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Abstract: This research aimed to comparatively evaluate the influences of root restriction (RR)
cultivation and traditional cultivation (RC) on grape berry skin metabolomics using a non-targeted
metabolomics method. Two-hundred-and-ninety-one metabolites were annotated and the kinetics
analyses showed that berry skin metabolome is stage- and cultivation-dependent. Our results showed
that RR influences significantly the metabolomes of berry skin tissues, particularly on secondary
metabolism, and that this effect is more obvious at pre-veraison stage, which was evidenced by the
early and fast metabolic shift from primary to secondary metabolism. Altogether, this study provided
an insight into metabolic adaptation of berry skin to RR stress and expanded general understanding
of berry development.
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1. Introduction

As a non-climacteric and important economical fruit, grape (Vitis vinifera L.) is cultivated
worldwide, which possesses approximately 7,400,000 ha in the world [1]. Besides being consumed
as table fruits, grape berries are also processed to wine and raisins, which possess a range of health
benefits, such as atherosclerosis prevention [2], anti-oxidation [3,4], and renal damage prevention [5].
The development of grape berries consists of two successive sigmoid growth phases separated
by an intermediate lag phase, and each phase shows distinctive characteristics in physiology and
biochemistry, including a berry’s size and shape, changes in color, texture, and metabolic dynamics [6].
The first phase (berry development phase) begins with pericarp cell division and cell enlargement
as principal organic compounds accumulate; the malic acid, tartaric acid, and tannins are especially
critical to wine quality [7,8]. The second phase (berry ripening phase) is characterized by the berries’
coloring and softening with a significant reduction in acids concentration due to the enlargement of
berry volume and the tremendous increase in sugar compounds. Beyond sugar accumulation, a grape
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or wine’s quality is mainly determined by the secondary metabolites [7]. For most red grape varieties,
anthocyanin accumulation is considered to be the most obvious production during berry ripening,
which is restricted to skin tissue in most red grape cultivars [9].

The taste and quality of grape and wine generally reflects the compositions of amount of primary
and secondary metabolites. Organic acids, amino acids, and sugars are the major primary metabolites,
which accumulate mainly in the pulp tissues during the berry formation phase. But most of the secondary
metabolites, such as phenylpropanoids include phenolic acids, flavonoids, viniferins, and stilbenes are
typically found in the skin tissues during the berry ripening phase [10,11]. A range of biotic and abiotic
stresses including water stress, heat stress, solar irradiance, and pathogen infection can have great effects
on grape and/or wine quality and compositions [11-14]. Root restriction (RR) is considered to be another
type of stress for crop plants, which has direct and indirect effects on the morphological and physiological
properties. Meanwhile, RR is a practical tool for improving the quality of crop plants and the volume
utilization efficiency by restricting a plant’s rooting volume available [15]. Root restriction has been well
applied to various crop plants, such as cotton (Gossypium hirsutum L.) [16], pepper (Capsicum annuum cv
Bellboy) [17], apple (Malus pumila) [18], sweet potato (Ipomoea batatas (L.) Lam.) [19], and especially in grape
(Vitis vinifera L.) [20-23]. Root restriction was proved to improve the absorbing ability of grapevine root
system with more secondary and fabric roots [23,24]. Besides, it is achievable to enhance the nitrate uptake
rate and to shape the overall sensory experience of grape berries with increasing concentration of sugars
and anthocyanins under RR cultivation [22,24-26]. It has been reported that the anthocyanin levels in
“Summer black” berry skin were significantly increased in response to RR, which resulted mainly from the
increase of tri-hydroxylated, methoxylated, and monoglycosylated anthocyanins [27]. In addition, RR can
significantly increase ascorbic acid (AsA) contents that are often used as an index of fruit health-related
quality [28].

The release of a draft whole-genome sequence of grapevine in 2007 provides a high-throughput and
more insightful method to study the berry development [29]. Recently, a large range of transcriptomic [30],
proteomic [31,32], and metabolomic [33,34] studies were performed to reveal the molecular mechanisms
underlying grape berry development under normal and stressed conditions. Although transcriptomic
studies have revealed the transcriptomic changes during grape berry development under RR
condition [30], the simultaneously generated metabolites as the genome, transcriptome, and proteome
final regulatory products could not be simply deduced based on the above data. In addition, previous
studies demonstrated that metabolic changes could also affect the gene transcript levels [35]. Moreover,
metabolites fingerprinting provides a valuable tool to identify the resistance gene responsible for defensing
a soil-borne vascular pathogen Verticillium longisporum infection in Arabidopsis [36]. These results suggest
that metabolic analysis will make great contributions to identify novel metabolic makers and pathways
involved in plant-environment interactions. However, although metabolomic studies have been carried
out to reveal the effects of stresses on grape berry development processes [11,37], and even RR is reported
to be useful for improving color and taste quality in grapevine [22], metabolomic study of RR on grape
berry development is not reported yet.

Previous studies demonstrated that significant metabolic changes in developing grape berries
occur around the pre-version stage, as evidenced by the decomposition of primary metabolites and the
simultaneous accumulation of secondary metabolites [34]. In this study, a non-targeted metabolomics
approach was applied to comparatively investigate the effect of RR on dynamic metabolomics in skin
tissues of developing “Red Alexandria” grape berries.

2. Results

2.1. Metabolite Profiling of Berry Skin Samples

In order to compare the berry skin metabolic kinetic change patterns along berry development
between RR and RC, samples of “Red Alexandria” grape berry at eight WAFB (eight weeks after
full bloom, S1), 10 WAFB (S2), 12 WAFB (S3), 14 WAFB (54), 16 WAFB (S5) from RR and RC were
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collected, and the metabolic profiling was performed using an untargeted ultra high-performance liquid
chromatography-mass spectrometry (UHPLC-MS) system. Two-hundred-and-ninety-one metabolites
in total were annotated from more than 1000 characteristic features, including 158 primary metabolites
(51 amino acids and derivatives, 48 carbohydrates and organic acids, 29 lipids, 19 nucleotides, and
11 CPGECs-cofactors, prosthetic groups, and electron carriers), 114 secondary metabolites (including
73 flavonoids and 41 other phenolics), and 19 other compounds (Supplementary Table S1). Notably,
six metabolites (glyceraldehyde, ellagic acid hexoside, malvidin 3-O-(6-O-coumaryl)-glucoside, tricin
O-glucoside O-guaiacylglyceryl ether, uridine, and isorhamnetin) were not found in S1 samples of RC,
while one metabolite (tricin O-glucoside O-guaiacylglyceryl ether) was not found in both 54 and S5
samples of RR and RC.

2.2. Kinetic Patterns of Developing Grape Berry Skin Metabolomes

In order to view the kinetic metabolomes of developing grape berry skin, the unsupervised
multivariate data analysis of principal component analysis (PCA) was subsequently performed with the
annotated 291 metabolites (Figure 1). During grape berry development, the separation between different
development stages of the same cultivation methods or between different cultivation methods of the
same development stages was clear, revealing a cultivation method and developmental stage dependent
metabolic kinetics of developing grape berry skin. The first two principal components (PCs) explained
54.7% of the total variance of the skin metabolism (40% and 14.7% for PC1 and PC2, respectively).
Principal Component 1 separated the variations by developmental stages, while PC2 by cultivation
method. According to loading plots (Supplementary Figure S1), amino acids and flavonoids contributed
the most to the negative and the positive values of PC1, respectively. Glucose and glycerate also had higher
eigenvalues on PC1, indicating their strong contributions to sample distribution along this component.
Interestingly, the separation of two cultivation methods in PCA plots at the same stage of development
became farther as the grape berry developed, indicating that RR affects grape berry skin metabolome in a
stage-dependent way: the more advanced the grape berry development, the bigger the effect.
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Figure 1. Principal component analysis (PCA) of the metabolites annotated in developing grape berry
skin. Circle and triangle donate traditional cultivation (RC) and root restriction (RR) cultivation method,
respectively. Green, blue, brown, yellow, and cyan colors represent samples collected at S1, S2, S3,
54, S5 stage, respectively. S1, eight weeks after full bloom (WAFB); S2, ten WAFB; S3, 12 WAFB; 54,
14 WAFB; S5, 16 WAFB (berry maturation). Principle Component (PC) 1 explains 40% of variance
distinguishing grape berry skin samples from different developmental stages. PC2 explains 14.7% of
variance distinguishing skin samples from different cultivation methods.

2.3. Metabolic Changes of Grape Berry Skin along Grape Berry Development

To discover the metabolic variations in developing grape berry skins, the levels of the 291
annotated metabolites in a given stage of RR or RC were compared with the corresponding hard-core
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stage (S1 in RR and RC), respectively, and submitted to clustering analysis to authenticate the
stage-dependent variation (Supplementary Figures S2 and S3 and Supplementary Table S2). T-test and
false discovery rate (FDR) analysis were used to discriminate.

For primary metabolites in RC (Supplementary Figure S2 and Supplementary Table S2), more
than 47% (26 at S2, 37 at S3, 33 at 54, and 37 at S5) detected amino acids and their derivatives increased
dramatically from the lowest level at S1 to the highest level at S5 along berry development. Most
carbohydrates, CPGECs, and nucleotides in RC showed similar increasing trends as amino acids.
However, levels of 75.9% (22 out of 29) lipids decreased, and those of 67% (eight out of 12) organic
acids kept continually stable along berry development. In RR, changes of primary metabolites along
berry development were quite similar with minor differences, which will be further elucidated below.
For secondary metabolites in RC (Supplementary Figure S3 and Supplementary Table S2), levels
of eight to 34 flavonoids increased while those of 21 to 27 flavonoids decreased dramatically along
berry development, respectively. In addition, levels of four benzene and substituted derivatives, four
hydrolysable tannins, nine cinnamic acids and derivatives, and two others metabolites declined along
berry development. Changes of secondary metabolites in RR along berry development were quite
different, which will be further presented below.

2.4. Metabolic Differences between RR and RC Samples

To investigate the RR effects on metabolome profile, first, a heatmap of metabolite ratios was
constructed between RR and RC in each sampling time at different berry development stages
(Supplementary Figures S4 and S5 and Supplementary Table S3). The results showed that the difference
of metabolites between RR and RC were stage- and cultivation-dependent. Further analysis focused
mainly on the comparison of the effects of RR and RC on primary (Figure 2) and secondary metabolism
(Figure 3).

For primary metabolism, as compared with those in RC, levels of metabolites in glycolysis, such
as glucose, glucose-6-phosphate, and fructose-6-phosphate increased dramatically, while those of
glycerate and pyruvate declined in RR (Figure 2A). The intermediate metabolites in tricarboxylic acid
cycle (TCA) cycle, such as citrate, isocitrate, alpha-ketoglutarate, and malic acid declined along the
berry development in RR (Figure 2B). Levels of most of the detected amino acids increased while those
of several key stress responsive amino acids (such as 2-aminoadipic acid, aspartate, glutamine, and
serine) and glutamate metabolism amino acids (such as ornithine, arginine, and pyroglutamic acid)
declined, to different extents, in RR (Figure 2B). Levels of 50% lipids declined at early stages while
several other lipids (including lysoPEs, acetoacetate, and phosphocholine) increased from veraison in
RR. Levels of 50% nucleotides accumulated more in RR (Supplementary Figure 54 and Supplementary
Table S3).

For secondary metabolites, as compared with those in RC, levels of 18 flavonoids (including five
anthocyanins, six flavanols, two flavanones, and five flavones), two cinnamic acids, two benzene and
substituted derivatives, one hydrolysable tannins, and three others kept constitutively higher at all
berry development, while those of 21 flavonoids (including three anthocyanins, six flavones, and 12
flavanols) (Supplementary Table S4), three cinnamic acids, two benzene and substituted derivatives,
four hydrolysable tannins, and one other kept constitutively lower in RR (Figure 3A, Supplementary
Figure S5 and Supplementary Table S3). Among the higher level metabolites, the ratios peaked at S2,
and then sharply declined to two to four folds at S5. Levels of seven flavonoids, six cinnamic acids, and
three benzene and substituted derivatives were significantly lower in RR at early stage, and then kept
constant (Supplementary Table S3). In addition, levels of 11 secondary metabolites (isovitexin, morin,
delphinidin-3-O-(6''-O-alpha-rhamnopyranosyl-beta-glucopyranoside), galloyl-HHDP-gluc-ose#1,
syringic acid, protocatechuic acid, 3-cresotinic acid, 2-Amino-1,34-tetradecanetriol,
tetrabutylammonium, N,N’-Dicyclohexylurea, dodecyl (dimethyl) amine oxide) did not change
differentially at all berry development (Supplementary Table S3).
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Figure 2. (A) Visualization of metabolic dynamics of primary metabolism in skin tissues of developing

berries. Representative metabolites with significantly statistical increases and declines more than three

stages in RR are written in red and green letters, respectively. Metabolites with black letters indicate

their dynamic changes were not significantly different between RR and RC. Metabolites with grey

letters represent undetected metabolites. (B) Partial of representative metabolites. The relative levels of

metabolites were averaged with three biological replicates. Bars represent standard errors. Significant

differences were signaled by an asterisk (p < 0.05) using ¢-test. Each color of background represents one

metabolic pathway.
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Figure 3. (A) Visualization of metabolic dynamics of secondary metabolism in skin tissues of

developing grape berries. Representative metabolites with significantly statistical increases and declines

more than three stages in RR are written in red and green letters, respectively. Metabolites with black

letters indicate their dynamic changes were not significantly different between root restriction (RR) and

traditional cultivation (RC). Metabolites with grey letters represent undetected metabolites. (B) Partial

of representative metabolites are presented. The relative levels of metabolites were averaged with

three biological replicates. Bars represent standard errors. Significant differences were signaled by an

asterisk (p < 0.05) using t-test. Each color of background represents one subclass of phenolic pathway.
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3. Discussion

Grape berries at different phenological stages have their special metabolomes, which is prone to
be influenced by both biotic and abiotic stresses. It is reported that variations in metabolic compositions
affected by environmental perturbations will be associated with final yield at harvest [38]. Therefore,
understanding of the metabolic changes in the metabolomics level in developing grape berries is of
remarkable significance regarding the yield and quality improvement of grape berries, particularly
under stress conditions. In this study, we investigated into the kinetic changes of the metabolites
of grape berry skin tissues in response to RR along grape berry development using non-targeted
metabolomics. Our results showed that the metabolome of grape berry skin is development-stage
dependent, and that general kinetics of metabolic changes in developing grape skin tissues are similar
between RR and RC samples, which indicated a highly conserved metabolic regulatory mechanism
of grape berry development. Our metabolomics data, however, revealed systematic influences of RR
on skin metabolome, that could be used to explain the observed differences in the flavor and taste of
grape berry in RR samples.

3.1. Effect of RR on Primary Metabolism in Skin Tissues of Developong Berries

3.1.1. Amino Acids

Previous studies have reported that levels of compounds related to nitrogen uptake, assimilation,
and transport decrease in various vegetative organs (including root, cane, truck, shoot, leaf as well
as xylem sap) under RR condition [24]. Our study found that nearly 63% annotated amino acids
increased in reproductive organ berry skin tissues at early stage of berry development (S1). This could
be the differential responses of vegetative and reproductive tissues to RR, alternatively, it could be the
result of natural evolution, in which grapevine tends to prioritize reproductive growth under stress
condition. For example, the level of proline was significantly higher than that in RC. Proline, an osmotic
adjustment substance, is the main amino acid for storing carbon and nitrogen in grapevine, and its
accumulation is considered to be a physiological response of plants to biotic and abiotic stresses [39].
Therefore, the increase of proline in RR berry skin tissues could be an alternative biomarker of the
adaptive ability of grapevine plant in response to RR stress [40]. Similarly, glutamate, one of the
precursor of proline, increased dramatically in RR at early stage (S1-52), which benefited the increase
of proline [41]. In addition, levels of aromatic amino acids (such as phenylalanine, tryptophan, and
tyrosine) increased dramatically in RR, which indicated a remarkable metabolic shift from primary
metabolism to secondary metabolism in skin tissues of developing berries in RR sample, because
all those aromatic amino acids are important precursors for secondary metabolism. The significant
increases of aromatic amino acids could contribute to the improved berry color and taste in berries
under RR condition. On the other hand, abundances of several key stress responsive amino acids,
such as 2-aminoadipic acid, aspartate, glutamine, and serine declined gradually to a larger extent
in RR at almost all tested stages (Figure 2). It is reported that those stress responsive amino acids
are consumed for sugar and energy metabolism, or precursors of other essential amino acids [42].
Accompanied with the declining of glutamate in RR along berry development, levels of several other
amino acids (such as ornithine, arginine, and pyroglutamic acid) that were related to the glutamate
metabolism [43], decreased as well to a large extent in RR as compared with those in RC. Altogether, RR
exerted significant effects on amino acid metabolism in skin tissues of developing berries for adaptive
response to RR stress.

3.1.2. Lipids

Lipids are one of important class of primary metabolites, which are known to be involved in
many biological processes, such as being structural components of cell membranes as phospholipid
bilayers, participating in signal transport, and providing structural and functional molecules for energy
metabolism [44]. Changes in lipid metabolism can also be seen as the indicators of environmental
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stresses [45,46]. Root restriction as an environment stress resulted in the accumulation of higher
contents of lipids, especially lysoPEs, in skin tissues of late stage berries (Supplementary Figure S6).
It is well known that lysoPEs are sensitive to environment changes, because most of them function
as cell-mediate signaling molecules or special enzymes [47]. Therefore, our results indicated that RR
cultivation may employ a special lipid metabolism strategy as a potential biological mechanism in
berry skin against the environment variation.

3.1.3. Carbohydrates, Organic Acids, and Other Primary Metabolites.

Generally, the ratio of sugar to organic acids determines the quality of fruit. Previous reports
have proved that higher total soluble sugar content in berry was induced by high acid invertase (AI)
activity under RR [25]. In this study, however, we did not observe obvious increases of soluble sugars
in skin tissues of berries under RR condition as compared with those in RC, instead, we observed
stable levels of fructose and sucrose along the berry development, except that glucose did increase
significantly in skin tissues of developing berries under RR condition. This discrepancy is likely due
to the fact that berry skin is the main site for secondary metabolites accumulation [10,11], which has
different metabolic profile from that of the berry pulp. On the other hand, the significant decline
of TCA intermediates (including organic acids) was found in skin tissues of berries at pre-veraison
or veraison stage under RR condition (Figure 2). Similar results were found in grape of Cabernet
Sauvignon and Merlot [1]. The declined organic acids in RR samples would facilitate amino acids
biosynthesis as mentioned above to respond to RR stress. Among other primary metabolites, levels
of nucleotides accumulated more in RR than that in RC, which could be a similar consequence of a
general response of plant to other stresses.

3.2. Effect of RR on Secondary Metabolism in Skin Tissues of Developing Berries

In response to water stress, the expression pattern of grape berry at transcriptional level was
tissue-specific, and the skin appeared to undergo more pronounced changes in transcriptome profiling
than that of pulp tissue [48]. It is reported that RR may cause water stress to the plant, resulting in
the accumulation of antioxidants and flavor compounds, especially phenolics [24,37]. In this study,
RR significantly increased levels of three monoterpenol glycoconjugations and most of flavonoids
in skin tissues of developing berries from pre-veraison (S2) (Figure 3). The increased flavonoids
in berry skin tissues under RR condition could be the direct response of berry skin to RR stress,
providing antioxidants to protect berries as suggested in many other plant systems [49]. This
result likely comes from the upregulation of genes involved in flavonoids metabolism as reported
previously [50]. However, levels of metabolites in the flavanols pathway, a sub-branch of flavonoids,
were found to be considerably declined along berry development; these metabolites included
epicatechin, epigallocatechin, and procyanidin dimer B1-B5 (Figure 3 and Supplementary Figure S6).
This observation was consistent with the previous studies that flavanols are principally enriched in
young and developing tissues [51]. It is worthy to note that abundances of flavonoids determine
the color and astringency of grape, which is an key index of berry quality, and it is reported that
RR induce anthocyanin accumulation in berry skin [22,27]. In this study, our metabolomics data not
only confirmed the accumulation of anthocyanins in RR samples, but also showed that RR induced
accumulation of other flavonoids such as flavones and flavanols in berry skin tissues. Therefore, RR
could be applied for practical improvement of flavor and taste of berry.

Notably, most flavonoids accumulated more rapidly at pre-veraison (52) stage in skin tissues in
RR than that in RC. This could be the reason why grape berry in RR advanced earlier into veraison
stage than that in RC [30]. The advanced coloring in RR skin tissues is consistent with the previous
finding that the large amount of flavanols synthesized at early stage contributed to the increased total
flavonoids content in skin tissue and to the acceleration of grape ripening [52]. In addition, flavonoids
are reported to function similarly to that of the synthetic auxin transport inhibitor naphthylphthalamic
acid (NPA), acting as inhibitors of auxin transport [53]. Our study found that RR increased flavonoids
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accumulation accompanied with advanced coloring, indicated that RR inhibits grapevine vegetative
growth while promotes reproductive growth, which was consist with previous studies [23,40]. Thus,
RR is a potential alternative method for production practice.

4. Materials and Methods

4.1. Plant Material and Sample Collection

Three-year-old “Red Alexandria” table grape vines were planted with RR treatments or with RC
in the greenhouse of Shanghai Jiao Tong University (31°11' N, 121°29" E), Shanghai, China, during the
2016-2017 growing year. The grape vines for RR group were grown in plastic boxes (60 cm x 45 cm
x 45 cm), while those for RC were grown in a 45-cm deep raised bed at open ground. Both RR and
RC vines were cultivated with the same medium (a mixture of sand, loam, and manure, 1:1:1, v/v/v),
under the same watering and fertilizer conditions.

Grape berries at five developmental stages, namely S1 (hard-core stage, eight weeks after full
bloom, WAFB), S2 (pre-veraison stage, ten WAFB), S3 (veraison stage, 12 WAFB), 54 (pre-ripening
stage, 14 WAFB), and S5 (harvest-ripe stage, 16 WAFB) were collected. At each sampling phase, 10
clusters without any evidence of stress or disease symptoms from at least 5 individual vines were
randomly collected. Three biological replicates were performed for both RR and RC. Each biological
replicate contained 10 berries randomly selected from a pool of berries harvested at each sampling
stage. All berries’ skin tissues were separated from pulp tissues as soon as possible upon harvest, then
frozen in liquid nitrogen immediately, ground into power in liquid nitrogen, and stored at —80 °C.

4.2. Metabolite Extraction and Profiling

Skins tissue materials of 50 mg were extracted with 40 volumes (w/v) of ice cold methanol [54].
The extracts were vortexed and sonicated in an ultrasonic bath at room temperature for 30 min at
40 Hz. The crude extracts were centrifuged for 10 min at 12,000 rpm at 4 °C, and the supernatants
were filtered with pore filter (0.2 pm diameter pores) before injecting into the UHPLC-MS system.

The UHPLC analysis was carried out using an Agilent 1290 Infinity II LCTM system, equipped
with an Agilent Eclipse-plus C18 column (150 x 3.0 mm, particle size 1.8 pm), and the column
temperature was set to 40 °C. Two mobile phase agents were used: 0.1% formic acid in water (solvent
A) and 100% acetonitrile (solvent B). The LC gradient conditions were as follows: 98% A during
0-1 min, a linear decrease from 98% to 60% A during 1-5 min, from 60% to 30% A during 5-12 min,
and from 30% to 5% A during 12-15 min, finally 5% A during 15-20 min with a 100-puL injection
volume and a flow rate of 0.4 mL/min. Both positive and negative ionization spectra were recorded
in a range of 50-1000 m/z (full scan spectra mode with a scan rate of 2 spectra/s). Sixteen L/min for
drying gas and 25 psi for nebulizer heated at 350 °C. Additional parameters: a capillary voltage of
3500 V (+), nozzle voltage at 1.5 kV (—), and 250 V (+), fragmentor voltages at 380, 10, 20, and 40 V
were applied to collision-induced dissociation (CID) voltage.

Metabolite detection was performed with an Agilent 6550 iFunnel/Q-TOF mass spectrometer,
equipped with an Agilent Jet-Stream source. Detailed information regarding data acquisition can be
found in a previous study [55]. Metabolite annotations were done by searching Personal Compound
Database and Library (PCD/PCDL), Massbank database (http://www.massbank.jp/en/manual.
html) [56], Metlin database (http://metlin.scripps.edu) [57] and data reported in literature [34].
MassHunter Acquisition 6.0, MassHunter Qualitative 6.0, and Mass Profinder 6.0 were used for
data acquisition, review, and peak area extraction, respectively. For data processing, Masshunter qual
software (Agilent, Santa Clara, CA, USA) was used for identifying the compounds and Batch Targeted
Feature Extraction function in Mass Hunter Profinder 6.0 (Agilent) was used for peak area extraction.
[M + H]* and [M + Na]* adducts were recorded for the metabolites identified in the positive mode,
while [M — H]~ adducts were recorded for most of the metabolites identified in the negative mode
except for lysoPCs (which were [M + HCOO]~ adducts). The extracted ion chromatography peak
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integration and filtering: integrator selection was Agile 2, selected smooth EIC before integration
and selected Gaussian as smoothing function, nine points and 5.000 points was set as function width
and Gaussian width, respectively. Then peak height filters with absolute height >500 counts. After
the automatic extraction of peak area, each metabolite was carefully reviewed. If the automatic
chromatographic integration was wrong, then manual integration was performed.

4.3. Statistical Analysis

The data normalization was carried out as reported previously [55]. The peak areas were used to
quantify the abundance of metabolites, which were divided by the median value of each metabolite and
the weight of sample. The data were analyzed by principle component analysis (PCA) using SIMCA-P
version 11.0. False discovery rate (FDR) was used for multiple testing correlation (FDR < 0.05) [55].
Welch’s two-sample t-test (p < 0.05) was applied to all comparisons between different groups. The
heatmaps of metabolites ratios were generated using MultiExperiment Viewer version 4.8.

5. Conclusions

In this study, we successfully annotated 291 metabolites in developing berry skin tissues using
a non-targeted metabolomics approach, and compared the metabolomics kinetics of developing
berry skin tissues under RR and RC conditions. To our knowledge, this is the first comprehensive
metabolomics report investigating the dynamic metabolic changes in berry skin tissues of developing
berries in response to RR. An earlier and more rapid metabolic shift from primary metabolism to
secondary metabolism was found in RR samples which were accompanied with an advanced coloring
of the berries, as compared with that in RC ones, indicating that RR could be a useful production
practice for improvement of berry appearance and taste quality. This study expands our understanding
of berry development and quality improvement. Further studies will focus on the validation of those
metabolic findings using either targeted or combined non-targeted methods, and on the molecular and
genetic elements underlying those differential metabolomics changes occurred in RR and RC skins.

Supplementary Materials: Supplementary materials can be found at http:/ /www.mdpi.com/1422-0067/20/3/534/
sl.
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