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Anterior cruciate ligament reconstruction (ACLR) is a commonly performed procedure in Orthopaedic
sports medicine. With advances in surgical techniques providing better positioning and fixation of the
graft, subsequent graft failure to certain extent should be accounted by poor graft healing. Although
different biological modulations for enhancement of graft healing have been tried in different clinical and
animal studies, complete graft incorporation into bone tunnels and the “ligamentization” of the intra-
articular part have not been fully achieved yet. Based on the understanding of graft healing process
and its failure mechanism, the purpose of this review is to combine both the known basic science &
clinical evidence, to provide a much clearer picture of the obstacle encountered in graft healing, so as to
facilitate researchers on subsequent work on the enhancement of ACL graft healing.
© 2021 Asia Pacific Knee, Arthroscopy and Sports Medicine Society. Published by Elsevier (Singapore) Pte
Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
Introduction

There is an estimated incidence of 200,000 anterior cruciate
ligament (ACL)injuries per year in the United States,1 with
approximately 60,000 to 150,000 annually requiring ACL recon-
struction (ACLR). However, the rate of graft failure for this
commonly performed surgical procedure was still considerably
high with reports up to 13.3%,2 with evidence suggesting that
despite advances in surgical techniques and optimizing rehabili-
tation protocols, unfavorable healing of graft may probably one of
the major contributing factors.

Previous studies have demonstrated different ways of clinical
and biological assessment of the healing process of ACL graft at
different stages. Clinically, different imaging techniques, arthros-
copy and biopsy have been used to detect the changes of the tendon
graft after ACLR. Meanwhile, a myriad of histological and
biochemical pre-clinical studies have demonstrated the different
molecular and cellular response of the tendon graft after ACL
reconstruction.

Graft healing in ACL reconstruction has been conventionally
categorized as a 3-stage process, namely early healing, prolifera-
tion, and maturation phase.3,4 The early healing phase is charac-
terized by graft necrosis and hypocellularity without any significant
detectable revascularization occurs, followed by the proliferation
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phase with the most intensive cell infiltration, and finally a matu-
ration phase with slow matrix remodeling.5,6 For ACLR using free
tendon grafts, complete tunnel closure and ossification of graft
inside bone tunnels have never been truly observed, as only certain
graft incorporation into tunnel wall is found as Sharpey's fibers or
via fibrocartilage zone only.7,8 Also, the biological changes in the
intra-articular region of the graft, which is described as “ligamen-
tization”,4 could not be fully achieved as well. Because of that, over
the years, different biological modulations have been advocated by
different researchers, in order to improve the graft healing and thus
the final clinical outcome.9 A successful ACLR with a tendon graft
requires solid healing of the tendon graft in the bone tunnel and
fully “ligamentization” in the intra-articular region of the graft as
soon as possible after surgery. Enhancing the healing of the tendon
graft is crucial to facilitate an early and aggressive rehabilitation
and a rapid return to full activity.10

Based on systematic review on all the previous per-clinical &
clinical evidence on the study of ACL graft healing, we are pro-
posing a clearer picture of the whole process of ACL graft healing
after reconstruction, which is indeed a multitude of molecular and
cellular events, taking place at different region of the graft, at
different time points, leading to sequential changes in the original
tendon, to become the new ACL. It is thus important to understand
the regulation of all these events, and their clinical relevance during
the rehabilitation, to facilitate future research directions and
established the right targets, on improvement of the graft healing,
and thus the final clinical outcome.
by Elsevier (Singapore) Pte Ltd. This is an open access article under the CC BY-NC-

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ShiyiYAO@link.cuhk.edu.hk
mailto:patrickyung@cuhk.edu.hk
mailto:patrickyung@cuhk.edu.hk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asmart.2021.03.003&domain=pdf
www.sciencedirect.com/science/journal/22146873
http://www.ap-smart.com
https://doi.org/10.1016/j.asmart.2021.03.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.asmart.2021.03.003
https://doi.org/10.1016/j.asmart.2021.03.003


S. Yao, B.S.-C. Fu and P.S.-H. Yung Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology 25 (2021) 8e15
Graft failure as a result of problematic graft healing

The true incidence of ACL graft failure after implantation is
unknown at present although as high as 24.4% has been reported.11

Most studies have reported graft failure rates in the range of 0.7%e
14%.12e14 Several recent systematic reviews by Spindler et al.,15

Lewis et al.16 and Wright et al.,17 have reported failure rates of
3.6%, 4%, and 5.8%, respectively. A study by the University of Pitts-
burgh18 showed that after single-bundle ACL reconstruction, the
most common rupture pattern seen at the time of revision surgery
is proximal rupture, followed by mid-substance rupture. They
also19 classified themechanisms of ACL graft failure as related to (a)
surgical technique; (b) graft incorporation; and (c) trauma. Also, a
Multicenter ACL Revision Study (MARS) Group developed a multi-
surgeon, multicenter prospective longitudinal study, and the
MARS cohort (460 patients) showed the etiology of failure, as
deemed by the revising surgeon, including traumatic, technical,
biologic, etc.20

Since advances have been made in surgical techniques21 and
rehabilitation methods,22 when graft failure happens following ACL
reconstruction without traumatic events, problematic graft healing
should be considered. So, a better understanding of the biological
healing process is needed.

Clinical evidence of graft healing

Magnetic resonance imaging (MRI)

Clinically, MRI is the most commonly used imaging technique
for monitoring the healing process after ACL reconstruction.23

Howell et al.24 conducted the first prospective study to serially
observe the MR appearance of ACL autografts during the first year
of implantation. A four-level grading system (Fig. 2) based on the
MR signal of the graft was developed and it was reported that in-
creases in magnetic resonance graft signal were time-dependent,
becoming well established by 3 months and remaining un-
changed at 1 year. The increased MR signal has been thought to be
related to an increase in water concentration representing graft
edema.25 Later, the Howell team also designed a study to assess the
degree of revascularization after administration of Gd-DPTA
contrast agent with T1-weighed MRI.26 The unimpinged ACL graft
acquired no discernible blood supply during the 2 years of im-
plantation and the periligamentous soft tissues were richly vascu-
larized and covered the graft by 1 month. However, Biercevicz
et al.27 found that the use of signal intensity (SI) as an outcome
measure was limited by its dependence on image acquisition pa-
rameters and scanner manufacturer. Later, Li et al.28 evaluated the
MRI signal/noise quotient (SNQ) of ACL grafts at 3, 6, and 12months
after ACLR (a high graft SI represents high SNQ value, which in-
dicates inferior graft maturity) and demonstrated that the graft
SNQ value has a significant negative correlation with postoperative
time from 12 to 114 months postoperatively. Recently, with
increasing interest in biological treatments to enhance ACL graft
healing, there is a clinical need for improved quantitative MRI
measures to follow up the healing process. MRI ultra-short echo
time T2* (UTE-T2*) is sensitive to collagen matrix integrity and
organization.29,30 Chu et al.31 showed that quantitative MRI ultra-
short echo time T2* (UTE-T2*) and T2* mapping suggested sub-
stantial changes within the graft during the first 6 months post-
surgery and relatively stable graft composition from 6 months to
1 year, consistent with remodeling, followed by decreases from 1 to
2 years, suggestive of continuing maturation. As above-mentioned,
MRI results differed greatly across the studies due to the wide
heterogeneity of the acquisition and interpretationmethods, which
will impede the comparison of SI. However, the time frames of the
9

healing process can still be concluded based on this MRI evidence
(Fig. 1), and objective quantitative MRI biomarkers of graft healing
would be desirable for further studies.

Computerized tomography (CT)

CT has been recommended to evaluate bone-tunnel changes
during the ACL graft healing since plain radiograph is often difficult
to reliably identify the tunnel and measure the width of the tun-
nel,32,33 Suzuki et al.34 evaluated the bone plug was almost
completely integrated into the rectangular femoral tunnel by 8
weeks after anatomical ACL reconstruction using a bone-patellar
tendon-bone (BTB) graft by CT scans. Christian Fink et al.35 used
CT sequentially to monitor the time course of changes over 2 years.
The percentage of change in tunnel size (Fig. 3) was significantly
higher within the first 6 weeks following surgery comparedwith all
other time intervals and the tunnel size was almost stable after 1
year. For autologous hamstring tendons, at a mean follow-up of 10
months, the CT scan showed a 3% femoral tunnel diameter increase,
and sclerotic tunnel boundary can be revealed.36 CT imaging has
also been used to compare the extent of widening using different
tunnel placement methods as well as different fixation
methods.37,38 Besides, low bone mineral density (BMD) may in-
crease the risk of incident knee osteoarthritis after ACLR, which
cannot be detected by the conventional CT scan. Peripheral quan-
titative computed tomography (pQCT) captures not only the bone
mineral content but also volumetric trabecular and cortical bone
microstructure which is directly related to bone strength.39 We can
see that conventional CT and pQCT detect the properties of bony
changes after ACLR, while researchers found that dual-energy
computed tomography (DECT)40 has the potential to evaluate soft
tissue changes by generating gemstone spectral imaging (GSI) im-
ages and creating material-specific color mapping and dual-energy
bone removal. So, with the development of the CT technique, we
may be able to evaluate the bony and soft tissue changes simulta-
neously with high accuracy.

Second-look knee arthroscopy & biopsy

Since the healing status provided by the non-invasive methods
such as MRI and CT scans is still limited, second-look knee
arthroscopy after ACL reconstruction is one of the most reliable
types of examination to provide valuable information on ACL grafts
such as synovialization and vascularization.41 Nakamae et al.42

demonstrated significantly better synovial coverage of the graft
18 months after ACL reconstruction using second-look arthroscopy
(Fig. 4). Synovialization plays an important role in graft healing and
is considered to positively affect the survival of the graft. Studies
reported that hamstring autografts showed considerably better
synovial coverage than soft tissue allograft based on second-look
arthroscopic evaluation.43,44 Furthermore, arthroscopy has been a
tool to get biopsy samples for examinations to study the healing
process.45e47 Histology through biopsy specimens procedure dur-
ing second-look arthroscopy48 has been examined to investigate
the fate of ACL allografts on a long-term basis. In the 6-month, the
surface blood flowwas significantly higher than that for the control
ACLs and declined with time from 6 months post-surgery onward,
reach a plateau by 12 months, and maintained a level equivalent to
that of the normal ACLs. In 24e30, 36e45, 48-89-month grafts, the
blood flow values were also statistically insignificant compared
with those for the normal control ACLs. Histologically, the speci-
mens at 24e89 months closely resembled those at 18 months,
suggesting that the allografts had reached stability by 18 months
post-surgery and remained viable thereafter. Besides from syno-
vialization and vascularization, innervation after ACLR also raises



Fig. 1. Graft healing time frames in human grafts demonstrated by MRI.

Fig. 2. A, at 1 week post implantation the entire graft had a normal MR signal (Grade I). B, by 3 months, the graft exiting from the femoral tunnel in the proximal intraarticular zone
(1) has remained unchanged (Grade I); the middle intraarticular zone (2) had acquired an increased signal involving approximately 50% of the width of the graft (Grade II); the distal
intraarticular zone (3) had only a few strands of normal-appearing ligament with more than 50% of the ligament having an increased signal (Grade III). The portion of the graft
within the tibial tunnel (4) was normal in appearance (Grade I). C, the increase in the MR signal of the graft persisted at 1 year with no evidence of returning to normal.24

Fig. 3. Tunnel enlargement in the sagittal plane. L1, tibia plateau; L4, proximal end of the bone block; L2, 33% of L1 to L4; L3, 66% of L1 to L4; L5, P33% ofL1 to L4.35
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Fig. 4. Second-look arthroscopic view of the reconstructed anterior cruciate ligament. The synovial coverage of the grafts was classified as follows: (a) good (synovial coverage
of>80% of the graft), (b) fair (50e80% coverage), and (c) poor (<50% coverage).41
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interests from researchers. However, biopsy after ACLR using
Achilles tendon showed that neural tissue analogs could only be
found on the H-E stains in the control group and in the Achilles
tendon allograft group, mechanoreceptors were not observed.49

Although the biopsy can demonstrate the vascular, nerval, and
other cellular level changes during the healing process, it is an
invasive technique and cannot do a follow-up of the healing process
frequently.

Despite different imaging techniques such as MRI & CT scan, as
well as arthroscopic assessment have been widely employed for
assessment of ACL graft healing, themost ultimate solid evidence of
proper graft healing still relies on histological & biochemical
assessment. Over the years, there have been a lot of scientific work
on studying the different cellular & biochemical response of the
graft healing, which took place at different parts of the graft, at
different time point after the ACL reconstruction.

Histological and biochemical characterization of graft healing

Some papers define the graft healing process as the combination
of several biological events, including inflammatory response, graft
necrosis, revascularization, cell repopulation, osseous integration,
collagen remodeling, and ligamentization.50 These biological
events can be categorized into three different healing phases,
namely early healing, proliferation, and maturation phase.

The early healing phase

The early cellular response following surgical implantation of a
tendon graft involves the accumulation of host inflammatory cells.
Shortly after graft implantation, neutrophils and ED1þ macro-
phages51 are recruited to the periphery of the implanted graft and
various cytokines like interleukin-6(IL-6), tumor necrosis factor-
alpha (TNF-a), transforming growth factor-beta (TGF-b) are
released.52 It has also been shown that the level of matrix-
metalloproteinase-1, 13 (MMP-1, 13) released by cells increased
after ACL reconstruction,53 which will digest the collagen and help
the repopulated cells with infiltration.

At the same time, researchers agree that the tendon graft un-
dergoes avascular necrosis mainly in its central portion.5 As part of
this necrotic process, several cytokines are released and initiate the
cascade of growth factors that guide the different subsequent
steps.51,54 Different from the inside tunnel part, the intra-articular
substance is exposed to synovial fluid, which contains a lot of cat-
alytic enzymes, cytokines, and growth factor inhibitors that inter-
fere with the healing mechanisms.55 Such differences may result in
extended necrosis, collagen disturbance (disintegration, fragmen-
tation, disorganization), myxoid degeneration in the intra-articular
11
part in the early healing phase, which may lead to a poor healing
outcome if the subsequent healing process is not optimized.

It is important to actually know about the biochemical& cellular
response in this early healing phase after ACL reconstruction, as a
lot of surgeons are in favor of providing NSAID or COX-2 Inhibitors
immediately after ACL reconstruction, to minimize the symptoms
(pain & swelling) after the operation. A recent systematic review
indeed demonstrated that the selective COX-2 inhibitors could
negatively affect the healing process, though some other studies
demonstrated no negative effect.56 That's why cautions is needed
for surgeons when administering NSAIDs/COX-2 inhibitors after
ACL reconstruction, probably good to keep the duration and dosage
of NSAIDs as short and low as possible to while avoiding unpleasant
effect on the graft.57
The proliferation phase

Since the ACL graft undergoes necrosis following implantation,
adequate revascularization is critical for successful graft healing by
allowing cellular repopulation and subsequent matrix remodeling.
A deficient revascularization process will result in a lack of available
oxygen for cells, thus impeding the cell repopulation.50 Researchers
have emphasized the importance of the blood supply and revas-
cularization of the autograft in the maintenance of graft
viability.58,59 Vascular ingrowth forms as early as 3 weeks and in-
filtrates even the central portion of the autograft. It is suggested
that new blood vessels develop from the synovium, the infrapa-
tellar fat pad, and the pseudo-ligamentum mucosum.60 And
vascular endothelial growth factor (VEGF) expression is accompa-
nied by the level of vascular density. The observed VEGF production
in vivo might be induced by the previous Inflammatory reactions in
tendon grafts.61

The replacement cells are from a source other than the auto-
graft. From drilling maneuver, bone marrow stem cells are released
in the bone tunnels for osteoblasts and there is no question that
some of these cells end up in the intraarticular space and could
contribute to graft cellularity. Seeding fibroblasts from the residual
stumps of the ACL can survive the synovial fluid and produce the
extra-cellular biochemical products of the ACL. Meanwhile, pleuri-
potential mesenchymal cells from the articular cartilage could
potentially express fibroblastic properties which are well suited to
survive in synovial fluid. The fibroblast-like cells (Type B cells)
originating from the synovial membrane are adapted for survival in
synovial fluid and are present within the joint throughout the
postoperative period. This suggests that these fibroblasts are the
most likely candidates for the source of replacement cells that seed
the autograft.58 These cells are initially seen at the periphery of the
graft, then migrated to more loosely woven areas of the matrix
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where they proliferated and finally repopulated the vacant con-
nective tissue matrix.5 The cell repopulation correlates with the
presence of PDGF-AA, PDGF-BB, and TGF-b1 in the reconstructed
graft.

As shown from the evidence, the blood vessels and cells during
this phase are coming fromvarious tissues in the knee joint, such as
the synovium, the infrapatellar fat pad, and the pseudo-
ligamentum mucosum, indicating that it is indeed important to
preserve these tissues during operation and over-debridement
should be prevented. There is also evidence showing that supe-
rior postoperative knee stability and clinical outcomes were
observed for remnant-preserving ACLR, with the native ACL stump
preserved during the operation, when compared with standard
ACLR.62

The maturation phase

The changes at the wall of the bone tunnel are similar to the
process of endochondral ossification, with the environment of the
bone tunnel similar to that of a fracture. Bone morphogenetic
proteins (BMP-2, BMP-7) are specifically involved in bone remod-
eling leading to osseous integration.63 Bone ingrowth plays an
important role in graft-to-bone healing because this stage of
healing coincides with improved load-to-failures. Several studies
have investigated strategies to improve bone ingrowth into a
tendon graft. Osteoinductive factors (BMP-2, BMP-7),64e66 osteo-
conductive agents such as calcium-phosphate cement,67 and oste-
oclast inhibition68 have been studied as potential strategies to
improve bone formation around a tendon graft.

Basic fibroblast growth factor (bFGF) is expressed from the
margins of the tendon that signals the migration of spindle-shaped
fibroblasts from the bone tunnel into the graft that then produce
type III collagen. Then, total collagen content and the non-
reducible/reducible crosslink ratio increase during this process.
The collagen fibrils in the reconstructed ligament are differently
organized than those of the native ACL, having a unimodal, small
diameter collagen-fibril diameter profile and the remodeling pro-
cess never results in exact reproduction of the original ligament
organization.47 What should be mentioned here is that, Andreas
Weiler et al. showed that the histologic data indicated that
anatomic interference bio-screw would lead to the development of
a direct type of ligament insertion.69 Thus, the tendon-to-bone
incorporation process may be improved by the use of bio-screw
fixation method.

During the above-mentioned whole healing process, Smith
et al.70 conducted anterior laxity test to see the increase in knee
laxity between the day of surgery and each monthly follow-up
interval in the first year using tibialis allograft in ACLR. The result
showed the maximum increase in anterior laxity was at 6 months,
which is correlated with the timeline of the healing process when
the graft is between the early healing phase and the beginning of
the proliferation phase.60 And there is no increase in the knee laxity
in the late proliferation phase and the following maturation phase.

ACL graft healing is characterized by matrix remodeling
influenced by regional responses at different phases after
graft implantation

As above-mentioned, although a pyramid of biological modu-
lations has been tried, the healing outcome has never been perfect.
So, a better understanding & differentiation of the graft healing
process, in terms of the time and location of the responses, may be
helpful for all the researchers in this area. Here, a clearer picture of
graft healing, categorized into three different phases (early healing
phase, proliferation phase, and maturation phase), followed by
12
different host and graft responses in the two different sites of the
graft (intra-articular part and bone tunnels) has been proposed
(Fig. 5):

At the early healing phase, inflammation of the host and cell
necrosis of the graft happens immediately as a response to grafting
after ACLR. In the next phase of proliferation, depending on the
peri-graft environment, different cell types are recruited inside the
bone (osteoprogenitors) and in the intra-articular space (fibro-
blasts). These cells repopulate the necrotic graft tissues with neo-
vascularization to gain nutrients supplies. The subsequent
maturation phase represents matrix remodeling processes medi-
ated by these repopulated cells, under mechanical and biochemical
influences that exhibit regional variations along with the graft.

Bone tendon junction healing inside bone tunnels and liga-
mentization in the intra-articular part are reactive matrix remod-
eling processes influenced by regional responses to grafting. In
contrast to the conventional concepts of graft healing in ACLR, we
highlight the regional variations in the peri-graft environment that
influence the matrix remodeling. Biological modulation should
target specifically either advantageous cell repopulation or the
favorable regional peri-graft environment to achieve matrix
remodeling to regain the original function of ACL.

Biological enhancement of graft healing: are we there yet?

Although tremendous biological modulations have been used to
improve the above-mentioned healing process, good ACL graft
healing is still far from ideal:

Site of biological enhancement: graft tunnel interface vs. intra-
articular mid substance

Biological modulations like mesenchymal stem cells, growth
factors, biomaterials, or biophysical intervention have been applied
to improve the healing outcome and these biological strategies
have long been reviewed.71,72 From different reviews, we can
conclude that majority targeted graft incorporation inside bone
tunnels or tendon-bone interface healing. However, it was reported
that the graft ruptured most frequently at the femoral insertion73

and was followed by intra-articular mid-substance.18 Animal
studies have shown the same result.74,75 So, more attention may
need to be paid to try to modulate the biological events which may
improve the healing results of the intra-articular mid-substance of
the graft.

Targeted outcomes of biological enhancement

As one of the most important outcomes of the ACL reconstruc-
tion, the mechanical property is always measured to compare the
results after operation. However, unfortunately, the strength of the
graft simulating native ACL has never been achieved. McFarland
et al.76 developed a dog ACL reconstructionmodel and by 16 weeks,
the grafts remained only 40% as strong as controls. Another study77

examined the biomechanics of goats for as long as 3 years after
surgery and the strength and stiffness of the grafts were 44 and 49%
those of the control ligaments, respectively. Rhesus monkeys78

were also studied, the tendon had approximately 80% of the ten-
sile strength that they had before transfer. And for small animals
like rats and rabbits, they could achieve around 20% strength when
compared with the native ACL.74,79 We have to be cautious that
indeed the initial ultimate “Strength to failure” of various graft is
much higher than that of the native ACL before implantation, which
again suggests that the weakest link is at the bone tendon junction,
which justify the efforts on researching better ACL graft healing.80



Fig. 5. ACL Graft healing is characterized by matrix remodeling influenced by regional responses at different phases after graft implantation.
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Delivery of biological enhancement

Since most of the existing modulations were delivered at the
early healing phase but were proposed to act on the proliferation
phase or maturation phase, sustained delivery of modulations was
required but few studies have demonstrated whether they act on
the desired phases. Taking the cell supplementation as examples,
the proliferation phase is identified by cell infiltration and repo-
pulation in the graft. To enhance the cell repopulation, mesen-
chymal stem cells (MSC),81 adipose-derived stem cells (ADSC),82

ACL-derived cells,83 synovial cells, and periosteum progenitor
cells84 have been delivered and their effects on graft healing have
been investigated. The most commonly used methods to transfer
stem cells is direct intra-articular and/or bone tunnel injection or
embedding within fibrin glue.85,86 And Mifune et al. showed that
the cell sheet technique is rather a superior strategy to deliver stem
cells into the reconstructed ACL compared to direct injection or
fibrin glue technique.83 Furthermore, to achieve a continuous and
stable concentration of growth factors, gene therapy based on stem
cells has been introduced.87,88 Although the healing outcomes of
these studies have shown improvements, further studies to pre-
cisely influence the targeted phases are still needed.

Conclusion

The graft failure rate after ACLR is still relatively high despite
advances in surgical techniques and optimizing rehabilitation
protocols, and the reason may be because of unfavorable healing
process. Based on the evidence provided by clinical and animal
studies investigating the healing process, tremendous biological
modulations have been applied to enhance the bone-tendon
interface healing. However, the mechanical strength achieved is
still beyond ideal, and a junctional/mid-substance rupture is still
frequently observed. A clearer picture of the healing process with
three phases (early healing phase, proliferation phase, and matu-
ration phase), with host and graft responses in two different sites
(intra-articular part and bone tunnels) is proposed, aiming to give a
new insight for further modulations to be delivered more specif-
ically at targeted time and site to enhance the healing outcome.
Biological modulations have promising potential in improving graft
healing after ACLR in laboratory and animal studies; however, high-
quality clinical studies are needed in the near future, which are
closely relevant to surgeons. Surgeons also need to understand
these advances background, and how these modulations work, to
better facilitate translation and future research even clinical
practice.
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