Figure 3. 2D and 3D models for total cells generated from mathematical equations. In panels A, B and C, the simulations for the doses of
HDM used experimentally are highlighted in red. (A) Simulations based on dose of HDM (range from 0 to 25 mg at 0.5 mg intervals) and length of
exposure (0 to 20 weeks) using the final mathematical model (Figure 2D). (B) Simplified mathematical model for the total cell number. (C) 3D
simulations generated from the simplified mathematical model including predictions up to 50 mg and 40 weeks of HDM exposure. (D) Confidence
intervals to evaluate the accuracy of the simple mathematical model. Visual inspection shows that the simple model falls within the 95% CI, while
quantification of the simple TCN model accuracy was calculated to be 89.03622.42% with 95% confidence. Thus, the simple TCN model has similar
fidelity to the complex model.
doi:10.1371/journal.pone.0002426.g003
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responsiveness, understood here as the lowest dose of allergen that

elicits a measurable response. To address this, we calculated areas

under the curve (AUC) for all modeled responses and determined

that a threshold would be the point at which there was an

apparent change in behavior. The lowest dose of allergen required

to elicit an eosinophilic response is 2 mg, whereas that required to

induce an IgG1 response is 0.5 mg. (Figure 5E). Of interest, these

doses elicit responses that are approximately 20% of the maximal

Figure 4. Nature of the inflammatory response in mice exposed to HDM and mathematical modeling of eosinophils. In panels B
insert, C and D, the simulations for the doses of HDM used experimentally are highlighted in red. (A) Eosinophilic response in the BAL fluid. Mice
were exposed to either saline (solid circles) or HDM, 1 mg (open circles), 5 mg (solid triangles down), 7.5 mg (open triangles up) or 25 mg (solid
squares) for up to 20 weeks. Eosinophil numbers are expressed as mean6s.e.m (n = 6–12 mice/group); percentage of eosinophils at 5 and 20 weeks
are inserted in the graph. (B) Final mathematical model for eosinophils. The equation to obtain these predictions (red lines) was developed from the
experimental results (blue lines) based on dose and length of exposure to HDM. The insert shows simulations based on dose of HDM (range from 0 to
25 mg at 0.5 mg intervals) and length of exposure (0 to 20 weeks) using the final mathematical model. (C) Simplified mathematical model for
eosinophils. (D) 3D simulations generated from the simplified mathematical model including predictions up to 50 mg and 40 weeks of HDM
exposure. (E) Light photomicrograph of lung sections stained with hematoxylin and eosin. Top left: after 2 weeks of exposure to 1 mg of HDM (610
magnification); top right: after 2 weeks of exposure to 25 mg (610); bottom left: after 2 weeks of exposure to 25 mg of HDM (640); bottom right: after
14 weeks of exposure to 25 mg of HDM (640). (F) Cellular profile in the BAL fluid. Absolute numbers and percentage of mononuclear cells (light grey
bars) and neutrophils (dark grey bars) after continued exposure to 5, 7.5 and 25 mg of HDM for either 3 or 14 weeks. Bars represent mean of cells
(n = 6–12 mice/group).
doi:10.1371/journal.pone.0002426.g004
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inducible response. It is clear that the pattern of the areas under

each curve for IgG1 and eosinophils are similar; however, the

latter is shifted to the right indicating that the amount of allergen

required to elicit not only the lowest response but all responses is

different. To better visualize this, and to standardize measure-

ments, we plotted each outcome as a percentage of the maximal

response. As shown in Figure 5F, any level of sensitization is

achieved with about half the amount of allergen required to

Figure 5. Systemic responses in HDM-exposed mice, subsequent mathematical modeling and comparison between inflammation
and sensitization. In panels B, C and D, the simulations for the doses of HDM used experimentally are highlighted in red. (A) Serum levels of HDM-
specific IgG1. BALB/C mice were exposed to either saline (solid circles) or HDM, 1 mg (open circles), 5 mg (solid triangles down), 7.5 mg (open triangles
up) or 25 mg (solid squares) for up to 20 weeks. Data represent mean6s.e.m. (n = 2–9 mice/group). (B) Mathematical model for HDM-specific IgG1. A
simple mathematical model was developed and IgG1 levels over time and at doses ranging from 0 to 25 mg of HDM, in 0.5 mg increments, were
predicted. (C) 3D representation of HDM-specific IgG1 responses, including predictions up to 50 mg and 40 weeks of HDM exposure. (D)
Mathematical model for HDM-specific IgE. A simple mathematical model based on serum measurements was developed and IgE levels were
simulated over time and at doses ranging from 0 to 25 mg of HDM in 0.5 mg increments. (E) Area under the curve (AUC) of the maximal number of
eosinophils (black bars) and level of HDM-specific IgG1 (grey bars). The lower dose showing a change in the behavior of the curve (threshold dose), is
identified for HDM-specific IgG1 (blue bar, 0.5 mg) and eosinophilia (red bar, 2 mg). The results are based on computer simulations. (F) Maximal
responses for HDM-specific IgG1 (blue line) and eosinophilia (red line) at a range of doses of HDM. The 90% of the maximal inflammatory or
immunoglobulin response (long dashed line) is reached when given about 11 or 6 mg of HDM, respectively; approximately 2 and 5 mg of HDM are
required to elicit 50% of the maximal inflammatory and immunoglobulin responses (medium dashed line), and ,1 and 2 mg to induce 10% of these
responses (short dashed line).
doi:10.1371/journal.pone.0002426.g005
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achieve the same level of eosinophilic inflammation. Higher IgG1

responses are not only induced by the same amount of allergen but

also greater changes in IgG1 are observed at lower doses of

allergen. Similar observations were made for TCN and IgE (data

not shown).

Lung function and remodeling
Airway dysfunction, notably airway hyperreactivity (AHR), is a

hallmark of allergic asthma. Preliminarily, we have evaluated lung

function to a range of doses after 3 weeks of HDM exposure, a

time-point where there is prominent inflammation but no airway

remodeling [15]. As shown in Figure 6A, airway resistance (Rn),

tissue dampening (G) and elastance (H) increase dose-dependently,

being severe in mice exposed to 7.5 and 25 mg of HDM. Most of

the peripheral effects observed at these doses of allergen exposure,

as measured by G and H, can be explained as airway closure with

some elements of lung heterogeneity, as assessed by hysteresivity

(g, data not shown) [19]. Rn in mice exposed to 1 mg of HDM was

not significantly different than that in saline-treated animals.

Interestingly, G and H seemed to be increased in these mice

suggesting incipient functional abnormalities occurring prior to

detectable inflammation. To note, mice exposed to 5, 7.5 and

25 mg of HDM had a significantly higher baseline Rn compared to

the 1 mg and saline groups, indicating a degree of permanent

narrowing of the conducting airways. A comprehensive clarifica-

tion of the variables that influence airway function in this system

will require not only the acquisition of an extensive set of

functional data but also of additional data including mucous

production, permeability and airway structural changes, i.e.

remodeling. In specific regard to the later, Figure 6B shows that

subepithelial collagen deposition increases in a dose-dependent

manner after 7 weeks of allergen exposure; changes in mice

exposed to 1 mg of HDM were not significant compared to saline.

Clearly, a quantitative delineation of the relationships between

tissue and functional variables with inflammatory and immune

variables is a major computational challenge beyond the scope of

the research presented here.

Discussion

Understanding immune responsiveness will benefit from

accepting the multidimensionality and quantitative nature of

immunological phenomena [20]. Here, we have engaged this

precept to investigate immune-inflammatory responses following

repeated HDM exposure in mice. The computational analysis we

have performed allows for the identification of rules and

parameters that define the system. Principal rules are that

relationships between time and infiltrating total cells, as well as

mononuclear cells and neutrophils, and serum immunoglobulins

follow a logistic-like curve; in sharp contrast, the eosinophil

response over time follows a bell shaped-like curve. These rules

presuppose a dynamic behavior with at least one significant

implication: the lung cellular effector profile quite drastically

changes depending on dose and length of exposure to allergen.

These multiple possible outcomes may be mathematically viewed

as a demonstration of heterogeneity.

The distinct behavior of eosinophils is intriguing. The

underlying immunological explanation is unknown at this time;

however, it seems intuitive that if allergen exposure is considered

as an input, persistent deliverance of such an input will stress the

Figure 6. Physiological and structural lung changes in mice
exposed to different doses of HDM. (A) Analysis of airway
responsiveness to methacholine (MCh) in mice exposed to HDM for 3
weeks. Airway resistance (Rn), tissue dampening (G) and tissue
elastance (H) were determined in BALB/C mice exposed to either saline
(solid circles, black line) or HDM, 1 mg (open circles, yellow line), 5 mg
(solid triangles down, grey line), 7.5 mg (open triangles up, blue line) or
25 mg (solid squares, red line). A time-course of 2 baseline measure-
ments prior to nebulization of increasing doses of MCh (0, 3.125, 12.5
and 50 mg/ml) followed by 12 consecutive measurements is shown.
Data represent mean6s.e.m. (n = 5–12 mice/group). *, ** and ***
indicate p,0.05, ,0.01 and ,0.001, respectively, in mice exposed to 5,
7.5 and 25 mg compared to saline; # indicates p,0.05 in mice exposed
to 1 mg compared to saline. (B) Airway remodeling after 7 weeks of
HDM exposure. Picro Sirius red-stained lung sections visualized under
polarized light (620) and morphometric analysis show increased
subepithelial accumulation of collagen in HDM exposed mice. Data
represent the mean of the percentages of stained area of interest

(6s.e.m.). ** indicates p,0.01 and ***, p,0.001 versus saline exposed
mice (n = 7–12 mice/group).
doi:10.1371/journal.pone.0002426.g006
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system and instigate reactive responses. From this perspective, the

decrease of eosinophils and the increase in mononuclear cells are

likely to be mechanistically related. Flow cytometric analysis

delineating the changes in the dynamics of subsets of mononuclear

cells (T cells and monocyte/macrophages) over the entire protocol

will be informative and suggest future venues of research.

Several parameters define the behavior of the system. First, we

have identified a threshold dose at approximately 0.5 mg of HDM

for sensitization and 2 mg for inflammation. In fact, exposure to

2.5 mg of HDM elicits a detectable eosinophilic inflammatory

response (data not shown). Second, responsiveness for all

constituents is dependent on the strength of the initial dose of

allergen; moreover, the greater the input, the steeper the initial

slope of the response. Third, the system has an inherently limited

capacity to respond, at least to the same allergen. This maximal

responsiveness is achieved at a dose between 10 and 15 mg, and

further increases in dose or length of exposure do not result in

greater responses. Fourth, there is an entire range of responses

between the threshold and the maximum; mathematically,

however, the model reveals that the distribution of responses is

non-linear. Lastly, a comparative analysis of inflammation and

sensitization outputs reveals that the development of the latter is

more sensitive to allergen than the induction of airway

inflammation. That the relationships between exposure and either

sensitization or inflammation are non-linear intimates that the

relationship between sensitization and inflammation is non-linear

as well. It is tempting to speculate that these findings may

contribute to explain the difference between the prevalence of

atopy (,40%) and asthma (5–10%) in humans [21,22,23,24].

The question of how the concentrations of allergen used here

compare to human exposure is elusive because the terms of

reference are precarious (reviewed in [25]). Many studies have

examined the amount of mite allergen present in homes. However,

the numbers vary extraordinarily. Not only is there a plethora of

environmental variables influencing the concentration of mite

allergens in the household but there are also several collection and

measurement techniques [3,26,27,28]. In addition, the relation-

ship between the micrograms of allergen measured in a dust

sample and the amount of allergen that is airborne, inspired, and

reaches the lower airway is enigmatic. Indeed, the inability to

precisely determine mucosal HDM exposure in humans frustrates

the justifiable desire to formulate a rigorous interspecies

comparison of exposures. Perhaps such a straightforward com-

parison is an ill-conceived goal; arguably, numbers may not be

translated between species but behaviors likely can.

Many issues have not been addressed here. For example,

experiments were conducted in BALB/C mice. While we know

that C57BL/6 mice respond to HDM even more vigorously in

terms of inflammation, it definitely cannot be assumed that the

behavior of these two strains, or others, is identical. Similarly,

these experiments were performed in female mice and, thus, a

direct application to male mice is unadvisable. In addition, we

cannot presume that the behaviors described for HDM apply to

other aeroallergens. With these limitations, our research furnishes

a conceptual foundation and operating tools for the evaluation of

other variables or system perturbations of a pharmacological,

environmental or genetic nature. Based on the present research,

future analysis of immune responses exploring these variables may

not require the generation of entire data sets but of selected

experiments to generate comparative algorithms to re-define the

overall behavior of the system.

There has been a considerable interest by engineers, mathe-

maticians and computer scientists in the application of their skills

to modeling biological processes. Over the last few years, biologists

have shown an increasing attraction to join in this enterprise.

Arguably, the catalyst underlying this initiative has been the

recognition that biological processes are, formally, complex

processes. As such, efforts to incorporate new conceptual and

experimental stratagems must be made to better comprehend

them. The development of mathematical modeling based upon

research, primarily in vitro, examining hemopoiesis and stem cell

renewal [29], models of virus-immune dynamics [30] and cancer

cell propagation [31] typify these efforts. Particularly in the area of

inflammation, agent-based and equation-based models have been

established to provide insight into the complex dynamics of this

process [32,33,34,35,36,37]. However, the research presented in

this manuscript is, to our knowledge, the first to investigate the

interaction between aeroallergens and the immune system in vivo

from a computational perspective.

Supporting Information

Figure S1 Iterations to validate the mathematical model for the

inflammatory response. (A) A mathematical equation was

developed based on the responses to saline, 1, 7.5 and 25 mg of

HDM up to 14 weeks (blue lines). Simulations (red lines) for these

doses studied were generated. Then, the equation was used to

predict the response to 5 ug, which was subsequently evaluated

experimentally (blue line, triangles down). (B) A refined mathe-

matical equation was developed based on the responses to saline,

1, 5, 7.5 and 25 ug of HDM up to 14 weeks (blue lines).

Simulations (red lines) for these doses were generated. Then,

responses for all doses at 20 weeks were predicted, and these were

subsequently evaluated experimentally.

Found at: doi:10.1371/journal.pone.0002426.s001 (1.50 MB TIF)

Methods S1 Supplementary methods, including elaboration of

mathematical Equations 1 to 6.4 used in the models, validation

analysis and area under curves.

Found at: doi:10.1371/journal.pone.0002426.s002 (0.11 MB

PDF)
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