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The Feature Ambiguity Mitigate 
Operator model helps improve 
bone fracture detection on X‑ray 
radiograph
Hui‑Zhao Wu1,4, Li‑Feng Yan2,4, Xiao‑Qing Liu2, Yi‑Zhou Yu2, Zuo‑Jun Geng3*, 
Wen‑Juan Wu1*, Chun‑Qing Han1, Yong‑Qin Guo1 & Bu‑Lang Gao1

This study was performed to propose a method, the Feature Ambiguity Mitigate Operator (FAMO) 
model, to mitigate feature ambiguity in bone fracture detection on radiographs of various body parts. 
A total of 9040 radiographic studies were extracted. These images were classified into several body 
part types including 1651 hand, 1302 wrist, 406 elbow, 696 shoulder, 1580 pelvic, 948 knee, 1180 
ankle, and 1277 foot images. Instance segmentation was annotated by radiologists. The ResNext-
101+FPN was employed as the baseline network structure and the FAMO model for processing. The 
proposed FAMO model and other ablative models were tested on a test set of 20% total radiographs 
in a balanced body part distribution. To the per-fracture extent, an AP (average precision) analysis 
was performed. For per-image and per-case, the sensitivity, specificity, and AUC (area under the 
receiver operating characteristic curve) were analyzed. At the per-fracture level, the controlled 
experiment set the baseline AP to 76.8% (95% CI: 76.1%, 77.4%), and the major experiment using 
FAMO as a preprocessor improved the AP to 77.4% (95% CI: 76.6%, 78.2%). At the per-image level, the 
sensitivity, specificity, and AUC were 61.9% (95% CI: 58.7%, 65.0%), 91.5% (95% CI: 89.5%, 93.3%), 
and 74.9% (95% CI: 74.1%, 75.7%), respectively, for the controlled experiment, and 64.5% (95% CI: 
61.3%, 67.5%), 92.9% (95% CI: 91.0%, 94.5%), and 77.5% (95% CI: 76.5%, 78.5%), respectively, for the 
experiment with FAMO. At the per-case level, the sensitivity, specificity, and AUC were 74.9% (95% 
CI: 70.6%, 78.7%), 91.7%% (95% CI: 88.8%, 93.9%), and 85.7% (95% CI: 84.8%, 86.5%), respectively, 
for the controlled experiment, and 77.5% (95% CI: 73.3%, 81.1%), 93.4% (95% CI: 90.7%, 95.4%), and 
86.5% (95% CI: 85.6%, 87.4%), respectively, for the experiment with FAMO. In conclusion, in bone 
fracture detection, FAMO is an effective preprocessor to enhance model performance by mitigating 
feature ambiguity in the network.

Orthopedic trauma or fracture is an important part of clinical epidemics1,2. X-ray examination is the primary 
and initial measure in radiographic examinations for fracture patients, and fractures can be diagnosed with 
certainty in most cases in this way. Although X-ray radiographs only provide limited information due to limited 
projection views and clinic observations, they still yield crucial evidence for triage determination. Accuracy and 
instantaneity of the report on the radiograph is necessary to provide patients with proper treatment. With the 
rapid development of artificial intelligence (AI), researchers have begun to dig in employing deep learning AI to 
improve both the speed and accuracy of X-ray diagnoses of fractures. Most researchers use classification or object 
detection pipelines of the AI technique to detect fractures in radiographs. To do this, most of the authors actuate 
deep learning models to work in a binary classification task, i.e., classifying the radiographs into two groups of 
“fracture” and “non-fracture”. However, this method usually applies a large quantity of data for analysis. Olczak 
et al.3 extracted 256,458 hand, wrist, and ankle radiographs and marked them with classification labels. In their 
dataset, the VGG16 network achieved an 83% accuracy. The limitation of this study was that the images had to 
be resized to 256 × 256 resolution (1/10 of the original size), which could make small fractures undetectable. This 
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problem was fixed by Gale et al.4 by processing the image through cropping and resizing a region around the neck 
of the femur (area of interest) to 1024 × 1024 pixels. Huang et al.5used a densely-connected convolutional neural 
network (CNN) structure, the DenseNet, and achieved an AUC (area under the curve) of 99.4%, which indicates 
that with appropriate architecture and massive amounts of data on specific body parts, deep learning models can 
be extremely precise. Despite the astonishing performance, the model was limited to the frontal view, neglecting 
those fractures hidden in other views. Moreover, large amounts of data have always been required, and hence 
the tremendous cost of time. Kitamura et al.6 attempted to minimize the training set data while maintaining 
the ability of the detecting system. In their study, they used only 1441 of frontal and lateral ankle images as the 
training data, employed the de novo training and ensemble technique, and achieved an accuracy of 81%, which 
was comparable to the Olczak’s 83% accuracy achieved by using a massive data3.

Lack of interpretability has always been a denounced aspect of the deep CNN learning methods. Classifica-
tion pipelines can only judge “fracture” or “non-fracture” in the entire image, thus being less useful. Realizing 
this, Thian et al.7 proposed an object detection pipeline, the Faster-RCNN, to locate the region of fracture on 
wrist radiographs by “bounding-box”. Trained on around 6780 images, the method hit an AUC of 91.8% in the 
frontal view and 93.3% in the lateral view on each image level. Lindsey et al.8 tried another way, the semantic 
segmentation, to locate fractures in the target wrist area (ulna and radius) by identifying whether each pixel in 
the image is fracture pixel or not. In their study, the average sensitivity was 80.8% with an 87.5% specificity on 
the 135,845 body parts labeled, including 34,990 anteroposterior and lateral wrist views based on the 31,490 
images used as the final segmentation (detection) for training.

In previous studies with the AI technique to help diagnose bone fractures, a large quantity of data is needed, 
and lack of interpretability and imaging ambiguity are also two shortcomings. To overcome these shortcomings, 
we proposed the Feature Ambiguity Mitigate Operator (FAMO) method to mitigate the feature ambiguity of bone 
fracture images in this study. Moreover, an object detection pipeline was employed, and two network structures 
of ResNeXt9 and FPN10 were updated to set a strong baseline. These measures were to decrease the amount of 
data used to analyze fractures to about 1000 frontal and lateral X-ray radiographs, and by using far fewer data, 
our purpose was to test if a good diagnostic performance could be achieved.

Results
Experiments.  We conducted experiments to verify that the proposed FAMO operator can improve the frac-
ture detection performance.

As shown in Tables  1 and 2, the model with the FAMO operator outperformed the control model 
(ResNeXt101+FPN) in all evaluation scopes. In the box level or per-fracture level metric, FAMO increased the 
AP by 0.6% (from 76.8 to 77.4%). For per-image sensitivity and specificity, the improvements were 2.4% (from 
61.9 to 64.5%) and 1.4% (from 91.5 to 92.9%), respectively. Also, FAMO gained the per-image level AUC by 
2.6% (from 74.9 to 77.5%). For per-case sensitivity and specificity, the improvements were 2.6% (from 74.9 to 
77.5%) and 1.7% (from 91.7 to 93.4%), respectively. Finally, FAMO enhanced the per-case level AUC by 0.8% 
(from 85.7 to 86.5%). 

Table 1.   Improvement of FAMO in per-image and per-fracture level. Note: ResNeXt101, a network structure; 
FPN, feature pyramid network; FAMO, Feature Ambiguity Mitigate Operator (FAMO) method; AUC, area 
under the curve; AP, average precision; CI, confidence interval. All CIs were calculated at the two-tailed 
significance of 0.05.

Network Per-image sensitivity Per-image specificity Youden Index (%) AUC (%) Per-fracture AP (%)

ResNeXt101+FPN
579/935
(61.9%)

801/875
(91.5%) 53.4 74.9 76.8

CI: (58.7%, 65.0%) CI: (89.5%, 93.3%) CI: (48.2, 58.6) CI: (74.1, 75.7) CI: (76.1, 77.4)

FAMO+ResNext101+FPN
603/935
(64.5%)

813/875
(92.9%) 57.4 77.5 77.4

CI: (61.3%, 67.5%) CI: (91.0%, 94.5%) CI: (52.3, 62.5) CI: (76.5, 78.5) CI: (76.6, 78.2)

Table 2.   The improvement of FAMO in per-case level. ResNeXt101, a network structure; FPN, feature 
pyramid network; FAMO, Feature Ambiguity Mitigate Operator (FAMO) method; AUC, area under the curve; 
AP, average precision; CI, confidence interval. All CIs were calculated at the two-tailed significance of 0.05.

Network Per-case sensitivity Per-case specificity Youden Index (%) AUC (%)

ResNeXt101+FPN
349/466
(74.9%)

443/483
(91.7%) 66.6 85.7

CI: (70.6%, 78.7%) CI: (88.8%, 93.9%) CI: (59.4, 73.8) CI: (84.8, 86.5)

FAMO+ResNext101+FPN
361/466
(77.5%)

451/484
(93.4%) 70.9 86.5

CI: (73.3%, 81.1%) CI: (90.7%, 95.4%) CI: (64.0, 77.8) CI:(85.6, 87.4)
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The per-image and per-study ROC curve were illustrated in Figs. 1 and 2, respectively.  
We performed hypothesis tests for both per-image and per-case level, which hypothesized that the FAMO 

performance was worse than the performance in the control group model. The P-values to deny them were 
shown in the Table 3.

In different body-parts (Figs. 3 and 4), the model performance was analyzed regarding the fracture recogniz-
ing difficulty relative to the data volume of the body part (Table 4). Among the body parts of elbow, shoulder, and 
knee with fewer data (Table 5), knee fractures were relatively hard for the model to recognize (with the per-case 
AUC of 82.4%) while shoulder fractures were more easily recognized (83.2% per-case AUC). Among body parts 
with relatively sufficient data, pelvic fractures were nearly perfect for the machine to learn, resulting in a 96.9% 

Figure 1.   Per-image level ROC curve.

Figure 2.   Per-case level ROC curve.
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per-case AUC and a 94.4% per-case sensitivity, which meant all images in the test dataset were recalled. For foot 
fractures, even with more (1277) radiographs and FAMO operator enhancement, the model only came up with 
an 82.1% per-case AUC, which might be due to the massive amount of bone blocks in the foot to complicate 
overlapping between them.

Discussion
In this study, we presented the FAMO plus ResNeXt101+FPN model to mitigate the feature ambiguity of bone 
fracture images using far few data to analyze the radiograph images and had reached a diagnostic performance 
as good as that by radiologists, but better than that by the ResNeXt101+FPN model only. By using 406 to 1651 
desensitized radiographs of different body parts, the FAMO plus ResNeXt101+FPN model achieved better sen-
sitivity, specificity, and AUC than the ResNeXt101+FPN model only, and the FAMO plus ResNeXt101+FPN 
model also obtained a per-case AUC mostly above 80% in different body parts.

In the study of AI for analyzing orthopedic trauma radiographs, Olczak et al.3 extracted 256,458 wrist, hand, 
and ankle radiographs and achieved an accuracy of at least 90% when identifying laterality, body part, and exam 
view in all networks with the final accuracy for fractures being estimated at 83% for the best performing net-
work. This network performed similarly to senior orthopedic surgeons when presented with images at the same 

Table 3.   Hypothesis test results. SENFAMO, sensitivity of model with FAMO; SENcontrol, sensitivity of control 
model; SPECFAMO, specificity of model with FAMO; SPECcontrol, specificity of control model; P value, the 
probability to obtain a result as extreme as that in the hypothesis test which assumed that FAMO performance 
was worse than the control model.

Zero hypothesis P value

SENFAMO < SENcontrol at per-image level 0.051

SPECFAMO < SPECcontrol at per-image level 0.028

SENFAMO < SENcontrol at per-case level 0.097

SPECFAMO < SPECcontrol at per-case level 0.087

Figure 3.   Effects of the FAMO (Feature Ambiguity Mitigate Operator) plus ResNeXt101+FPN model and 
the ResNeXt101+FPN model only, with the FAMO plus ResNeXt101+FPN model being helpful in finding 
bone fractures. (A) A minor fracture was marked by the radiologist (small box) on the radiograph. (B) The 
fracture line was successfully recognized by the FAMO plus ResNeXt101+FPN model (green box). (C) The 
ResNeXt101+FPN model did not recognize the fracture. No fracture line was detected on the radiograph by the 
radiologist (D) or by the FAMO plus ResNeXt101+FPN model (E). But the ResNeXt101+FPN model (causing 
feature distortion) detected a false positive fracture line (F, green box).



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1589  | https://doi.org/10.1038/s41598-021-81236-1

www.nature.com/scientificreports/

Figure 4.   Effects of the Feature Ambiguity Mitigate Operator (FAMO) plus ResNeXt101+FPN model and the 
ResNeXt101+FPN model only, with the FAMO plus ResNeXt101+FPN model being helpful in finding bone 
fractures. (A–C) Dislocation of the left shoulder joint. (A) The radiologist correctly located the dislocation 
of the shoulder joint. (B) The FAMO plus ResNeXt101+FPN model also correctly pointed out the location of 
dislocation. (C) The ResNeXt101+FPN model only did not find the dislocation. (D–F) Compression fracture 
of the calcaneus. (D) The radiologist correctly found the fracture site. (E) The FAMO plus ResNeXt101+FPN 
model also correctly pointed out the fracture area. (F) The ResNeXt101+FPN model failed to find the fracture. 
(G–I) Radial embedded fracture. (G) The radiologist correctly found the embedded fracture. (H) The FAMO 
plus ResNeXt101+FPN model also correctly pointed out the fracture. (I) The ResNeXt101+FPN model failed to 
find the fracture.

Table 4.   Body-part specificity and sensitivity data. AUC, area under the curve.

Body part
Per-image 
sensitivity (%)

Per-image 
specificity (%)

Per-image AUC 
(%)

Per-image Youden 
Index (%)

Per-case 
sensitivity (%)

Per-case 
specificity (%) Per-case AUC (%)

Per_image 
Youden Index (%)

Hand 66.3 92.0 80.7 58.3 70.5 95.0 85.3 65.5

Wrist 77.0 91.8 84.5 68.8 82.0 93.2 86.8 75.2

Elbow 56.2 95.4 75.5 51.6 63.2 91.1 71.1 54.2

Shoulder 64.2 95.2 76.2 59.4 74.7 94.8 83.2 69.5

Pelvic 85.3 94.3 92.5 79.6 94.4 95.8 96.9 90.2

Knee 37.4 92.6 51.9 30.0 72.7 87.1 82.4 59.8

Ankle 60.1 93.7 75.3 53.8 81.7 93.3 88.5 75.0

Foot 67.8 86.7 78.6 54.4 77.6 81.5 82.1 59.1
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resolution as the network. In the study using CNN for automated fracture detection and localization on wrist 
radiographs, Thian et al.7 used around 6780 images to reach an AUC of 91.8% in the frontal view and 93.3% in the 
lateral view on each image level. In the study of deep neural network for improving fracture detection, Lindsey 
et al.8 used the semantic segmentation to locate fractures in the target wrist area (ulna and radius) by identifying 
whether each pixel in the image is fracture pixel or not. In this study, they used 135,409 radiographs to reach a 
sensitivity of 80.8% (95% CI: 76.7–84.1%) unaided and 91.5% (95% CI: 89.3–92.9%) aided, and a specificity of 
87.5% (95% CI: 85.3–89.5%) unaided and 93.9% (95% CI: 92.9–94.9%) aided. The misinterpretation rate was 
averagely decreased by 47.0% (95% CI: 37.4–53.9%).

The FAMO plus ResNeXt101+FPN model proposed in our study achieved better sensitivity, specificity, and 
AUC with the per-case AUC mostly above 80% in different body parts. However, there are also some limitations 
in our study. First, the data were imbalance to some extent, and the amounts of some body parts were far from 
sufficient for a deep learning system. Second, radiologists had annotated segmentation of fracture areas, which 
we did not make use of. The minor experiments revealed that a model only supervised by box label rather than 
segmentation label could have better performance, the cause of which was not investigated in this study. Third, 
the data for training and testing were from the same institution with no involvement of multiple centers, and 
the robustness of the model on the data of different distributions from different centers remained to be verified. 
Future studies will have to resolve these issues for better performance.

In conclusion, the novel operator FAMO proposed in this study is able to mitigate the feature ambiguity in 
X-ray bone fracture detection, improving both sensitivity and specificity across per-fracture, per-image, and 
per-case level in all body parts.

Methods
This study was approved by the institutional review board of the Third Hospital of Hebei Medical University 
(K2019-036-1), and the study was conducted in accordance with the ethical standards laid down in the 1964 
Declaration of Helsinki and its later amendments. Written informed consent was waived due to the retrospective 
nature of this study. All methods were performed in accordance with the relevant guidelines and regulations. A 
total of 9040 desensitized radiographs of various body parts and projection views were drawn from the pictures 
archiving and communication system (PACs) and annotated separately for training, validating and testing. The 
dataset distribution is shown in Table 5.

Data labeling.  The data were labeled by two radiologists with ten-year’s experience using the segmentation 
method similar to that by Lindsey et al.8. The data labeling was improved in three folds. Firstly, considering bone 
blocks in perspective X-ray images sometimes stacking over each other, the doctors were required to label an 
instance segmentation instead of semantic segmentation, which allows areas of different fractures to overlap. 
Secondly, parts that should be included in a fracture segmentation area were precisely defined, including frac-
ture surface, articular surface collapse, and abnormal bone trabecula. Clarifying fracture symptoms not only 
eliminated the heterogeneity of labels marked by different doctors, but also helped them stay alert as they kept 
focusing on delineating fracture areas. Thirdly, all labels were finally carefully reviewed by the chief physician 
with 20 years of experience. The bounding-boxes used to train and test the models were generated automatically 
according to each instance segmentation, a process that could harvest more accurate bounding-boxes than direct 
annotations. The main purpose of this study was to compare the effect of the FAMO model and baseline model, 
so data labeling by the physician was used as the gold standard. The consistency (credibility) of data labeling by 
physicians is shown in Table 6, with the excellent agreement achieved in most parts except for the elbow which 
had fair to good agreement between physicians.

Pre‑processing.  Image arrays in 16-bit integer format were extracted from Digital Imaging and Commu-
nications in Medicine (DICOM) files. The raw data were processed with adaptive histogram equalization11 to 
equalize the luminance on the same region among different patient images. Images were resized to the scale so 
that long side length was close to 800 pixels while maintaining the aspect ratio. Augmentations were employed 

Table 5.   Data distribution in body parts and different views.

Body part Anteroposterior view Other views Total

Hand 1646 5 1651

Wrist 827 475 1302

Elbow 189 217 406

Shoulder 685 11 696

Pelvic 1572 8 1580

Knee 944 4 948

Ankle 829 351 1180

Foot 711 566 1277

Total 7403 1637 9040
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during training, including scale and aspect ratio floating, image shifting, pixel noise, brightness floating, 
360-degree random rotation, random flip, and random color inverse.

Model architecture.  The artificial neural network learning model was built on the ResNeXt+FPN archi-
tecture, which was the state of the art in the object domain (Fig. 5). Pre-processed radiographs were firstly sent 
to the initial encoder (ResNeXt). Then, a feature pyramid network (FPN) collected the feature maps in different 
scales produced by ResNeXt, and fused them to generate features with both definition and semantic informa-
tion. The outputs of FPN, referred to as global feature maps, were forwarded by RPN (region proposal decoder)-
Head CNN (Convolution Neural Network)-decoder to make global box predictions to fit the labels of lesions 
on the whole image. Next, the global features were cropped by RoI-Align12 operator according to the global box 
predictions, and the whole image was cropped simultaneously by the same boxes to make corresponding local 
labels. Local features were forwarded by Region-based Convolution Neural Network (RCNN)-Head decoder to 
fit local box labels. Finally, at the clinic scene, RCNN-Head decoder would pick fracture lesion from radiographs 
instance-by-instance.

The whole structure is essentially an encoder-decoder structure but connected to a so called RoI-Align opera-
tor. The input of the network is one radiograph and its label. The radiograph was fed into the CNN encoder, and 
the ResNext+FPN9,10 encoder which is an enhanced version of a typical ResNet encoder was used. The ResNext 
was made by stacking several identical ResBlocks which are a serialized connection of the convolution, group 
convolution, non-linear activation function, batch normalization layer, and down-sampling layer. Because each 
ResBlock ends with a down-sampling layer, the final feature map output will be down-sampled by 4 × 2 n times, 

Table 6.   Reliability of the gold standards for the fracture dataset. The guidelines of Fleiss and colleagues 
characteristic κ values of more than 0.75 were set as excellent agreement, 0.40–0.75 as fair to good agreement, 
and less than 0.40 as poor agreement beyond chance.

Body part

Cohen’s κ

All Fleiss’ κBetween physicians 1 and 2 Between physicians 1 and 3 Between physicians 2 and 3

Hand 0.95 0.97 0.92 0.94

Wrist 0.74 0.81 0.73 0.76

Elbow 0.83 0.72 0.67 0.74

Shoulder 0.85 0.95 0.79 0.86

Pelvic 0.85 0.87 0.86 0.86

Knee 0.81 0.88 0.79 0.83

Ankle 0.93 0.95 0.92 0.93

Foot 0.83 0.86 0.77 0.82

All 0.85 0.88 0.81 0.85

Figure 5.   Object detection architecture on fractures dataset.
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where n represents the number of ResBlocks stacked. The output of ResNext has a low definition, such that we 
cannot localize fracture lesions precisely if using the output feature directly. As such, the FPN (Feature Pyra-
mid Network) was employed to handle this problem. The FPN extracts output feature maps from intermediate 
ResBlock, concatenates lower definition features with higher definition features by up-sampling the lower one, 
and adds them together element-wise. Such fusion approach gathers the high level global and the low level local 
semantic information to harvest the accurate instance prediction. Also, the output of FPN is multi-scale, which 
makes the network sensible to the objects of different sizes. There is a Region-Proposal decoder supervised and 
trained by bounding box labels which enclose the rectangle area of fracture lesion; this decoder inferences a 
Region of Interest (RoI) for each pixel on the FPN output feature maps. The RoI-Align operator then crops on 
the feature maps according to the RoIs and resizes them into a fixed size, and the RoI features with the highest 
score predicted by region proposal decoder (RPN Head) would be fed to the next classification and regression 
decoder (RCNN Head). The classification decoder aims to judge the box prediction to fit the lesion enough or 
not while the segmentation decoder is designed to refine box prediction.

FAMO.  In object detection pipelines, the RoI-Align operator is the bridge connecting the global feature and 
local fracture feature. It is supposed to crop regions proposed by the RPN on the global feature and resize them to 
unitive square local feature. This operation should be on the assumption that shape deforming would not influ-
ence classification. However, in fracture detection, it causes feature ambiguity, which is demonstrated in Fig. 6.

Fractures can be in various directions (Fig. 6). When the fracture line was lying horizontally, a narrow rec-
tangle box was annotated, and when the fracture line was in an oblique direction, a broader box was annotated 
(left side). Both boxes were fed into the RoI-Align operator and resized to the same square shape (right ones). 
They were originally the same fractures but were totally different after processed with the RoI-Align operator. 
The neural-network was forced to classify those ambiguous features into the same class, which would downgrade 
the model performance. In order to counter this ambiguity in imaging features, the FAMO method was applied 
(Fig. 7).

The operator adjusts the annotated box by expanding its short side to the same length as its long side and 
making a square box (green boxes on the left side in Fig. 7). As shown in Fig. 7, after FAMO adjustment, the 
RoI-Align operator now can crop features without distortion. The model can easily and correctly classify two 
pictures into the same class.

Training details.  Four NVIDIA 2080Ti GPUs were used. Each GPU could run 1 image synchronously 
within a training iteration. The training was started with the stochastic gradient descent (SGD) optimizer of lin-
ear warming-up learning rate from 0.001 to 0.005 through 500 iterations. According to the linear scaling rule13, 
the learning rate would maintain at 0.005. The model training stopped at the 35th epoch, and we would pick a 
best epoch among all checkpoints by evaluating them on a validation set.

Model evaluation.  The model was evaluated in three levels: per-case, per-image, and per-fracture level. For 
per-image level and per-case level, the same metric was used as that used by Thian et al.7, where the per-image 

Figure 6.   Feature ambiguity in fracture detection. When the fracture line was lying horizontally (upper left), 
a narrow rectangle box was annotated, and when the fracture line was in an oblique direction, a broader box 
was annotated (lower left). Both boxes were fed into the RoI-Align operator and resized to the same square 
shape (right). Processing with the RoI-Align operator caused ambiguity of the image and downgrade the model 
performance.
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true positive level requires one box true positive, and the per-case true positive requires one box true positive on 
any one projection view. For the per-fracture level, the specificity is not testable, because “negative boxes” pre-
vailing in the image which caused specificity for the per-fracture level were always greater than 99%. So instead 
of using specificity, the true positive was treated as numerator and the sum of true positive and false positive as 
the denominator to measure in what portion that model predictions were actually fracture.

The Average Precision (AP) metric is widely used in object detection research. It averages the precisions at 
different recall levels, ranging from 0.0 to 1.0. To harvest various precision-recall pairs, different thresholds were 
set to the box score output by the model, where lower threshold harvested higher recall and higher threshold 
harvested lower recall.

Statistical analysis.  The statistical analysis was performed with the SPSS 20.0 (IBM, Chicago, IL, USA). 
The sensitivity, specificity, and AUC in the receiver operator characteristics curve was analyzed. The significant 
P was set at < 0.05.
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