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Objective. To summarize the recent studies on effect of conjugated linoleic acid (CLA) on hepatic steatosis and hepatic and adipose
lipid metabolism highlighting the potential regulatory mechanisms. Methods. Sixty-four published experiments were summarized
in which trans-10, cis-12 CLA was fed either alone or in combination with other CLA isomers to mice, rats, hamsters, and humans
were compared. Summary and Conclusions. Dietary trans-10, cis-12 CLA induces a severe hepatic steatosis in mice with a more
muted response in other species. Regardless of species, when hepatic steatosis was present, a concurrent decrease in body adiposity
was observed, suggesting that hepatic lipid accumulation is a result of uptake of mobilized fatty acids (FA) from adipose tissue
and the liver’s inability to sufficiently increase FA oxidation and export of synthesized triglycerides. The potential role of liver
FA composition, insulin secretion and sensitivity, adipokine, and inflammatory responses are discussed as potential mechanisms
behind CLA-induced hepatic steatosis.

1. Introduction

Obesity is a chronic metabolic nutritional disorder that
has increased at an alarming rate in the last 20 years [1].
In the US, 68% of the adults (age ≥ 20 years) and 18%
of children (2–19 years) are either obese or overweight
as per the National Health and Nutrition Examination
Survey [2, 3]. Incidence of obesity is associated with many
health complications such as hypertension, hyperlipidemia,
cardiovascular disease, type 2 diabetes [4], and a range of
lipid abnormalities, the most common being nonalcoholic
fatty liver disease (NAFLD) [4].

NAFLD is an important health concern due to its high
prevalence (∼20% of adult population) and its association
with insulin resistance and metabolic syndrome [5]. It is
characterized by hepatic lipid accumulation primarily in
the form of triglycerides (TG) [6]. Some of the potential
steps involved in the progression of NAFLD may involve
increased uptake of circulating fatty acids (FA) [7], increased
hepatic denovo lipogenesis (DNL) [8], reduced rate of
FA oxidation [9], or reduced FA secretion [10, 11]. When

NAFLD is associated with inflammation and fibrosis, it is
termed as nonalcoholic steatohepatitis (NASH), a serious
condition that could lead to liver cirrhosis, hepatic carci-
noma, and liver failure [12]. The pathogenesis of NAFLD
can be explained by “two hit” hypothesis suggesting steatosis
as the “first hit” which increases the vulnerability of liver to
various second hits like oxidative stress and inflammation
leading to NASH [13].

Although no specific guidelines exist for treatment of
NAFLD, recommendations are aimed at reducing body
weight due to its strong association with obesity and
metabolic syndrome [4]. In this regard, bioactive lipids/FA
as functional food may be important in modulating
metabolism and body weight. A specific group of polyun-
saturated FA collectively known as conjugated linoleic acid
(CLA) have been suggested to have an effect on regulating
energy metabolism [14] and is being used commercially
as a weight-loss supplement. CLA were recently granted
“Generally Recognized As Safe”, status in the United States
(GRN no. 232; http://www.cfsan.fda.gov/) for use as a dietary
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supplement. However, CLA effects are varied depending
on the type of CLA isomer, the animal’s physiological
condition, and the tissue type examined. In this paper, we
summarize the recent studies on effect of CLA on hepatic
lipid metabolism highlighting the potential regulatory mech-
anisms.

2. Conjugated Linoleic Acid

Conjugated linoleic acid refers to a group of dienoic deriva-
tives of linoleic acid with conjugated double bonds arranged
in different combinations of cis and trans configuration [15].
Currently, 16 naturally occurring CLA isomers have been
identified with different positional (7/9, 8/10, 9/11, 10/12,
and 11/13) and geometric (cis/cis, trans/trans, cis/trans, and
trans/cis) combinations [16, 17].

Sources of CLA include those naturally present in
dairy products and meat from ruminant animals or those
contained in industrially hydrogenated vegetable oils and
other synthetic products [14]. The CLA originating from
the ruminant products predominantly consist of cis-9, trans-
11 CLA (>80%), with a small amounts of trans-10, cis-12
CLA and other isomers [18]. The industrially synthesized
CLA and other commercial products intended for human
consumption typically consists of equal amounts of cis-9,
trans-11 CLA and trans-10, cis-12 CLA and other isomers
[19]. Of all the CLA isomers, cis-9, trans-11 CLA and trans-
10, cis-12 CLA have been the most widely studied due to their
biologically active properties [15].

3. Physiological Effects of CLA

A great deal of current interest in CLA is due to their bioac-
tive properties including anticarcinogenic [19], antiathero-
genic [20], immunity enhancing [21], and effects on body
composition [22]. Each CLA isomer has unique bioactive
properties, and hence, the biological effect from a mixture
of dietary CLA isomers, as is the case in most of the studies,
would be the combined effect of their distinct isomers
[15]. For example, cis-9, trans-11 CLA and trans-10, cis-12
CLA have additive effects on cancer [23] and immune cell
functions [24] but are antagonistic on insulin sensitivity.
While cis-9, trans-11 CLA improves insulin sensitivity, trans-
10, cis-12 CLA causes insulin resistance. Also, trans-10, cis-12
CLA is solely responsible for changes in body composition
and reducing adipose mass [25].

3.1. Body Weight and Lean Mass. CLA reduces body weight
and body fat mass and increases lean mass in different species
[22]. However, the response appears to vary depending on
species, physiological stage, and fat depot [22, 26]. Table 1
provides a summary of studies reviewed across species with
respect to body weight and adiposity, where the number
of experiments showing significant (P > 0.05) increases,
decreases, or no change and the mean response to dietary
trans-10, cis-12 CLA within those categories are reported.
The range of trans-10, cis-12 CLA addition in these studies
varied between 0.1 and 1 percent of the diet.

Trans-10, cis-12 CLA reduces body fat to a maximum
extent in mice (60% to 80%) [27, 28]. However, modest
and inconsistent effects are seen in rats [49, 82], hamsters
(9% to 58%) [54, 55], and pigs (6% to 25%) [83].
Similarly, variable responsiveness to CLA was observed for
epididymal, perirenal, and subcutaneous body fat depots
[55]. Inconsistent responses to trans-10, cis-12 CLA have
been reported in clinical trials with humans [84]. Some have
shown significant effects on body composition [63, 85],
while others have not [64, 65]. The differences in the
responses are attributed to differences in the dose levels,
age, and rate of adipose tissue TG turnover [14, 66, 84]. The
response to CLA isomers also depends on the physiological
state of the animal which is probably due to differences
in the preferential uptake of CLA by different tissues. For
example, trans-10, cis-12 CLA is preferentially taken up by
the mammary tissue during lactation leading to substantial
(∼45%) decrease in milk lipid synthesis [29].

3.2. Effects of CLA on Hepatic Lipid Metabolism. Liver plays
an important role in energy homeostasis, as it converts
excessive dietary glucose into FA which is exported as TG.
Liver is an important target for CLA effects irrespective of the
physiological condition. Of the different CLA isomers, trans-
10, cis-12 CLA causes increased lipid accumulation leading
to hepatic steatosis [30–32, 86]. However, the intensity of
lipid accumulation varies depending on the level of CLA
in the diet, duration of feeding, physiological condition,
and animal species (Table 1). The factors leading to hepatic
lipid accumulation are multifactorial involving increased
FA influx, increased FA synthesis, and altered FA oxidation
and TG secretion insufficient to prevent lipid accumulation
(Figure 1) [33]. These mechanisms are probably not
mutually exclusive and could act in a coordinated manner
to hasten the development and progression of fatty liver
[87].

3.2.1. Hepatic FA Synthesis. Under normal conditions, de
novo lipogenesis contributes minimally to the lipid pool
in the liver [88]. However, the lipid synthesis increases
to as much as 26% during steatotic conditions [89]. The
increase in hepatic lipid content due to CLA, specifically
trans-10, cis-12 CLA, is commonly associated with increased
hepatic lipogenesis [30]. In mice, CLA has been repeatedly
shown to increase the expression of sterol regulatory element-
binding protein-1c (SREBP-1c), key transcriptional regulator
in hepatic lipogenesis and its downstream genes acetyl CoA
carboxylase (ACC), fatty acid synthase (FASN), and stearoyl
CoA desaturase-1 (SCD1) [30, 34, 35] (Table 2). However,
in rats and hamsters, the responses are equivocal. The
increase in SREBP-1c expression in mice is attributed to
hyperinsulinemia (Figure 1) [30]. The decreased expression
of lipogenic (ACC1, ACC2, FASN, and SCD1) genes in
the absence of insulin in mice fed trans-10, cis-12 CLA
further supports this argument [33]. In addition to SREBP-
1c, insulin induces the expression of peroxisome proliferator-
activated receptor-γ (PPAR-γ) [90], which is in low abun-
dance under normal conditions [91]. PPAR-γ expression
is increased in steatotic liver (Figure 1) [30, 92], while its
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Table 1: Studies showing that trans-10, cis-12 CLA induced significant (P < 0.05) increases or decreases, or where there was no change (P >
0.05) in body, adipose, and liver weights and liver lipid concentration.

Species Change Body weight Adipose tissue Liver weight Liver lipids

Mice1

Increase — — 24 (92) 19 (515)

Decrease 21 (31)2 29 (666) — —

No change 16 — 2 2

Rats3

Increase — — — 1 (25)

Decrease — 1 (23) — 4 (19)

No change 11 3 8 4

Hamsters4

Increase — — 8 (20) —

Decrease 2 (14) 11 (20) — 3 (37)

No change 11 2 2 5

Humans5

Increase — — — —

Decrease 2 6 — —

No change 11 13 — —
1
Studies used: [22, 25, 27–48].

2Number of observations (mean percent change).
3Studies used: [49–53].
4Studies used: [54–62].
5Studies used: [63–81].

Figure 1: Current concepts in the pathways of trans-10, cis-12 CLA-induced hepatic steatosis. (1) Adipose tissue lipodystrophy caused by
increased proinflammatory cytokines and reduced adipokines leading to higher circulatory levels of free FA (FFA). (2) Hyperinsulinemia
induced by systemic insulin resistance. (3) Alterations in hepatic lipid metabolism leading to hepatic steatosis. (4) Alterations in hepatic
FA composition. SREBP-1c, Sterol regulatory element-binding protein-1c; PPAR-γ, peroxisome proliferator activated receptor-γ; TNF-α, tumor
necrosis factor-α; IL-6, interleukin-6; IL-8, interleukin-8; PEPCK, phosphoenol pyruvate carboxykinase; G6P, glucose 6-phosphatase; ChREBP,
carbohydrate response element-binding protein; PPAR-α, peroxisome proliferator-activated receptor-α; LC-PUFA, long chain polyunsaturated
FA.
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ablation ameliorates the condition in mice [93]. Insulin resis-
tance in response to trans-10, cis-12 CLA could upregulate
genes of glucogenic pathway (e.g., PEPCK, G6P) leading
to hyperglycemia (Figure 1) [94]. In turn, elevated blood
glucose concentrations could upregulate hepatic lipogene-
sis through carbohydrate response element binding protein
(ChREBP), a transcriptional regulator modulated by glucose
(Figure 1). The targeted deletion of ChREBP in the liver
improves the steatotic conditions in ob/ob mice [94]. How-
ever, the role of ChREBP in CLA-induced hepatic steatosis is
not known. Although hyperinsulinemia triggers the hepatic
lipogenesis, CLA-induced hepatic steatosis in the absence
of insulin suggests the involvement of other regulatory
mechanisms affecting hepatic lipid accumulation [33].

3.2.2. Hepatic FA Uptake and TG Secretion. In mouse
experiments, dietary trans-10, cis-12 CLA was associated
with upregulation of genes associated with FA uptake and
TG secretion (FAT/CD36; Table 2). During hepatic steatosis
about 59% of hepatic TG is derived from free FA released
from the adipose tissue and 15% is derived from dietary fat
[89]. FA transporters, (FATP5, FAT/CD36, FABP-1, FABP-4,
and FABP-5) regulate the FA uptake by hepatocytes. While
the overexpression of these proteins promotes steatosis,
functional deletion ameliorates the condition [98–100]. As
CLA are natural ligands and activators of PPAR-γ [101] the
upregulation of FAT/CD36 by trans-10, cis-12 CLA [32, 33,
102] could be through PPAR-γ leading to increased hepatic
FA uptake. In addition to FAT/CD36, we have observed
modest increases in the expression of FABP-1 (1.39 fold) and
FABP-2 (1.7 fold) in liver of lactating mice fed trans-10, cis-
12 CLA (Kadegowda, A. K. G., Erdman, R. A., and Loor, J. J.,
unpublished results).

Besides enhanced FA uptake and lipogenesis, alteration
in very low-density lipoprotein (VLDL) secretion rates could
also result in liver fat accumulation [103]. The VLDL
production and secretion is increased in response to elevated
lipid concentrations. However, impaired or insufficient fat
export via VLDL predisposes animal to hepatic steatosis
[10]. Trans-10, cis-12 CLA reduced TG secretion leading to
higher lipid accumulation in HepG2 cells due to reduced
apolipoprotein B synthesis [104]. Conversely, lipoprotein
clearance was not affected in mice fed CLA [31, 102]. The
TG export was increased with higher rate of VLDL secretion;
however, it was insufficient to eliminate increased FA flux
entering the liver leading to hepatic steatosis [31].

3.2.3. Hepatic FA Oxidation. Hepatic FA oxidation encom-
passes β-oxidation in mitochondria and peroxisomes and ω-
oxidation in the microsomes [105]. The FA < C8 to C20 are
catabolized through the mitochondrial β-oxidation pathway,
while FA > C20 are initially catabolized in the peroxisomes
to shorter FA which are then shuttled to mitochondria
for further oxidation [32]. Previous studies have reported
variable responses in hepatic FA oxidation with trans-10,
cis-12 CLA. Most of the studies have shown increased FA
oxidation [27, 34, 36, 56, 106], while some have reported
reduced [32] or unaltered FA oxidation [22] with CLA.

Carnitine palmitoyltransferase-1 (CPT1) is the rate lim-
iting enzyme for mitochondrial β-oxidation pathway, as it
regulates the transport of fatty acyl CoA into mitochondria.
When measured in mice, CPT1 gene expression was consis-
tently increased by CLA (Table 2) which might be mediated
through transcriptional regulator PPAR-α as it regulates
the key enzymes (e.g., CPT1, CPT2, and ACO) involved in
hepatic FA oxidation [50].

Despite increased FA oxidation hepatic steatosis was
consistently observed in mice (Tables 1 and 2). Since studies
showing increased FA oxidation were also associated with
increased hepatic lipogenesis, it is possible that that the
rates of hepatic lipogenesis far exceed the rates of FA
oxidation resulting in increased lipid accumulation. Along
with increased lipogenesis the level of malonyl CoA, a
product of ACC, was also increased that allosterically inhibits
CPT1 enzyme activity [36]. Thus, despite higher expression
of FA oxidation genes, it is possible that FA combustion
might be depressed in vivo leading to steatosis.

Some studies have shown CLA induced downregulation
of genes related to mitochondrial β-oxidation (CPT1), and ω
oxidation (cyt P450 and FMO3) [32]. We have also observed
decreased expression of CPT1, ACOX1, and FMO3 without
any changes in hepatic lipogenic genes of lactating mice
fed trans-10, cis-12 CLA (Kadegowda, A. K. G., Erdman,
R. A., and Loor, J. J., unpublished results). The variable
responses among different studies can be attributed to the
level and type of fat used in the experimental diet along
with the physiological conditions of animal used in the
experiment.

3.2.4. Effect of CLA on Hepatic FA Composition. Trans-
10, cis-12 CLA-induced hepatic steatosis is characterized
by changes in hepatic FA composition [29, 37, 107–111]
similar to those induced during NAFLD [112]. The hepatic
FA composition in steatotic liver determines the extent of
susceptibility of liver injury [113]. The steatotic liver FA pro-
file is characterized by substantial reductions in long chain
polyunsaturated FA (LC-PUFA) concentrations; specifically
that of arachidonic acid (C20:4n-6). While linoleic (18:2n-
6) and α-linolenic acid (18:3n-3) are unaltered, the con-
centrations of eicosapentaenoic acid (EPA, C20:5n-3) and
docosahexaenoic acid (DHA, C22:6n-3) are decreased. The
desaturation and elongation of linoleic and α-linolenic acid
by desaturases (Δ5-desaturase, Δ6-desaturase) and elongases
(ELOVL-2, ELOVL-3) are involved in synthesis of LC-PUFA.
Trans-10, cis-12 CLA inhibits both Δ5- and Δ6-desaturase in
HepG2 cells [114]. A recent tracer study with [U-13C] linoleic
acid showed significant reduction in n-6 PUFA synthesis
by inhibition of elongation and desaturation in the liver
homogenates of neonatal pigs [115]. A decrease in arachi-
donic acid synthesis would alter eicosanoid metabolism and
potentially reduce the synthesis of prostaglandin E2 (PGE2)
[116] which is known to have protective effects on liver [117].

Typical NAFLD is also characterized by increased n-
6 : n-3 LC-PUFA ratio which favors lipid synthesis over lipid
oxidation and secretion leading to hepatic lipid accumu-
lation [118]. Trans-10, cis-12 CLA reduces the n-3 PUFA
in liver [38, 109] in addition to arachidonic acid. The
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Table 2: Studies showing that trans-10, cis-12 CLA induced significant (P < 0.05) increases (↑), decreases (↓), or no change (↔) (P > 0.05)
in hepatic gene expression and circulating levels of insulin, adipokines, and TNF-α. Genes are classified based on their ascribed function.

Mice1 Rats2 Hamsters3

↑ ↓ ↔ ↑ ↓ ↔ ↑ ↓ ↔
Lipogenesis

ACC 5 (126)4 — 1 — — — 1 (99) — 1

FASN 7 (243) — 1 — 1 (50) 2 — — 2

SCD1 2 (150) — 3 — 1 (80) — — — —

SREBP-1c 3 (53) — 2 — 1 (40) 4 — — 3

PPAR-γ 2 (200) — — — — 2 — — —

ME 5 (205) — — — — — — — —

FA uptake, secretion, and oxidation

CPT1 4 (107) 1 (59) 1 — — — — — 2

ACO 5 (117) — 1 2 (130) — 4 — — 2

PPAR-α — 1 (53) — 1 (125) — — — — 3

FAT/CD36 3 (533) — — — — — — — —

LPL — — 1 — — — — — 1

Insulin, adipokines, and TNFα

Insulin 12 (2492) 1 (29) 3 — — 3 — — 1

Adiponectin — 6 (77) 5 — — — — — —

Leptin — 10 (71) — — — 1 — — —

TNF-α — 4 (32) 1 1 (44) 2 — — —

↑, ↓,↔; increase, decrease or no changes respectively.
1Studies used: [27, 29–35, 45, 95, 96].
2Studies used: [49–52, 97].
3Studies used: [54, 56, 59, 61].
4Number of observations (mean percent change).
ACC: acetyl CoA carboxylase, FASN: fatty acid synthase, SCD1: stearoyl CoA desaturase-1, SREBP-1c: sterol regulatory element-binding protein-1c, PPAR-
γ: peroxisome proliferator activated receptor-γ, ME: malic enzyme, CPT1: carnitine palmitoyl transferase 1, ACO: acyl-CoA oxidase, PPARα: peroxisomal
proliferator activated receptor α; FAT/CD36: fatty acid translocase, LPL: lipoprotein lipase.

n-3 PUFA downregulate SREBP-1c and upregulate PPAR-
α, which regulates lipid oxidation (CPT1, ACOX1) and
secretion (ApoB100). A decrease in hepatic n-3 PUFA would
not only reduce lipid oxidation but increase lipogenesis
leading to hepatic steatosis [118]. Although the trans-10,
cis-12 CLA-induced responses in FA oxidation are variable
in mice, consistently increased lipogenesis (Table 2) suggests
a potential role for n-3 PUFA. On the contrary, CLA
feeding increased n-3 PUFA content and decreased n-6 PUFA
in the rats [119, 120] which could probably explain the
differences in CLA effects between the two species. Although
the exact mechanism of CLA action has not been elucidated,
Banni et al. [121] has suggested that the metabolites of
CLA, conjugated dienes (CD)18:3, CD20:3, CD20:4, could
compete with other PUFA at the level of formation and
metabolism in liver and affect LC-PUFA synthesis.

3.3. CLA and SCD in Hepatic Lipid Metabolism. In the adi-
pose, there are some similarities between the effects of trans-
10, cis-12 CLA and the inhibition of SCD1. For example,
reduced adiposity is observed with both dietary trans-10,
cis-12 CLA and SCD1 inhibition and one could speculate
that the effects of trans-10, cis-12 CLA are mediated through
SCD1 as trans-10, cis-12 CLA decreases SCD1 in adipose
[122]. However, a study with SCD1−/− mice showed that the

antiobesity effects of trans-10, cis-12 CLA were independent
of SCD1 gene expression and enzyme activity [123].

Unlike adipose, the effects of trans-10, cis-12 CLA
are varied in liver (Table 2). While trans-10, cis-12 CLA
decreased hepatic SCD activity in vitro [124], in vivo studies
report increased hepatic SCD1 gene expression [32, 95]. In
contrast to trans-10, cis-12 CLA effects in mice, SCD1−/−

mice showed increased insulin sensitivity, reduced hepatic
lipogenic genes, upregulated lipid oxidizing genes, increased
hepatic saturated FA and unchanged hepatic n-3 and n-6
PUFA [125]. SCD1−/− mice fed trans-10, cis-12 CLA showed
reduced hepatic accumulation compared to wild type [123]
confirming that reduced SCD1 expression decreases hepatic
lipid accumulation [126]. Liver specific SCD1 knock out
decreased expression of SREBP1 and ChREBP and their
target genes there by reducing hepatic lipogenesis [127].
In contrast, short-term inhibition of tissue specific hepatic
SCD increased hepatic TG content and enhanced insulin
signaling, [128] but the long-term inhibition decreased
hepatic steatosis [129]. The differences in responses observed
in liver specific knockout versus complete SCD knockout
mice suggests that hepatic lipid metabolism is being affected
by lipid metabolism in nonhepatic tissues [130].

As trans-10, cis-12 CLA effects in mice are mostly
associated with insulin resistance; increased hepatic SCD1
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expression is probably due to increased SREBP-1c expres-
sion. Hepatic steatosis due to trans-10, cis-12 CLA is also
seen in the absence of insulin and is associated with
reduced expression of SCD1 and other lipogenic genes
[33]. These results indicate that the disturbances in hepatic
lipid metabolism caused by dietary trans-10, cis-12 CLA are
mediated by multiple mechanisms [131] rather than through
changes in SCD1 alone.

3.4. Role of Adipose during CLA-Induced Hepatic Steatosis.
The effect of CLA on adipose lipid metabolism is well
documented [14]. Of all the CLA isomers, trans-10, cis-12
CLA is the most potent to induce changes in adipose [25].
The changes may be caused by reduced lipid content, size,
and number of adipocytes. Trans-10, cis-12 CLA reduces
lipogenesis by decreasing expression of SREBP-1c and PPAR-
γ and their downstream genes, ACC, FASN, and SCD1,
reduces glucose and FA uptake by reducing GLUT4 and
LPL expression, increases FA oxidation by increasing CPT1
and UCP2 expression and reduces adipocyte proliferation
and differentiation by reducing PPAR-γ and its downstream
genes [131]. Furthermore, CLA affects various adipocyte
secreted-adipokines (e.g., leptin, adiponectin, and resistin)
and cytokines (e.g., TNFα and IL6), which are involved in
wide range of physiological activities [14]. Trans-10, cis-12
CLA increases the mRNA expression of cytokines, TNFα and
IL6 in adipose tissue [131]. However, the circulating cytokine
levels are reduced in response to trans-10, cis-12 CLA
(Table 2). The increased cytokine expression in adipose tissue
is known to reduce the activity of PPAR-γ [132], and thereby
affect its downstream cellular functions. Also, TNFα and IL6
inhibit the activation of insulin receptor substrate-1 (IRS-
1) through induction of suppressors of cytokine signaling
(SOCS3) disrupting insulin action [133]. The expressions of
TNFα and adiponectin, an adipokine associated with insulin
sensitivity, are inversely related [134]. The adipose tissue
depletion would reduce the level of adiponectin and when
coupled with increased TNFα would lead to severe insulin
resistance. The subsequent pancreatic β cell hyperplasia, as
a compensatory mechanism to insulin resistance, leads to
hyperinsulinemia which promotes lipid accretion in the liver
leading to hepatic steatosis [39].

In mice, trans-10, cis-12 CLA causes severe lipodystrophy
reducing the levels of leptin and adiponectin (Table 2), which
leads to hepatic steatosis (Table 1, Figure 1). Re-establishing
the levels of leptin or adiponectin either through external
supplementation (in case of leptin) or induction using
rosiglitazone (ROSI) (in case of adiponectin) attenuated
hepatic steatotic condition and normalized the insulin levels
in CLA-fed mice [135, 136]. Similar results are seen in
studies where prevention of lipodystrophy prevented lipid
accumulation in the liver [135]. Serum insulin levels are
directly correlated with liver TG, while serum adiponectin
levels are inversely related [35]. Adipokines could improve
the condition of the liver by lowering the insulin levels.
However, hepatic steatosis is seen in mice even at low
insulin levels [33], suggesting that different mechanisms
could regulate the induction of hepatic steatosis depending
on the animal’s physiological condition. The intensity of

hepatic steatosis could be directly related to the relative
amounts of adipose tissue. CLA-induced hyperinsulinemia
and hepatic steatosis are observed only if there are corre-
sponding decreases in the adipose tissue mass [40, 135].
Stout et al. [137], reported increases in diacylglycerol (DAG)
concentration and membrane associated protein kinase C
(PKC) during trans-10, cis-12 CLA-induced hepatic steato-
sis. Increased PKC would affect insulin signaling leading
to insulin resistance, hyperinsulinemia, and hyperglycemia
[137].

3.5. CLA and Inflammatory Responses. In addition to its
effects on lipid metabolism, trans-10, cis-12 CLA also induces
an inflammatory response in adipose tissue [131, 138].
Trans-10, cis-12 CLA activates integrated stress response
leading to activation of NF-kB pathway, induction of
inflammatory cytokines, TNFα, IL6, and IL8 [41, 138, 139],
and macrophage infiltration [35]. However, the level of
circulating cytokines, TNFα and IL6, were decreased in
response to trans-10, cis-12 CLA [42, 43]. In contrast to
the adipose, the effects of CLA on hepatic inflammatory
responses are not well defined. Trans-10, cis-12 CLA did
not affect expression markers of macrophage infiltration in
mice liver such as TNFα or F4/80 and CD68 during hepatic
steatosis [35]. However, trans-10, cis-12 CLA increased
expression of markers of hepatic inflammation in hamsters
without inducing hepatic steatosis [57]. The authors in [57]
attributed this to an increased capacity of the liver for higher
FA oxidation leading to inflammation and oxidant stress
defense pathway in the hamsters.

4. Prevention or Amelioration of CLA-Induced
Hepatic Steatosis

Several studies have examined either the prevention or ame-
lioration of trans-10, cis-12 CLA-induced hepatic steatosis
(Table 3) by normalizing serum adipokine levels, altering
hepatic PUFA composition or both. External supplementa-
tion of recombinant murine leptin ameliorate CLA-induced
hepatic steatosis and hyperinsulinemia by decreasing hepatic
lipogenesis and increasing insulin sensitivity respectively
[40, 136]. Serum adiponectin levels were not restored (and
remained low) even after leptin supplementation, prompting
the authors in [136] to claim that leptin alone could amelio-
rate CLA induced steatosis. Conversely, trans-10, cis-12 CLA-
caused hyperinsulinemia associated with lipid steatosis in
Ob/Ob mouse which lack functional leptin [143] suggests the
involvement of other factors. Increasing adiponectin levels by
supplementation of ROSI attenuates liver fat accumulation in
Ob/Ob mouse [49]. ROSI prevented lipodystrophy, decreased
hepatic lipogenesis and subsequently liver TG content [35].
The insulin sensitizing action of leptin and adiponectin
normalizes insulin levels which further helps in preventing
CLA-induced steatosis [40, 141].

Dietary FA or oil supplements with higher n-3 and
n-6 PUFA are able to ameliorate liver steatosis when
supplemented along with CLA. Supplementing arachidonic
acid [140] or its precursor γ-linolenic acid (18:3n-6) [44]
decreased induction of hepatic steatosis and increased liver
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Table 3: Summary of literature studies on amelioration of CLA induced hepatic steatosis.

% Added dietary CLA

Reference
No. per

treatment
Study days CLA Mix

trans-10
cis-12

Treatment
Treatment dose,

%1 Observations

[136] 3 to 6 28 2.0 0.95 Leptin 5 μg/d
↓Hepatic steatosis, ↑ insulin
sensitivity,

[40] 5 to 14 30 1.0 0.72 Leptin 5 μg/d
↑ insulin sensitivity, amelio-
rated hepatic steatosis

[49] 5 28 1.5 0.60 Rosiglitazone 10 mg/kg BW
↑ Insulin sensitivity, pre-
vented depletion of epi-
didymal adipose tissue

[35] 10 42 2.0 1.00 Rosiglitazone 10 mg/kg BW

↓ Hepatic TG content, ↓
hepatic lipogenesis,↑ serum
leptin and adiponectin, pre-
vents lipodystrophy

[140] 7 28 3.0 0.98
Arachidonic

acid
1, 2

↓ Induction of hepatic
steatosis, ↑ liver PGE2, ↑
epididymal adipose

[44] 7 28 — 1.20
γ-Linolenic

acid
5 ↓Hepatic steatosis, ↑ PGE2

[38] 10 56 — 0.50
Flax seed oil
(α- Linolenic

acid)
0.39

↓ Steatosis, ↑ n-3 and n-6
PUFA in liver

[27] 7 to 8 22 1.0 0.50 Fish oil 1.5, 3, 6
↑ Leptin and Adiponectin, ↓
Insulin, ↓ TG in liver, ↑ fat
pad

[141] 10 105 1.0 0.50 Pine oil 7.5
Serum insulin levels stabi-
lized over 3 weeks

[135] 5 to 6 100 1.0 0.35
34% dietary

fat
Normal plasma insulin lev-
els, ↑ liver weight

[45] 6 28 2.0 0.74 DHA 0.5
↓ Fatty liver, ↓ FA syn-
thesis, plasma leptin, and
adiponectin unaffected

[142] 10 56 — 0.50 DHA, EPA 0.5, 0.5

Prevented hepatic steatosis,
partially restored plasma
leptin, only DHA restored
plasma adiponectin

1
Percentage in the diet except wherever noted.

PGE2 levels. Hepatic steatosis is characterized by significant
reduction in the levels of arachidonic acid in liver. Arachi-
donic acid supplementation would not only normalize the
level of respective FA but would also increase the levels of
hepatic PGE2 [44, 140]. Both arachidonic acid and PGE2

would further reduce hepatic lipogenesis by decreasing FASN
and S14 gene expression [140, 144] thereby preventing
hepatic steatosis.

The importance of n-3 PUFA concentrations on hepatic
lipid metabolism was explained in the earlier section. Trans-
10, cis-12 CLA decreases liver n-3 PUFA concentrations
which affect hepatic lipid metabolism. Dietary supplements
enriched in n-3 PUFA along with CLA diet increased the
content of n-3 and n-6 PUFA in liver [38]. Fish oil, a source of
PUFA has been shown to ameliorate CLA-induced steatosis
by increasing leptin and adiponectin levels and decreasing
plasma insulin [27]. Pinolenic oil, a source of Pinolenic
acid was able to stabilize insulin levels when fed with CLA

[141]. Similarly, flaxseed oil, a source of α-linolenic acid was
able to increase n-3 and n-6 PUFA in liver. Supplementing
EPA and DHA prevents lipid accumulation when fed with
trans-10, cis-12 CLA [45, 142]. This effect was independent
of their effects on stabilizing insulin sensitivity. Both EPA
and DHA have modest effects in restoring plasma leptin
levels, while DHA alone can restore plasma adiponectin
levels to some extent [142]. The effects of DHA in preventing
hepatic steatosis were mediated through decreasing hepatic
lipogenesis [45].

5. Role of cis-9, trans-11 CLA in
Hepatic Metabolism

Of the 16 naturally occurring CLA isomers, trans-10, cis-12
CLA and cis-9, trans-11 CLA have been the most extensively
studied with respect to their bioactive properties. Most
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of the animal studies have used a CLA mixture having
trans-10, cis-12 CLA and cis-9, trans-11 CLA in 1 : 1 ratio
to study the effect of CLA on liver metabolism. Studies
using purified CLA isomer have delineated the differences
between the two isomers. While trans-10, cis-12 CLA leads
to decreased adipose tissue leading to insulin resistance,
hyperinsulinemia, and hepatic steatosis, cis-9, trans-11 CLA
shows only modest effects in mice [30–32, 86] and hamsters
[56, 58]. Similarly, the effects of CLA on SCD1 gene and
protein expression are isomer specific [145]. Contrary to
trans-10, cis-12 CLA, cis-9, trans-11 CLA has no effect on
SCD1 gene expression either in vitro [124] or in vivo [95].

A few studies have reported beneficial effects of cis-9,
trans-11 CLA. For example, cis-9, trans-11 CLA did not alter
liver lipid content but reduced 18:1n-9 and 18:1n-7 and
increased 18:2n-6 in TG in contrast to trans-10, cis-12 CLA
[108]. In addition, cis-9, trans-11 CLA promotes insulin
sensitivity [42, 43] by reducing adipose inflammation
[41, 132]. Furthermore, it enhances hepatic mitochondrial
function and protects against oxidative stress by increasing
activities of mitochondrial antioxidant enzymes [146]. The
anti-inflammatory role of cis-9, trans-11 CLA is related
to the induction of anti-inflammatory heat shock protein
(HSP) 70 kDa and decreased expression of proinflammatory
macrophage migration inhibitory factor [147].

6. Conclusions

Hepatic steatosis induced by trans-10, cis-12 CLA is
associated with lipodystrophy in addition to insulin
resistance, hyperinsulinemia, and hyperglycemia in mice
(Figure 1). These effects are largely attributed to decreased
adipokine (leptin and adiponectin) secretion. Dietary inter-
ventions preventing lipodystrophy or normalizing leptin and
adiponectin levels prevents or ameliorates hepatic steatosis in
mice, suggesting that adipose tissue responsiveness to trans-
10, cis-12 CLA could be the main contributing factor. The
moderate responsiveness of adipose tissue to trans-10, cis-
12 CLA observed in hamsters and rats results in lower (or
absence of) hepatic TG accumulation when compared with
mice (Table 1) explains species specific responses.

Hepatic steatosis, due to increased lipid accumulation, is
multifactorial and is largely attributed to increased rates of
lipid synthesis along with lipid uptake, and it far exceeds the
rates of FA oxidation and VLDL secretion. In addition, trans-
10, cis-12 CLA-induced hepatic steatosis is characterized by
reduction of n-6 PUFA (especially C20:4n-6) and n-3 PUFA
(Figure 1). Changes in hepatic FA composition could play an
important role in progression of hepatic steatosis, as normal-
izing the levels of n-6 PUFA or n-3 PUFA by dietary supple-
mentation prevents or ameliorates hepatic lipid accumula-
tion. Further studies are needed to understand the molecular
mechanisms and the interrelationship between trans-10, cis-
12 CLA-induced hepatic steatosis and altered hepatic PUFA
content. We are still lacking mechanistic details showing
relationship between adipokine levels, insulin resistance, and
hepatic FA composition in context of hepatic steatosis, and it
needs to be addressed in the future experiments.
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