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Abstract: The growing number of oral infections caused by the Candida species are becoming
harder to treat as the commonly used antibiotics become less effective. This drawback has led to
the search for alternative strategies of treatment, which include the use of antifungal molecules
derived from natural products. Herein, crotoxin (CTX), the main toxin of Crotalus durissus terrificus
venom, was challenged against Candida tropicalis (CBS94) and Candida dubliniensis (CBS7987)
strains by in vitro antimicrobial susceptibility tests. Minimum inhibitory concentration (MIC),
minimum fungicidal concentration (MFC), and inhibition of biofilm formation were evaluated
after CTX treatment. In addition, CTX-induced cytotoxicity in HaCaT cells was assessed by MTT
(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) colorimetric assay. Native CTX
showed a higher antimicrobial activity (MIC = 47 µg/mL) when compared to CTX-containing
mouthwash (MIC = 750 µg/mL) and nystatin (MIC = 375 µg/mL). Candida spp biofilm formation was
more sensitive to both CTX and CTX-containing mouthwash (IC100 = 12 µg/mL) when compared to
nystatin (IC100 > 47 µg/mL). Moreover, significant membrane permeabilization at concentrations of
1.5 and 47 µg/mL was observed. Native CTX was less cytotoxic to HaCaT cells than CTX-containing
mouthwash or nystatin between 24 and 48 h. These preliminary findings highlight the potential use
of CTX in the treatment of oral candidiasis caused by resistant strains.

Keywords: crotoxin; candida; mouthwash; biofilm

Key Contribution: Crotoxin showed an inhibitory effect on the growth of C. tropicalis and
C. dubliniensis; Crotoxin-containing mouthwash displayed fungistatic activity against C. tropicalis and
C. dubliniensis; Native crotoxin displayed fungicidal activity against C. tropicalis and C. dubliniensis;
Candida spp. biofilm formation was sensitive to crotoxin-containing mouthwash.

1. Introduction

Crotoxin (CTX) is a heterodimeric protein with 16 possible isoforms, consisting of a non-covalent
association of a small acidic, non-enzymatic and non-toxic subunit (CA, also named crotapotin) with
a basic and weakly toxic phospholipase A2 subunit (CB, also named PLA2) [1]. Although extensive
research has been carried out on both CTX and its subunits to identify biomedical applications, such as
immunomodulatory, antitumor, analgesic, and antimicrobial, the high systemic toxicity of this protein
still represents a barrier to its clinical use [2,3].
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Considering the therapeutic potential of CTX, the need to develop alternative forms of CTX
clinical applications is of high-priority. Chlorhexidine is a classic example of this approach. Considered
a broad-spectrum antimicrobial drug with low intestinal absorption, its systemic application is not
feasible. However, it is widely used as a topical antiseptic for hand and wound disinfection, and is
used in the composition of mouthwashes with a low incidence of toxicity or side effects [4,5].

Dental caries and periodontal diseases are closely related to the formation of supra-gingival and
sub-gingival plaques, which are the most significant biofilms in the oral cavity contributing to various
orodental manifestations. Both bacterial and yeast species play an important role in this context [6].
Human mucosal surfaces, including the urogenital and gastrointestinal tract, are commonly colonized
by Candida species. They can live as commensal microorganisms in healthy individuals, but also
contribute to the virulence properties of cariogenic and periodontal bacteria [7–10].

Besides Candida albicans, other Candida species have gained notoriety over the past years.
Candida dubliniensis is highly prevalent in dental prostheses and has been strongly associated with
denture-related stomatitis [11–14]. Likewise, Candida tropicalis is another prevalent non-albicans
Candida pathogen that has been shown to express elevated virulence and cause serious disease [15].

Many natural compounds exert anticandidal activity through different mechanisms, providing an
important reservoir for the development of antifungal therapies. Alternative therapies are capable of
increasing the efficacy and preventing the emergence of drug resistance so that many approaches have
been adopted to identify new compounds. Hence, the present work aims to assess the antimicrobial
and antibiofilm activities of CTX against both non-albicans Candida species. Moreover, the possibility
of incorporating CTX into a mouthwash was also evaluated.

2. Results

2.1. Isolation and Purification of Crotoxin

CTX was purified to homogeneity from C. durissus terrificus venom. The Coomassie-stained
SDS-PAGE gel shows a dimeric protein consisting of two subunits, PLA2 and crotapotin, with apparent
molecular weights of 14 and 8.9 kDa, respectively (Figure 1A). The same electrophoretic protein profile
was obtained for both native CTX (Figure 1A, lane 2) and CTX-containing mouthwash (Figure 1A,
lane 3), although a significant loss of protein from the mouthwash was observed (Figure 1B,C).
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Figure 1. (A) Representative electrophoretic profile in SDS-PAGE 13%, under denatured and reduced
conditions, of crotoxin purified from C. durissus terrificus venom sample. 1: molecular weight markers
(kDa); 2: control (10 µg of crotoxin (CTX) in water); 3: formulation (10 µg of CTX in mouthwash).
Bar diagrams show arbitrary densitometry units of (B) PLA2-subunit and (C) Crotapotin-subunit as
means ± SD (n = 3). ** p < 0.005 and *** p < 0.001 by analysis of variance (ANOVA), followed by
Student’s t-test. PLA2, Phospholipase A2; Crtp, crotapotin.
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2.2. Antifungal Susceptibility Testing

Broth microdilution assays were performed to investigate the susceptibility of both C. tropicalis and
C. dubliniensis against CTX, CTX-containing mouthwash, basic mouthwash formulation, and nystatin
(Table 1). Native CTX showed the highest antimicrobial activity against C. tropicalis (minimum inhibitory
concentration (MIC) = 47 µg/mL) and C. dubliniensis (MIC = 47 µg/mL), exhibiting MIC values
8–16 times lower than those of nystatin (MIC = 375 µg/mL) and CTX-containing mouthwash
(MIC = 750 µg/mL), respectively. The highest MIC values were observed for the basic mouthwash
formulation (MIC = 1500 µg/mL). Fungal growth in a drug-free complete medium was detected
(growth control wells).

Minimum fungicidal concentration (MFC) values for strains subcultured from broth microdilution
assays coincided with their corresponding MIC values, except for C. dubliniensis treated with
CTX-containing mouthwash. In this case, MFC (3000 µg/mL) was four times higher than the
corresponding MIC. The MFC/MIC ratios for C. tropicalis treated with native CTX and CTX-containing
mouthwash were 1:1, suggesting that both displayed fungicidal activity against the strain. The same was
observed for C. dubliniensis treated with native CTX. On the other hand, CTX-containing mouthwash
was most likely to act as fungistatic against C. dubliniensis, as its MFC/MIC ratio was >2:1.

Table 1. Minimum inhibitory and minimum fungicidal concentrations of CTX and CTX-containing
mouthwash against two Candida species.

Yeast Strain
NYT CTX MW + CTX MW

p Value
MIC MFC MIC MFC MIC MFC MIC MFC

C. tropicalis 375 375 47 47 750 750 1500 1500 <0.05
C. dubliniensis 375 375 47 47 750 3000 1500 1500 <0.05

MIC (minimal inhibitory concentration, µg/mL); MFC (minimal fungicidal concentration, µg/mL); NYT, nystatin;
CTX, native crotoxin; MW + CTX, crotoxin-containing mouthwash; MW, mouthwash.

2.3. Inhibition of Biofilm Formation

Figure 2 shows the relative percentage of Candida biofilm mass plotted against increasing
concentrations of tested compounds and formulations. Concentrations above 47 µg/mL presented no
biofilm formation and therefore were not represented in the plot. Native CTX significantly reduced
Candida biofilm formation below 50% at 3 µg/mL, after 48 h of treatment. Both native CTX and
CTX-containing mouthwash completely prevented biofilm formation of C. tropicalis and C. dublininensis
at approximately 12 µg/mL, after 24 h of treatment (Figure 2A–D). Similar results were obtained
with higher concentrations of nystatin (>47 µg/mL). Nonetheless, lower concentrations of nystatin
(<6 µg/mL) were more potent in inhibiting C. tropicalis biofilm formation when compared with the
same concentration range of native CTX (Figure 2A,B).

In order to confirm that CTX and CTX-containing mouthwash act as fungistatic or fungicidal,
we also determine the viable cells by colony-forming units counting (CFU/mL) after flushing away
planktonic forms (Figure 3A–D). We found that the number of CFU/mL of both Candida strains
was significantly reduced when 1.5 µg/mL of native CTX was tested, after 24 and 48 h of treatment.
The fungicidal effect was observed at the highest concentration of the native CTX (47 µg/mL). In contrast,
the same amount of CTX-containing mouthwash presented a fungistatic effect against C. dubliniensis and
C. tropicalis, after 24 and 48 h of treatment, compared to the control. A reduction of 1.7 × 103 CFU/mL
of C. tropicalis was reached with 47 µg/mL of formulation (Figure 3A,B). Similar results were observed
with C. dubliniensis, after 24 h (Figure 3C). It was also observed that both Candida strains were more
resistant to nystatin compared to native CTX and CTX-containing mouthwash (Figure 3A–D).
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Figure 2. Inhibition of biofilm formation on round bottom polystyrene surface by Candida tropicalis, 
CBS 94 (A,B) and Candida dubliniensis, CBS 7987 (C,D), after exposure to different compounds and 
formulations for a period of 24 h (A,C) and 48 h (B,D). Data are presented as a percentage of total 
biomass in treated biofilms and compared to untreated control cell population. Values are means ± 
SD (n = 3). * p ≤ 0.0001 vs. untreated group (Tukey’s multiple comparison test). NC, negative control; 
NYT, nystatin; CTX, native crotoxin; MW + CTX, crotoxin-containing mouthwash; MW, mouthwash. 
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CBS 94 (A,B) and Candida dubliniensis, CBS 7987 (C,D), after exposure to different compounds and
formulations for a period of 24 h (A,C) and 48 h (B,D). Data are presented as a percentage of total
biomass in treated biofilms and compared to untreated control cell population. Values are means ± SD
(n = 3). * p ≤ 0.0001 vs. untreated group (Tukey’s multiple comparison test). NC, negative control; NYT,
nystatin; CTX, native crotoxin; MW + CTX, crotoxin-containing mouthwash; MW, mouthwash.
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Figure 3. Assessment of the number of colony-forming units (CFU) in biofilms of Candida tropicalis, 
CBS 94 (A,B), and Candida dubliniensis, CBS 7987 (C,D) challenged with different compounds and 
formulations for a period of 24 h (A,C) and 48 h (B,D). Culture specimens were inoculated onto 
Sabouraud dextrose agar (SDA), incubated at 36 °C in an aerobic atmosphere for 2 days, and the 
colonies were counted. Data are presented as means ± SD (n = 3) of CFU/mL (×103). * p ≤ 0.0001 vs. 
untreated group (Tukey’s multiple comparison test). NC, negative control; NYT, nystatin; CTX, native 
crotoxin; MW + CTX, crotoxin-containing mouthwash; MW, mouthwash. 

2.4. Plasma Membrane Integrity 

Plasma membrane permeability assay was performed to assess the in vitro anticandidal 
mechanism of action of CTX. Native CTX and CTX-containing mouthwash caused membrane 
permeabilization in both Candida species at concentrations of 1.5 and 47 μg/mL (Figures 4 and 5A). 
Near 100% of C. tropicalis cells challenged with the lowest concentration of CTX were stained with 
PI (propidium iodide) (Figure 4B). Diversely C. dubliniensis cells appeared more resistant to both CTX 
and nystatin (Figure 5B). 

 

Figure 3. Assessment of the number of colony-forming units (CFU) in biofilms of Candida tropicalis,
CBS 94 (A,B), and Candida dubliniensis, CBS 7987 (C,D) challenged with different compounds and
formulations for a period of 24 h (A,C) and 48 h (B,D). Culture specimens were inoculated onto
Sabouraud dextrose agar (SDA), incubated at 36 ◦C in an aerobic atmosphere for 2 days, and the
colonies were counted. Data are presented as means ± SD (n = 3) of CFU/mL (×103). * p ≤ 0.0001
vs. untreated group (Tukey’s multiple comparison test). NC, negative control; NYT, nystatin; CTX,
native crotoxin; MW + CTX, crotoxin-containing mouthwash; MW, mouthwash.

2.4. Plasma Membrane Integrity

Plasma membrane permeability assay was performed to assess the in vitro anticandidal mechanism
of action of CTX. Native CTX and CTX-containing mouthwash caused membrane permeabilization in
both Candida species at concentrations of 1.5 and 47 µg/mL (Figures 4 and 5A). Near 100% of C. tropicalis
cells challenged with the lowest concentration of CTX were stained with PI (propidium iodide)
(Figure 4B). Diversely C. dubliniensis cells appeared more resistant to both CTX and nystatin (Figure 5B).
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Figure 4. Plasma Membrane Permeability. (A) Epifluorescence microscopy images of C. tropicalis CBS 
94 viability staining with propidium iodide (PI, 6 μM) after treatment with MW + CTX (1.5 and 47 
μg/mL), CTX (1.5 and 47 μg/mL) and NYT (1.5 μg/mL). Cells treated with PBS and 1% SDS were used 
as negative and positive controls of cell membrane permeability, respectively. (B) Bar charts represent 
the percentage of stained cells (dead cells) vs. cells treated with PBS alone. The number of cells were 
counted in brightfield in 10 random 40× fields, until a total of 100 cells. Each image was independently 
analyzed for the total area (20 mm2) of darkfield/brightfield. Differences were statistically significant 
(* p ≤ 0.001). (magnification, ×40). 

 

Figure 4. Plasma Membrane Permeability. (A) Epifluorescence microscopy images of C. tropicalis
CBS 94 viability staining with propidium iodide (PI, 6 µM) after treatment with MW + CTX (1.5 and
47 µg/mL), CTX (1.5 and 47 µg/mL) and NYT (1.5 µg/mL). Cells treated with PBS and 1% SDS were used
as negative and positive controls of cell membrane permeability, respectively. (B) Bar charts represent
the percentage of stained cells (dead cells) vs. cells treated with PBS alone. The number of cells were
counted in brightfield in 10 random 40× fields, until a total of 100 cells. Each image was independently
analyzed for the total area (20 mm2) of darkfield/brightfield. Differences were statistically significant
(* p ≤ 0.001). (magnification, ×40).

Toxins 2020, 12, x FOR PEER REVIEW 8 of 18 

 

 
Figure 4. Plasma Membrane Permeability. (A) Epifluorescence microscopy images of C. tropicalis CBS 
94 viability staining with propidium iodide (PI, 6 μM) after treatment with MW + CTX (1.5 and 47 
μg/mL), CTX (1.5 and 47 μg/mL) and NYT (1.5 μg/mL). Cells treated with PBS and 1% SDS were used 
as negative and positive controls of cell membrane permeability, respectively. (B) Bar charts represent 
the percentage of stained cells (dead cells) vs. cells treated with PBS alone. The number of cells were 
counted in brightfield in 10 random 40× fields, until a total of 100 cells. Each image was independently 
analyzed for the total area (20 mm2) of darkfield/brightfield. Differences were statistically significant 
(* p ≤ 0.001). (magnification, ×40). 

 
Figure 5. Cont.



Toxins 2020, 12, 532 9 of 17Toxins 2020, 12, x FOR PEER REVIEW 9 of 18 

 

 
Figure 5 Plasma Membrane Permeability. (A) Epifluorescence microscopy images of C. dubliniensis 
CBS 7987 viability staining with propidium iodide (PI, 6 μM) after treatment with MW + CTX (1.5 and 
47 μg/mL), CTX (1.5 and 47 μg/mL) and NYT (1.5 μg/mL). Cells treated with PBS and 1% SDS were 
used as negative and positive controls of cell membrane permeability, respectively. (B) Bar charts 
represent the percentage of stained cells (dead cells) vs. cells treated with PBS alone. The number of 
cells were counted in brightfield in 10 random 40× fields, until a total of 100 cells. Each image was 
independently analyzed for the total area (20 mm2) of darkfield/brightfield. Differences were 
statistically significant (* p ≤ 0.001). (magnification, ×40). 

2.5. Cell Viability Assay 

Cells viability of HaCaT cells was assessed by MTT ((3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide) colorimetric assay. HaCaT cells showed no loss of viability when 
exposed to native CTX at concentrations ≤ 500 μg/mL, after a 24-hour incubation period (Figure 6A). 
Instead, cell viability was significantly increased in HaCaT cell cultures exposed to native CTX 
concentrations ≤ 100 μg/mL. However, the also revealed that CTX cytotoxicity was significantly 
increased in a time-dependent manner, as cell viability dropped to approximately 80% to 50% at the 
same concentration range, after a 48-hour exposure period (Figure 6B). HaCaT cells were sensitive to 
1,000 μg/mL native CTX, showing a decrease in cell viability of approximately 13% and 60%, after 24 
and 48 h of treatment, respectively. Even so, native CTX was still less cytotoxic to keratinocytes than 
the positive control nystatin, at the same concentration range and period of exposure. Additionally, 
HaCaT cells showed a marked loss of viability when exposed to both CTX-containing mouthwash 
and basic mouthwash formulation after 24 and 48 h of exposure, suggesting that the observed 
cytotoxicity is mainly due to formulation components other than CTX. 

Figure 5. Plasma Membrane Permeability. (A) Epifluorescence microscopy images of C. dubliniensis
CBS 7987 viability staining with propidium iodide (PI, 6 µM) after treatment with MW + CTX (1.5 and
47 µg/mL), CTX (1.5 and 47 µg/mL) and NYT (1.5 µg/mL). Cells treated with PBS and 1% SDS were used
as negative and positive controls of cell membrane permeability, respectively. (B) Bar charts represent
the percentage of stained cells (dead cells) vs. cells treated with PBS alone. The number of cells were
counted in brightfield in 10 random 40× fields, until a total of 100 cells. Each image was independently
analyzed for the total area (20 mm2) of darkfield/brightfield. Differences were statistically significant
(* p ≤ 0.001). (magnification, ×40).

2.5. Cell Viability Assay

Cells viability of HaCaT cells was assessed by MTT ((3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide) colorimetric assay. HaCaT cells showed no loss of viability when
exposed to native CTX at concentrations ≤500 µg/mL, after a 24-h incubation period (Figure 6A).
Instead, cell viability was significantly increased in HaCaT cell cultures exposed to native CTX
concentrations ≤100 µg/mL. However, the also revealed that CTX cytotoxicity was significantly
increased in a time-dependent manner, as cell viability dropped to approximately 80% to 50% at the
same concentration range, after a 48-h exposure period (Figure 6B). HaCaT cells were sensitive to
1000 µg/mL native CTX, showing a decrease in cell viability of approximately 13% and 60%, after 24
and 48 h of treatment, respectively. Even so, native CTX was still less cytotoxic to keratinocytes than
the positive control nystatin, at the same concentration range and period of exposure. Additionally,
HaCaT cells showed a marked loss of viability when exposed to both CTX-containing mouthwash and
basic mouthwash formulation after 24 and 48 h of exposure, suggesting that the observed cytotoxicity
is mainly due to formulation components other than CTX.
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Figure 6. Cytotoxicity assay of HaCaT cell line exposed to CTX and CTX-containing mouthwash.
Evaluation of cell viability by MTT assays after exposure for (A) 24 h and (B) 48 h. Values are expressed
as a percentage relative to an undisturbed control cell population (NC). * p < 0.0001 vs. untreated
group (Tukey’s multiple comparison test). NC, negative control; NYT, nystatin; CTX, native crotoxin;
MW + CTX, crotoxin-containing mouthwash; MW, mouthwash.

3. Discussion

The search for new synthetic molecules with antifungal potential has increased over the years,
mainly due to multiple drug resistance acquired by microorganisms [16]. In seeking to meet this
demand, many natural toxins have been widely investigated for their antimicrobial properties,
especially against microorganisms of clinical interest [17].

Most studies on snake venom phospholipase A2 (svPLA2) published so far report that the
bactericidal and/or bacteriostatic properties of these proteins are dose- and time-dependent, with MIC
values ranging from 7.5–50 µg/mL. These studies also suggest that bactericidal activity depends on the
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ability of PLA2s to induce changes in membrane permeability [18]. On the other hand, little is known
about the fungicidal and fungistatic properties of svPLA2 and derived pharmaceuticals.

In this work, crotoxin (CTX), a heterodimeric protein complex formed by the noncovalent
association of a PLA2 with a nonenzymatic subunit, was properly purified, incorporated into a
mouthwash and challenged against two periodontitis-related strains (C. tropicalis and C. dubliniensis).
Native CTX and CTX-containing mouthwash showed significantly higher antibiofilm effects than
nystatin, which served as a positive control treatment. Additionally, native CTX exhibited substantial
antimicrobial activity against both strains with equal values of MIC (47 µg/mL). These MIC values
were considerably lower when compared with nystatin (MIC = 375 µg/mL) and CTX-containing
mouthwash (MIC = 750 µg/mL). However, a significant loss of CTX from the formulation, as evidenced
by electrophoretic analysis, may account for the lower antimicrobial activity of CTX-containing
mouthwash. This may be possibly caused by interactions of formulation excipients with the protein in
solution. Although surfactants have been extensively used in protein-based pharmaceuticals, they may
cause the protein molecule to aggregate and precipitate. Moreover, the anionic surfactant sodium
lauryl sulfate can interact with the protein’s electrical charges, causing conformational changes that
affect its biological activity [19]. Nonetheless, the in vitro antimicrobial and antibiofilm activity of
native CTX was superior to that of the conventional nystatin. This suggests a specific mechanism
of action that may be related to the membrane damaging activities of the PLA2 subunit of CTX [18].
In addition, the differences in the glycerophospholipid compositions found in different Candida species
could account for the variations in CTX antimicrobial activity against the two strains investigated
herein [20–22].

The antimicrobial mechanism of action of svPLA2 (particularly anticandidal activity) is still
unknown. Cationic antimicrobial proteins, such as svPLA2, act by a process of thinning and
destabilization of the membrane lipid bilayer, resulting in the permeabilization and expulsion of cellular
content. It has been suggested that cationic and hydrophobic regions of svPLA2 are responsible for
the molecular permeation, due to their high affinity for phospholipid head groups [18]. Furthermore,
apart from protein-mediated lysis, it has been proposed that PLA2s also inhibit the biosynthesis of
macromolecules and promote the expression of autolytic enzymes [18]. Other bacterial membrane
structures, such as glucans and ergosterol, have been identified as important targets for antimicrobials
as well [23]. Moreover, the amino acid cysteine has been shown to partially inhibit C. albicans
germination, suggesting that the presence of cysteine residues in both crotapotin and PLA2 subunits
of CTX would disrupt cell surface hydrophobicity with consequent cell death [18,24]. In this paper,
we have demonstrated that Candida spp. cells exposed to CTX (at concentrations as low as 1.5 µg/mL)
showed altered cell membrane permeability in the same way as for nystatin. Since glycerophospholipid,
glucans, and ergosterol are the main components of fungal cell membranes and hence are vital to
cellular growth, our results suggest that CTX disrupts the cell membrane integrity and homeostasis to
a considerable extent.

As far as the therapeutic use of topical CTX is concerned, the feasibility of its clinical application
depends on low selective toxicity. Therefore, cell viability assays were performed to evaluate the
in vitro cytotoxic effect of CTX upon a human immortalized keratinocyte cell line (HaCaT). HaCaT
cells treated with purified CTX for 24 h displayed higher cell viability than the negative control
condition. In a similar study [25], normal keratinocytes (NEHK) and cancer cell lines (SK-LU-1,
Hs 578T, and U87-MG) were treated with CTX for 72h at concentrations ranging from 2.3 to 30 µg/mL,
and it was demonstrated that NEHK cells were less affected by CTX than cancer cells. In addition,
lower CTX concentrations (2.3 to 12.7 µg/mL) were not cytotoxic. In addition, in the present study,
it was observed that, unlike native CTX, CTX-containing mouthwash reduced cell viability of HaCaT
keratinocytes. In this case, however, cytotoxicity may have been caused by the degenerative effect of
sodium lauryl sulfate on cell membranes [26].

In this context, protein carrier systems such as liposomes, cyclodextrins, or PEG conjugates [27–30]
would represent a better alternative to CTX-containing formulations. In a previous report, CTX was
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successfully encapsulated into sphingomyelin-cholesterol liposomes [27]. It was found that the
sphingomyelin/cholesterol liposomal CTX was not toxic when intravenously inoculated in mice at
a dose of CTX as high as 91 times its LD50, or when subcutaneously inoculated at 42 times its LD50.
In a similar study, several liposomal formulations containing CTX retained more than 75% of the
originally encapsulated protein after 1 week of incubation at physiological temperature, providing
a more stable protein formulation. Moreover, an important reduction of CTX toxicity was observed
with its encapsulation into liposomes composed of phospholipids that were resistant to PLA2 [28].
On the other hand, dextrin conjugation reduced PLA2 hemolytic activity but enhanced cytotoxicity
in HT29 and in MCF-7 cells, which was partially correlated with epidermal growth factor receptor
(EGFR) expression [29].

The proliferative activity induced by CTX would be potentially harmful, if characterized by a
marked and persistent increase in cell proliferation. However, the increase in HaCaT cell viability
produced by CTX was significant only for a 24 h treatment period, but not after a 48 or 72 h (data not
shown) post-exposure period. A CTX-induced keratinocyte proliferation has not been directly
reported in the literature, but it is known that the combined use of Gefitinib (trade name Iressa®)
and CTX (>25 µg/mL) inhibited proliferation of lung cancer cells (A549 strain) without affecting the
growth of normal pulmonary fibroblasts [31]. svPLA2 catalyzes the hydrolysis of the sn-2 acyl bond
of phospholipids, releasing arachidonic acid (AA) and lysophosphatidic acid. Upon downstream
enzymatic modification, AA is modified into active compounds, which can exert a wide range of
physiological and pathological effects, including inflammatory response, pain perception, and cell
proliferation [32,33]. Nonetheless, several studies have also demonstrated that CTX can modulate
immune responses and exert anti-inflammatory and immunosuppressive effects [34]. Further, CTX was
shown to modulate calcium signaling [2,34,35], which may account for the increase in HaCaT cell
viability induced by low concentrations of CTX. The elucidation of such an effect would require more
detailed studies concerned with the complex intracellular signaling pathways.

4. Conclusions

This is a preliminary study for the assessment of the antimicrobial and antibiofilm activities of native
CTX and a CTX-containing mouthwash upon two Candida species of clinical interest. Our data indicate
that CTX is fungicidal rather than fungistatic, which may help solve the issue of innate or acquired
drug resistance due to the prophylactic use of fungistatic drugs. Some of the limitations associated
with this study are those related to the chemical composition of the mouthwash affecting protein
stability, and the small number of Candida strains evaluated. The use of liposomes or cyclodextrins
complexes as protein carriers might increase the stability of CTX and provide its controlled release.
Thus, future studies should include the development of more elaborate therapeutic mouthwashes,
in vivo assays using the experimental model of oral candidiasis in rats, and a comprehensive analysis
of the mode of action and topical toxicity of CTX.

5. Material and Methods

This study was approved by the Institutional Research Ethics Committee under consubstantiated
opinion nº 008/2018 as of 13/03/2018.

5.1. Purification of Crotoxin

The yellowish venom of Crotalus durissus terrificus (South American rattlesnake) was purchased
from Koemitã (Mococa, São Paulo, Brazil). CTX was isolated and purified from the Crotalus durissus
terrificus venom through two steps of DEAE-Sepharose and Heparin Sepharose FF chromatography,
and protein identification was performed in a Waters® Q-Tof Premier™ Mass Spectrometer,
nanoACQUITY UPLC™ system, using a silica-based C18 Atlantis™ column (Waters Corporation,
Milford, MA, USA), as extensively described previously [36]. The purity of CTX was determined by
13% (w/v) SDS-PAGE in a Tris-glycine buffer of pH 8.3, for 120 min at 30 mA/100 V. The molecular mass
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was measured using the Carestream Molecular Imaging Software (Carestream Health Inc., Rochester,
NY, USA) and at 5–40 kDa molecular weight calibration standards PageRuler Low Range Unstained
Protein Ladder (Thermo Fisher Scientific, Waltham, MA, USA).

5.2. Preparation of a Crotoxin-Containing Mouthwash

The test mouthwash containing CTX was prepared by the investigator at the Department of
Pharmaceutical Sciences, Hermínio Ometo Foundation, Araras (SP), Brazil. The formulation was
composed of a combination of the purified and freeze-dried CTX (1.2% w/v), sorbitol (20% w/v),
and sodium lauryl sulfate (1% w/v) in enough purified water to make 100 mL.

5.3. Strains and Culture Conditions

Candida dubliniensis (CBS 7987) and Candida tropicalis (CBS 94) were used throughout this study,
and were supplied by reference strains obtained from the Netherlands Collection—CBS. Strains were
stored and maintained on Sabouraud dextrose agar (SDA), before propagation in Sabouraud dextrose
broth (SDB) for 16 to 18 h, at 36 ◦C, with gentle agitation. All culture media were manufactured by
KASVI (São José dos Pinhais, Paraná, Brazil).

Human immortalized non-tumorigenic keratinocyte cell line HaCaT, (ethnicity, Caucasian;
age, 62 years; gender, male; and tissue, skin) were supplied by Ribeirão Preto Medical School
(Internal Medicine Department, University of São Paulo). Dulbecco’s modified eagle medium,
containing 4.5 g/L d-glucose, l-glutamine, and 110 mg/L sodium pyruvate (DMEM high glucose;
Invitrogen) supplemented with 2 mM l-glutamine, 10% heat-inactivated fetal bovine serum (FBS)
and penicillin-streptomycin (100 U/mL, 0.1 mg/mL) was used as a culture medium (Biotech Inc.,
Oklahoma City, OK, USA). Cells were incubated at 37 ◦C for 24 h with 5% CO2 in humidified air.
The medium was changed every 2 days and cells were tested when 70% confluence.

5.4. Antifungal Susceptibility Testing

Fungal susceptibility to CTX and CTX-containing mouthwash was determined according to the
CLSI M27-A2 broth microdilution reference method [37], with minor modifications [38], and performed
on sterile 96-well round-bottom microplates. CTX and CTX-containing mouthwash were diluted
with SDB to achieve 2X concentrations of the protein (6000 to 3 µg/mL), and a volume of 100 µL was
dispensed into the wells. Yeast suspensions were prepared in 0.85% sterile saline from 24-h SDA plates
and adjusted to the turbidity of a 0.5 McFarland standard (0.08–0.10 at 530 nm), which is equivalent to
1 × 106 to 5 × 106 CFU/mL. These suspensions were further diluted with culture medium to obtain the
concentrated 2X inoculum used in the test (1 × 104 to 5 × 104 CFU/mL). Each well of the microdilution
plate was inoculated with 100 µL of the corresponding concentrated 2X suspension to reach the desired
final concentrations of inoculum and CTX (3000 a 1.5 µg/mL). Serial dilutions of the basic mouthwash
formulation were also tested. Nystatin (3000 a 1.5 µg/mL, Nova Química Farmacêutica Ltd.a, Barueri,
São Paulo, Brazil) served as a positive control. Growth control wells contained 100 µL of drug-free
sterile medium inoculated with 100 µL of the 2X concentrated inoculum suspensions. The inoculated
plates were incubated in an aerobic atmosphere at 36 ◦C for 24 and 48 h. Results were interpreted as per
CLSI guidelines. Minimum inhibitory concentration (MIC) was determined as the lowest concentration
of antimicrobial agent that prevented visible growth of the microorganism after incubation. Afterward,
minimum fungicidal concentration (MFC) was determined by subculturing 10 µL from each well
showing no apparent growth on SDA plates, at 36 ◦C for 24 and 48 h. MFC was considered as the
lowest concentration of antimicrobial agents yielding negative subcultures or only one colony on SDA
after incubation. The MFC/MIC ratios were determined for each strain and treatment, to specify the
nature of the antimicrobial effect, as described before [39]. All experiments were performed in triplicate
for three independent experiments.
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5.5. Biofilm Growth on Polystyrene and Adherence Inhibition

Biofilm growth of Candida spp. on the sterile 96-well, round-bottom polystyrene microplates
was performed similarly as described for the antifungal susceptibility testing, with modifications
described by Peters et al. [40]. Briefly, CTX and CTX-containing mouthwash were diluted with SDB to
achieve 2X concentrations of CTX (6000 to 3 µg/mL), and a volume of 100 µL was dispensed into the
wells. Then, 100 µL of adjusted Candida sp. suspension (1 × 106 CFU/mL) was added to each well of
the microdilution plate to reach the desired final concentrations of inoculum and CTX. Plates were
incubated for 24 and 48 h at 36 ◦C, with no agitation to induce biofilm formation. Controls included
serial dilutions of the basic mouthwash formulation and nystatin. Growth control wells contained
100 µL of drug-free sterile medium inoculated with 100 µL of a 1 × 106 CFU/mL inoculum. In order to
quantify biomass during yeast growth and to evaluate biofilm adherence inhibition, biofilms were
processed for crystal violet staining. The liquid content of microplates was discarded and wells were
washed gently in PBS to remove non-adherent cells. Microplates were inverted to drain on filter paper
for 20 min. Then, each well was stained with 1% crystal violet (150 µL) for 30 min and repeatedly
washed in distilled H2O. Microplates were once again inverted to drain on filter paper for 20 min.
Bound crystal violet was resolubilized in 95% ethanol, and the absorbance was read at 540 nm on
a BioTek ELx800® microplate reader (BioTek® Instruments, Inc., Winooski, VT, USA). Results were
expressed as a percentage, relative to the growth control. The inhibition of biofilm formation was
calculated relative to the amount of biofilm that was grown in the absence of any active compound
(defined as 100% biofilm) and the media sterility control (defined as 0% biofilm). Results from at least
three separate biological replicates were averaged. All samples were also assessed for colony-forming
unit counts. In this case, the same experiment was performed. After incubation with active compounds,
planktonic cells were aspirated and the wells were washed to remove non-adherent cells. The adhered
cells from each well were resuspended in sterile PBS (500 µL) and seeded (100 µL) in SDA plates,
followed by incubation at 36◦C for 24h, under an aerobic atmosphere. The colonies were counted and
the results were expressed as colony-forming units (CFU/mL). Results from at least three separate
biological replicates were averaged.

5.6. Plasma Membrane Permeability

Plasma membrane integrity was assessed as described by Suchodolski et al. [41]. Briefly, C. albicans
and C. dubliniensis cells were harvested by centrifugation (10 min, 956× g) in the stationary phase
and washed twice with PBS, followed by 2 h of incubation in PBS (1 × 106 CFU/mL) with different
concentrations of CTX and CTX-containing mouthwash (1.5 and 47 µg/mL). Cells were then washed
twice with PBS, resuspended in 200 µL PI (6.0 µM), and incubated for 5 min, at room temperature.
After incubation, treated cells were washed twice again with PBS. The pellets were resuspended in
0.25 mL of PBS and 4 µL of samples were visualized with a LEICA® DM-2000 optical microscope
coupled with a LEICA® DFC-280 camera and LAS® version 3.3.0 software (Leica Microsystem, Wetzlar,
Germany). Images were captured at 40×magnification, under standardized microscopy parameters.
The Plugin “Cell Counter” from ImageJ software was used for counting of cells on 3 images from
3 different experiments. The number of cells were counted in brightfield in 10 random 40× fields,
until a total of 100 cells. Each image was independently analyzed for the total area (20 mm2) of
darkfield/brightfield and results expressed by the percentage of stained cells. The percentage of cell
death was assessed by measuring the area ratio of the fluorescent regions to the dark regions (a mask
of the bright field was subtracted from the fluorescent image to isolate the objects under analysis).
Cell death control (positive control) consisted of cells treated with 1% SDS, while cell viability control
(negative control) consisted of cells mock-treated with PBS alone.
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5.7. Cell Viability Assay

HaCaT cell viability was used as an indicator of cytotoxicity. It was determined by the MTT
colorimetric assay as described elsewhere [42], in the presence of CTX or CTX-containing mouthwash.
HaCaT cells were seeded into 96-well plates at a density of 3 × 104 cells/well with DMEM complete
medium (200 µL of medium/well). After 24 h, the culture medium was replaced with fresh complete
medium containing serial dilutions of CTX aqueous solution or CTX-containing mouthwash to
achieve CTX final concentrations of 1000, 500, 100, 50, and 10 µg/mL. Cells were incubated for 24
and 48 h, after which incubation medium was removed and replaced by 200 µL of fresh medium.
Then, MTT reagent (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Sigma-Aldrich,
St. Louis, MO, USA) was dissolved in PBS, 20 µL of stock MTT solution was added to culture
wells at 0.5 mg/mL final concentration, and plates were incubated at 37 ◦C for 3 h. After incubation,
the supernatant was carefully removed; the purple-blue formazan salt crystals formed were dissolved
in 200 µL DMSO (Sigma-Aldrich, St. Louis, MO, USA), and measured spectrophotometrically at
540 nm using a Varioskan LUX™Multimode microplate reader (Thermo Fisher Scientific, Waltham,
MA, USA). Each experiment was performed three times in triplicate. Cell viability was expressed as a
percentage relative to an undisturbed control cell population (HaCaT cells cultured in DMEM complete
medium), which served to mark the 100% cell viability (negative control). As a positive control for
toxicity, HaCaT cells were cultured in DMEM complete medium supplemented with DMSO (1:1).
The IC50 values were calculated by GraphPad Prism 6.0 software (GraphPad Software Inc., San Diego,
CA, USA).

5.8. Statistical Analysis

Data are expressed as mean ± SD of at least three independent experiments performed in triplicate.
Data were analyzed by unpaired two-way analysis of variance (ANOVA), followed by Tukey’s multiple
comparison test. Statistical analysis was done using GraphPad Prism 6.0 software (GraphPad Software
Inc., San Diego, CA, USA). p < 0.05 was considered statistically significant.
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