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Abstract: The disruption of the immune tolerance induces autoimmunity such as systemic lupus
erythematosus and vasculitis. A chromatin-binding non-histone protein, high mobility group box 1
(HMGB1), is released from the nucleus to the extracellular milieu in particular environments such
as autoimmunity, sepsis and hypoxia. Extracellular HMGB1 engages pattern recognition receptors,
including Toll-like receptors (TLRs) and the receptor for advanced glycation endproducts (RAGE).
While the HMGB1-RAGE axis drives inflammation in various diseases, recent studies also focus on
the anti-inflammatory effects of HMGB1 and RAGE. This review discusses current perspectives on
HMGB1 and RAGE’s roles in controlling inflammation and immune tolerance. We also suggest how
RAGE heterodimers responding microenvironments functions in immune responses.

Keywords: high mobility group box 1; receptor for advanced glycation endproducts; lupus; hypoxia;
inflammation; tolerance

1. Immune Tolerance and Autoimmunity

Failure of immune tolerance results in lymphocyte reactions against self-antigens
called autoimmunity and the diseases caused by autoimmunity are referred to as autoim-
mune diseases. Autoimmune reactions are triggered by environmental factors, such as
infections, in genetically susceptible individuals. Autoimmune diseases are classified as a
systemic or organ-specific disease, depending on the distribution of the autoantigens that
are recognized [1]. For example, autoantibodies against ubiquitous antigens, including nu-
clear components typically cause systemic diseases, such as systemic lupus erythematosus
(SLE) and vasculitis. Autoantibodies or T cell responses against self-antigens with restricted
tissue distribution lead to organ-specific diseases, such as autoimmune thyroiditis, type
1 diabetes, and myasthenia gravis. The adaptive immune response including autoreactive
T lymphocytes, circulating autoantibodies and immune complexes is generally thought to
be responsible for tissue injury in autoimmune diseases.

Most autoimmune diseases are polygenic, and numerous susceptibility genes con-
tribute to the predisposition to disease development. SLE is a systemic disease in which
autoantibodies such as anti-DNA antibodies form immune complexes and is characterized
by its heterogeneous clinical manifestations, including cutaneous, kidney, central nervous
system [2–4]. Though the pathogenesis of SLE has not been fully elucidated, there is
abnormal clearance of apoptotic debris which induce anti-DNA antibody production and
lead to inflammation causing clinical symptoms [5]. It frequently occurs in young women,
and various immunosuppressive drugs are used for treatment [6]. The impact of genetic
susceptibility on the development of SLE has been well demonstrated in a number of
large-scale genome-wide association studies (GWAS) [7]. Notably, a functional SNP located
in the 3′ untranslated region of TLR7 was associated with SLE. The Interferon regulatory
factor 5 (IRF5) genetic locus carries multiple functional polymorphisms that potentially
associate with SLE [8]. Genetic deficiency of C1q predisposes strongly to SLE and C1q
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polymorphisms are associated with more severe SLE, low serum C1q, and low levels of
total hemolytic complement [9].

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is another
systemic autoimmune disease. AAV is characterized by ANCA production and small- and
medium-sized blood vessel inflammation [10,11]. AAV commonly causes life-threatening kid-
ney failure or pulmonary hemorrhage and affects short- and long-term mortality. GWAS has
revealed that HLA, α1-antitrypsin and proteinase 3 are associated with ANCA specificity [12].

Several tolerance mechanisms have been studied in monocytes/macrophages con-
tributing to scavenging, inflammation, and anti-pathogen defenses [13–15]. Ineffectual
clearance of immune complexes and accumulation of apoptotic cells expose the immune
system to various autoantigens [7]. The repeated or chronic activation of Toll-like receptors
(TLRs) by a bacterial product such as lipopolysaccharide (LPS) induce immune tolerance to
the secondary infection [16–18]. These mechanisms are important to prevent prolonged or
repeated activation of TLRs leading to uncontrolled inflammation and subsequent damages.

Macrophage polarization is another way which maintains immune homeostasis.
Monocytes can be polarized through different activation programs to the classical pro-
inflammatory M1 macrophages and the anti-inflammatory M2 macrophages [19,20]. Pro-
inflammatory macrophages contribute to immune protection in infection, but also to
disease pathogenesis in autoimmune diseases, atherosclerosis and Alzheimer’s disease
and anti-inflammatory macrophages are important for cessation of inflammation and
tissue repair.

High mobility group box 1 (HMGB1) is a damage-associated molecular pattern
(DAMPs) and high in autoimmune diseases, tissue injury and infection [2,21,22]. HMGB1
exhibits many other functions in immune response, either pro-inflammatory or anti-
inflammatory. In this review, we describe the role of HMGB1 as a positive and negative
regulator for inflammatory autoimmune diseases. We describe the tolerance mechanism of
HMGB1 that provides potential therapeutics for autoimmune diseases.

2. HMGB1

HMGB1 is an evolutionary conserved nuclear protein that binds to DNA to maintain
chromatin structure, involves DNA repair, and indirectly regulates the activities of various
transcription factors such as NF-κB and glucocorticoid receptors [23,24]. HMGB1 is highly
conserved in mammals [25]. HMGB1 has 215 amino acid residues and forms two DNA
binding domains (A box [9–79 amino acid], B box [95–163 amino acid]) and a C-terminal
acidic tail (186–215 amino acid) [26]. HMGB1 is released passively from necrotic cells or
actively from activated dendritic cells and macrophages, then relates to various pathological
conditions [27]. Caspase 3/7-mediated programmed cell death, autophagy, pyroptosis
cause the passive release of HMGB1. Active secretion of HMGB1 occurs through the
extensive post-translational modifications (PTM) such as acetylation, phosphorylation,
methylation and oxidation that determine the localization of HMGB1. PTM-mediated
active secretion of HMGB1 is mediated through secretory lysosomes [28]. The oxidation
status of HMGB1 and HMGB1 secretion kinetics also influences its immune function [28].
Although the exact active secretion mechanism of HMGB1 remains elusive, a recent study
has revealed that C5a engagement with its receptor C5aR2 in macrophages upon infection
induces upregulation of HMGB1 expression and release through intracellular signaling [29]
(Figure 1).

Small molecules can inhibit HMGB1 secretion [28]. Glycyrrhizin inhibits the cy-
toplasmic transduction of HMGB1 and suppresses the expression of inflammatory cy-
tokines [28]. Anti-inflammatory drug, Metformin binds HMGB1 and inhibits nuclear
HMGB1 translocation to the cytosol [30,31]. The nuclear factor-erythroid 2-related factor
2 (Nrf2)/hemeoxygenase-1 (HO-1) pathway also plays an important role in the HMGB1
secretion. HO-1 suppresses the translocation and secretion of HMGB1 [32,33]. Nrf2 is a
redox-sensitive transcription factor for HO-1 [34,35] (Figure 1). Anti-inflammatory vitamin
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D (1,25-dihydroxy vitamin D) inhibits LPS-induced HMGB1 secretion in macrophages
through the Nrf2/HO-1 pathway [34].
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cell death mechanisms. Inflammation and immune activation induce HMGB1 secretion. Post-translational modifications-
mediated active secretion of HMGB1 occurs via secretory lysosomes. C5a and C5aR2 pathway induces HMGB1 release.
Small molecules such as glycyrrhizin and metformin inhibit nuclear HMGB1 translocation to the cytosol. The nuclear
factor-erythroid 2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) pathway also suppresses the translocation and secretion
of HMGB1.

Extracellular HMGB1 can bind with the receptor for advanced glycation endproducts
(RAGE), TLRs, and cytosolic DNA/RNA sensors mediating inflammation [36,37]. Disulfide
HMGB1 binds to MD2 in the TLR4 receptor complex and induces cytokine production [38].
All HMGB1 redox forms bind to RAGE and HMGB1-RAGE interaction results in uptake in
endosomes that present TLR7 and 9 [39]. Without any doubt, HMGB1 is a crucial mediator
for the innate immune system and an attractive target for therapy in many disease states,
including sepsis, ischemia, arthritis, autoimmune diseases, neurodegenerative diseases,
metabolic disorders and cancer [40]. Gain- and loss-of-function analysis showed that
HMGB1 exacerbated the severity of renal disease and autoimmunity in the murine model
of SLE [41]. Extracellular blockades such as neutralizing mouse/rat/humanized anti-
HMGB1 antibodies, receptor blocking HMGB1 A box and FSSE tetramer have the distinct
potential to improve clinical outcome in multiple inflammatory diseases [38,42–44].

Through extensive studies by others, extracellular HMGB1 is highly inclined to bind
many molecules, and most other receptors are presented in a complex form with HMGB1.
Besides, RAGE has multi ligands. Current studies suggest that the alternative mech-
anistic explanation for HMGB1 and RAGE axis is that this interaction provides both
pro-inflammatory and anti-inflammatory functions—the critical functional difference may
be caused by HMGB1-RAGE attached to partner molecules.
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3. RAGE Functions Following HMGB1 Engagement

RAGE is an approximately 40 kDa of a pattern recognition receptor belonging to
the immunoglobulin superfamily [45]. RAGE is evolutionarily present only in mam-
mals [46], and its deficiency in mice show normal development [47,48]. RAGE is a type
I transmembrane protein composed of three extracellular immunoglobulin-like domains
(V, C1, and C2), a single transmembrane helix, and a C-terminal short domain, and ex-
ists in lipid rafts [45,49] (Figure 2). RAGE has various ligands such as HMGB1, AGEs,
S100/calgranulin family, Mac-1, β sheet fibrils, and LPS can bind predominantly with
the V domain of RAGE [50,51]. Upon ligand binding, RAGE activates multiple intra-
cellular signaling pathways involving in the small guanine nucleotide triphosphatases
(GTPases) ras-related C3 botulinum toxin substrate 1 (Rac1)/cell division control protein
42 (Cdc42), Ras-mediated extracellular signal-regulated kinase 1/2 (ERK1/2), Phospho-
inositide 3-kinase (PI3-K)/Akt, stress-activated protein kinase/c-Jun-NH2-terminal kinase
(SAPK/JNK), p38 mitogen-activated protein kinase (MAPK), NF-κB and caspases [52]. The
RAGE cytoplasmic domain regulates cell signaling and function through binding with
adaptor proteins including diaphanous homolog 1 (Diaph1), toll-interleukin 1 receptor
domain containing adaptor protein (TIRAP), and myeloid differentiation primary response
88 (MyD88) [51,53]. RAGE is a constitutive multimer on the plasma membrane [54], and
such multimers comprise at least four RAGE molecules before ligand binding [51,55].
It seems that the multimerization of RAGE could make ligand multimers possible to bind
and sustain downstream signal transduction [51,52]. RAGE also can form heterodimers
with other membrane proteins and exert various biological functions. It is reported that
DNAX-activating protein 10, a transmembrane protein, also bound to RAGE resulted in
an enhancement of Akt activation while homomultimeric RAGE led to the activation of
caspase-8 [56] (Figure 3).

RAGE itself contains a tolerogenic system to control overreactions. RAGE has three
variants: full length, N-terminally truncated, and C-terminally truncated. Endogenously
secreted RAGE, a spliced variant of RAGE, is the C-terminally truncated form of RAGE
secreted from the cell and has a V-domain essential for binding ligands [57]. Another
isoform, soluble RAGE (sRAGE), is cleaved from cell-surface RAGE by matrix metallopro-
teinases [58]. Secreted RAGE and truncated RAGE serve as a decoy receptor sequestering
ligands and inhibiting signal transduction [57–59] (Table 1).

In 1995, Hori et al. first reported that HMGB1 could bind to RAGE [60]. Amino acids
150–183 of HMGB1 are responsible for binding to RAGE for invasive migration and growth
of tumor cells through the activation of p38 MAPK and Erk1/2 [61,62]. HMGB1 induced
phosphorylation of endogenous RAGE cytosolic domain at Ser391 by PKCζ, and seemed to
interact with TIRAP and MyD88, then transduce signals to the downstream molecules such
as NF-κB [63]. RAGE is also localized in mitochondria of tumor cells [64], and interaction
between HMGB1 and RAGE regulates cellular metabolism and promotes tumor growth by
enhancing ATP production. The interaction HMGB1 and RAGE also has been reported to
trigger neutrophil-mediated injury amplification following necrosis [65].

Therapeutics targeting RAGE has been developed. Blockade of RAGE signaling by
antibody or soluble RAGE also has been shown to the efficacy in several disease models
including diabetic complications, sepsis, and autoimmunity [66–69]. Clinical development
may have progressed most in small-molecule inhibitors of RAGE. TTP488, which was
discovered by the pharmaceutical industry, is an orally active antagonist of RAGE-RAGE
ligand interaction [70] and tested in Phase 2 clinical trials to treat Alzheimer’s disease [71].
FPS-ZM1 was found by screening for molecules inhibiting amyloid β binding to the V
domain of RAGE [72]. The efficacy of FPS-ZM1 for cerebral hemorrhage, cerebral is-
chemia, emphysema, cancer, and inflammatory bowel diseases, have been reported [73–77].
Another molecule inhibiting RAGE signaling is a DNA oligonucleotide aptamer (RAGE-
aptamer) [78]. RAGE-aptamer has been reported to reverse and prevent the development
of diabetic nephropathy in vivo, and suppressed the AGE-induced reactive oxygen species
(ROS) generation and inflammatory and fibrotic reactions in vitro [78]. RAGE-aptamer also
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attenuates melanoma growth and liver metastasis in vivo by reducing tumor-associated
angiogenesis and macrophage infiltration by suppressing the AGE-RAGE system [79].
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(RAGE) has three extracellular immunoglobulin-like domains (V, C1, and C2), a single transmembrane
helix, and a C-terminal short domain, and exists in lipid rafts. Soluble RAGE (sRAGE) is created
by alternative splicing or cleaved by protease and functions as a decoy receptor. When binding
with high mobility group box 1 (HMGB1) and nucleic acid, RAGE internalizes into the cytosol and
interacts with Toll-like receptors (TLRs). RAGE transduces down-stream signaling upon binding
with ligands and adaptor proteins, including diaphanous homolog 1 (Diaph1), toll-interleukin 1
receptor domain-containing adaptor protein (TIRAP), and myeloid differentiation primary response
88 (MyD88), resulting in type 1 interferon and pro-inflammatory cytokines production.
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Cells 2021, 10, 564 6 of 14

4. The HMGB1-RAGE Axis in SLE

RAGE provides a functional platform for crosstalk with other HMGB1 receptors
that exist in organelles. The HMGB1-DNA complexes binding with RAGE on the cell
surface result in internalizing into the cytosol and interacting with TLR9, which exist
in the endosome, augment type 1 IFN production through a mechanism dependent on
MyD88 [80]. Type 1 IFN plays an important role in the pathogenesis of SLE. The DNA-
containing immune complexes are also a key factor activation of autoreactive B cells and
the induction of type I IFN dependent on RAGE engagement [80]. Further, HMGB1-DNA
internalization by RAGE also has been reported in inflammatory monocytes exposed to
serum from patients with SLE [81]. Thus, HMGB1 and RAGE are involved in autoimmunity
by transmitting intracellular signals and acting as a carrier between the extracellular and
intracellular compartments.

Lupus nephritis (LN), which is characterized by renal deposition of immune com-
plexes, is a refractory complication of SLE, which causes end-stage renal disease resulting
in lower survival rates and quality of life [6]. It has been reported that anti-DNA antibody
binding with HMGB1 exhibited a synergistic proinflammatory effect on mesangial cells of
LN patients in a RAGE dependent manner [82]. They also found enhanced susceptibility
of lupus prone MRL/lpr mice as compared to normal mice derived mesangial cells to
anti-DNA antibody and LPS stimulation, in addition to significantly increased expression
of TLR4 [82]. Increased HMGB1 expression deteriorated the severity of SLE via enhancing
macrophage inflammatory response, and RAGE played a critical role in HMGB1-mediated
macrophage inflammatory response [41]. Treatment with sRAGE, the soluble extracellular
domains of RAGE, which blocks ligands interaction with RAGE demonstrated significant
improvement of nephritis in (NZB/NZW) F1 lupus-prone mice [69]. They have shown
that sRAGE interrupted the nuclear translocation of NF-κB in the kidney, resulting in a
reduction in the expression of downstream genes of NF-κB in vivo and in vitro. Moreover,
plasma sRAGE level in patients with SLE was significantly lower than those in healthy
controls and negatively correlated with SLE disease activity, suggesting a rationale for
sRAGE as a therapeutic [83,84]. Though blocking RAGE signaling seems a promising ap-
proach to treat LN, there is a controversial report. The RAGE knock-out mice with C57BL/6
background lpr mice exacerbated of autoantibody titers and nephritis was observed [85].
RAGE knock-out lupus mice exhibited a delay in apoptosis of CD3 + B220 + CD4 − CD8 −
autoreactive T cells, and an increase in these pathogenic T cells was thought to exacerbate
the disease [85].

5. The HMGB1-RAGE Axis in Autoimmune Vasculitis

HMGB1 plays an important role in the pathogenic mechanism of autoimmune vasculi-
tis. Like lupus, circulating HMGB1 levels have been reported to be increased and closely
associated with the disease activity of AAV [86,87]. HMGB1 could prime neutrophils by
increasing ANCA antigens translocation to the cell surface. The primed neutrophils could
be further induced by ANCA, resulting in the respiratory burst and degranulation in TLR4-
and RAGE-dependent manner through the MyD88/NF-κB pathway [88]. Recently, the ab-
normal regulation of neutrophil extracellular traps (NETs), generated by ANCA-activated
neutrophils, have been recognized to contribute to the pathogenesis of AAV [89,90]. NETs
can stick to the endothelium and cause tissue damage during inflammation [91]. It is
also reported that NETs are associated with thrombosis in AAV patients as histones and
DNA within NETs can bind platelets and blood coagulants [90,92]. HMGB1 exerts effects
on NETs formation through interaction with TLR2, TLR4, and RAGE, and the process is
NADPH oxidase dependent [93]. Another study suggests that HMGB1 from activated
platelets commit neutrophils to NET generation through RAGE, resulting in preventing
depletion of mitochondrial potential, autophagosome formation, and prolonging neu-
trophil survival [94]. Thus, the HMGB1-RAGE axis can potentiate ANCA-inducing NETs
formation and may be involved in the pathogenesis of AAV.
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Peschel and colleagues have revealed the high prevalence of autoantibodies to lysosome-
associated membrane protein-2 (LAMP-2) in ANCA-negative pauci-immune focal necro-
tizing glomerulonephritis [95]. LAMP-2 is a heavily glycosylated membrane protein that
traffics from the cell surface to lysosomes, where it is critical for cellular homeostasis and
responses to stress by participating in autophagy [96]. LAMP-2 is an endocytic receptor
on human monocyte-derived dendritic cells that routes cargo into immunogenic exo-
somes while reducing surface expression of antigen-derived peptides [97]. A perspective
from immune tolerance of the HMGB1-RAGE axis might provide a novel understand-
ing of the pathogenesis of AAV. There is an association of the HMGB1-RAGE axis with
autophagy [98,99].

The anti-inflammatory effects of HMGB1 blockades, including anti-HMGB1 mon-
oclonal antibody and glycyrrhizin, have been shown in a mouse model of cutaneous
vasculitis [100].

6. The HMGB1-RAGE Axis in Ischemic Diseases

The HMGB1-RAGE axis also involves in the pathophysiology of ischemic diseases.
Watanabe et al. first described the relationship between HMGB1 and ischemia-reperfusion
(I/R) injury [101]. During hepatic I/R injury, HMGB1 increased and translocated from
nuclear to the cytoplasm as early as one hour after ischemia [102]. Inhibition of HMGB1
activity with neutralizing antibody decreased liver damage. In contrast, the administration
of recombinant HMGB1 worsened I/R injury [102]. Blood HMGB1 level is also elevated in
patients with cerebral or myocardial ischemia. Kim et al. reported the relationship between
HMGB1 and brain inflammatory injury in the middle cerebral artery occlusion/reperfusion-
induced injury model [103]. HMGB1 also promotes angiogenesis and neurovascular
remodeling via endothelial progenitor cells by binding to the RAGE [104].

The HMGB1-RAGE axis also could take part in hypoxia-induced organ damages.
Hypoxia induces HMGB1 and AGE accumulation which further formed a complex with
RAGE and activates several downstream pathways including NF-κB, hypoxia-inducible
factor-1 (HIF-1α), ERK1/2, and Akt signaling [105,106]. It has been demonstrated that the
RAGE promoter region contains at least one functional HIF-1 binding site, and HIF-1α
down-regulation drastically decreased RAGE induction by hypoxia in neurons, suggesting
that hypoxic stimulation of RAGE expression could be mediated by Hif1α [107]. The renal
hypoxia promotes ROS formation, and it appears that oxidative stress is a central regulator
of HMGB1′s translocation, release, and activity in inflammation and cell death [35]. RAGE-
dependent vascular perturbation in hypoxia has also been identified, and the vascular
dysfunction may amplify hypoxic HMGB1-RAGE mediated organ damages [108]. Thus,
this axis may serve as a master regulator of inflammatory stress triggered by hypoxia.

Dobutamine mediates HO-1 induction via Nrf-2 translocation to inhibit the HMGB1
release in rat myocardial I/R injury. These suggest that Nrf-2-HO-1 axis may serve as a
regulator for the HMGB1-RAGE axis and provide a potential therapeutic target in ischemic
diseases [109,110].

7. Tolerogenic Role of the HMGB1-RAGE Axis

Recent studies demonstrate that several molecules neutralize extracellular HMGB1
or convert its pro-inflammatory functions to anti-inflammatory functions. While the
HMGB1-RAGE axis drives inflammation, it also could regulate the immune tolerance
by inducing anti-inflammatory macrophages. RAGE could exert various functions by
interacting with other membrane receptors and the HMGB1-RAGE axis exerts tolerogenic
functions in certain conditions. Under particular microenvironments or with proximal
receptors, RAGE can induce immune tolerance. G-protein-coupled receptors involved
in the cAMP signal pathway and the phosphatidylinositol signal pathway, interact with
RAGE. Mainly, formyl-peptide-receptors play an essential role in amyloid β-induced
ERK1/2 phosphorylation and changes in cAMP levels in glial cells by interacting with
RAGE [111]. Leukotriene B4 (LTB4) receptor 1 (BLT1) interacts with RAGE and induces
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proinflammatory cytokines and chemokines in vitro/ex vivo [112]. Both LTB4-dependent
ERK1/2 phosphorylation in neutrophils and LTB4-dependent neutrophil accumulation in
a murine peritonitis model were attenuated in RAGE-deficient mice compared with wild-
type mice [112] (Figure 3). Moreover, it has been reported the paradoxical role of HMGB1
in the tumor microenvironment [113]. HMGB1 contributes to the protumoral activities
of the M2 macrophage phenotype by a RAGE-dependent mechanism [114]. Released
HMGB1 due to hypoxia promotes M2-like macrophage accumulation and an IL-10 rich
milieu by selectively signaling through RAGE [106]. We have recently demonstrated
that complement component C1q can form a multimolecular signaling complex with
HMGB1, RAGE, and Leukocyte-Associated Ig-like Receptor-1 (LAIR-1) in lipid rafts, and
suppress inflammation by promoting M2-like macrophage polarization [115] (Table 1).
We have also shown that HMGB1 promotes leukotriene production, induces IRF5 in a
RAGE-dependent manner, while it produces specialized pro-resolving lipid mediators
(SPMs), which have a negative effect on leukotriene synthesis and help in the resolution
of inflammation [116–118] (Figure 3). These observations indicate that RAGE could not
only facilitate inflammation but also resolve inflammation. Thus, the immune homeostasis
maintaining the role of RAGE in diverse microenvironments should be examined in future
studies. Though further studies are required to elucidate the environmental factors that
determine the various function of the HMGB1-RAGE axis, C1q-LAIR-1 is one of the most
important partners.

The HMGB1-RAGE axis has a role in regulatory T cells (Tregs), which is a subset of
CD4+ T cells and dampening T-cell immune responses against self-antigens and main-
taining immunological tolerance. Wild et al. have found that Tregs express significantly
higher RAGE levels on the cell surface than conventional T cells, and HMGB1 induces
Tregs migration and prolonged their survival in a RAGE-dependent manner [119]. Yang
et al. reported that CD163 is an anti-inflammatory receptor for HMGB1-haptoglobin com-
plexes [120]. Haptoglobin, the acute phase protein that binds extracellular hemoglobin and
targets cellular uptake through CD163, also binds HMGB1. Haptoglobin is an endogenous
HMGB1 binding protein that directs HMGB1 to a CD163-dependent receptor pathway
that elicits HO-1 and IL-10 in the monocyte-macrophage lineage [120]. Another study has
shown that binding of HMGB1 by soluble CD52, a glycophosphatidylinositol-anchored gly-
coprotein, promotes ligation of soluble CD52 with the sialic acid-binding Ig-like lectin-10
receptor and suppression of T cell function [121] (Table 1).

Table 1. Immune tolerance functions of the HMGB1-RAGE axis.

Molecule Mode of Action Reference

Soluble RAGE Decoy receptor for RAGE [59]

C1q Induce anti-inflammatory macrophage
polarization [115,118]

Haptoglobin Bind with CD163, activates heme oxygenase-1
IL-10 productions [120]

Soluble CD52 Engage with the sialic acid-binding Ig-like
lectin-10 receptor and suppress T cell function [121]

High mobility group box 1, HMGB1; receptor for advanced glycation endproducts, RAGE.

HMGB1 also demonstrates immunosuppressive activities through myeloid-derived
suppressor cells (MDSCs) present in patients with solid tumors and contributes to immune
suppression [122]. In murine tumor systems, HMGB1 foments the development of MDSC
from bone marrow progenitor cells, enhances crosstalk between MDSC and macrophages
by increasing MDSC production of IL-10, and reduces the expression of L-selectin on
circulating T cells [123].
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8. Conclusions

HMGB1 is the best well-characterized DAMPs for more than three decades. The
unique feature of HMGB1 may operate in the opposite direction as an alarm signal for
the environment. Particular receptors, ligands that are evolutionally closed with HMGB1
may maintain homeostasis as well as immune tolerance. For translating to therapeutics
targeting the HMGB1-RAGE axis, not only simple inhibition but other strategy focusing on
RAGE partners or individual intracellular molecules might be required due to the diversity
of this axis.
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