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A distinct subpopulation
of leukemia initiating cells
in acute precursor B
lymphoblastic leukemia:
quiescent phenotype and
unique transcriptomic profile
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In leukemia, a distinct subpopulation of cancer-initiating cells called leukemia

stem cells (LSCs) is believed to drive population expansion and tumor growth.

Failing to eliminate LSCs may result in disease relapse regardless of the amount

of non-LSCs destroyed. The first step in targeting and eliminating LSCs is to

identify and characterize them. Acute precursor B lymphoblastic leukemia (B-

ALL) cells derived from patients were incubated with fluorescent glucose

analog 2-(N-(7-Nitrobenz-2-oxa-1, 3-diazol-4-yl) Amino)-2-Deoxyglucose

(NBDG) and sorted based on NBDG uptake. Cell subpopulations defined by

glucose uptake were then serially transplanted into mice and evaluated for

leukemia initiating capacity. Gene expression profiles of these cells were

characterized using RNA-Sequencing (RNA-Seq). A distinct population of

NBDG-low cells was identified in patient B-ALL samples. These cells are a

small population (1.92% of the entire leukemia population), have lower HLA

expression, and are smaller in size (4.0 to 7.0 mm) than the rest of the leukemia

population. All mice transplanted with NBDG-low cells developed leukemia

between 5 and 14 weeks, while those transplanted with NBDG-high cells did

not develop leukemia (p ≤ 0.0001-0.002). Serial transplantation of the NBDG-

low mouse model resulted in successful leukemia development. NBDG-

medium (NBDG-med) populations also developed leukemia. Interestingly,

comprehensive molecular characterization of NBDG-low and NBDG-med

cells from patient-derived xenograft (PDX) models using RNA-Seq revealed a
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distinct profile of 2,162 differentially-expressed transcripts (DETs) (p<0.05) with

70.6% down-regulated in NBDG-low cells. Hierarchical clustering of DETs

showed distinct segregation of NBDG-low from NBDG-med and NBDG-high

groups with marked transcription expression alterations in the NBDG-low

group consistent with cancer survival. In conclusion, A unique subpopulation

of cells with low glucose uptake (NBDG-low) in B-ALL was discovered. These

cells, despite their quiescence characteristics, once transplanted in mice,

showed potent leukemia initiating capacity. Although NBDG-med cells also

initiated leukemia, gene expression profiling revealed a distinct signature that

clearly distinguishes NBDG-low cells from NBDG-med and the rest of the

leukemia populations. These results suggest that NBDG-low cells may

represent quiescent LSCs. These cells can be activated in the appropriate

environment in vivo, showing leukemia initiating capacity. Our study provides

insight into the biologic mechanisms of B-ALL initiation and survival.
KEYWORDS

B-ALL, glucose, metabolic activity, leukemia initiating capacity, leukemia initiating
cells, transcriptome profiling
Introduction

Leukemia is a classic example of a disease of aberrant

differentiation. Specifically, leukemia results from disrupted

differentiation of pluripotent bone marrow progenitors into

mature and functional mononuclear cells. Accordingly,

leukemias are classified based on the intermediate stage at

which differentiation is halted. In addition to lacking a

terminally-differentiated phenotype and associated functional

attributes, leukemia cells retain proliferative potential to

continuously expand the population (1, 2). In some leukemias,

as well as in most other cancers, it is now recognized that a rare

but distinct subpopulation of cancer-initiating cells is

responsible for population expansion and maintenance of

tumor growth (3, 4). These leukemia stem cells (LSCs) are

believed to make up an extremely small percentage of tumor

cells, but they possess robust proliferative and self-renewal

properties to facilitate sustained survival.

Despite the significance of LSCs in the development of

curative leukemia treatments, definitive identification and

characterization of LSCs in acute lymphoblastic leukemia

(ALL) remains controversial (5, 6). While multiple leukemic

subpopulations have been shown to be capable of propagating

leukemia, their hierarchical structure is unclear or inconsistent.

In addition, demonstration of leukemia initiating capacity alone

is insufficient to validate LSCs, as it has been suggested that

multiple ALL subpopulations with leukemia initiating capacity

switch between dormancy and active proliferation, indicating a

dynamic architecture of ALL development (7). As a result, it is

very possible that ALL LSCs are by nature heterogeneous.
02
There are also few reliable distinguishing markers to

characterize potential ALL LSCs. For example, hematopoietic

stem cells (HSC) and LSCs in acute myeloid leukemia (AML) are

traditionally defined based on phenotypic markers, including

CD34+/CD38− (8–11). Characterization of these markers allows

stem cells to be distinguished from their more differentiated

progeny, which is a particularly crucial undertaking in the

context of the heterogeneity of LSCs. In contrast, the

phenotypic markers of stem cells in ALL, either B-cell or T-

cell type, remain unclear. Previous studies demonstrated that

subpopulations of ALL cells with CD34, CD38, CD20 or CD19

positive and/or negative markers could give rise to a leukemia

phenotype in immunodeficient mice (12–14). These conflicting

results demonstrate that bona fide phenotypic markers to

distinguish leukemia initiating cells (LICs) in ALL are not

yet available.

The metabolic activity of ALL is also poorly characterized.

Previous reports have shown that ALL cells rely on glycolysis as

their energy resource (the so-called Warburg effect) and an

increased glycolysis rate was shown to be directly related to

resistance to glucocorticoid treatment, which caused negative

clinical outcomes (15–20). Thus, glycolysis is thought to have

essential roles in ALL survival and malignancy. However, HSCs

in general are known to be metabolically quiescent, with

different manifestations in normal versus malignant HSCs

(21–23). While normal HSCs have decreased oxidative

respiration and instead rely on glycolysis, malignant HSCs–for

example stem cells in AML–have been shown to possess lower

levels of both glycolysis and oxidative respiration compared to

non-stem cells in AML (24). Moreover, cancer stem cells (CSCs)
frontiersin.org
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are known to demonstrate metabolic plasticity, for example

oscillating between oxidative phosphorylation and glycolysis to

best promote tumor growth depending on the environmental

state (25, 26).

In summary, there is quite significant inconsistency in

characterizing the hierarchical structure, phenotypic markers,

and metabolic activity of LSCs or CSCs. In this paper, we

identified a unique subpopulation of B-ALL cells with

leukemia initiating capacity within human patient xenografts

and cell lines. These cells possess very low glucose uptake and a

distinctive molecular profile relative to the broader cell

population while also displaying potent leukemia initiating

capacity in vivo. We hypothesize that these cells could

represent LICs.
Materials and methods

Reagents

2-(N-(7-Nitrobenz-2-oxa-1, 3-diazol-4-yl) Amino)-2-

Deoxyglucose (NBDG) was purchased from Invitrogen.
Patient-derived leukemia cells

Primary patient leukemia samples were collected from

patients with informed consent based on the UC Davis

Insti tutional Review Board approved protocol and

transplanted into 6–12-week-old female NOD/SCID/IL2Rg-/-

(NSG) mice using our institutionally-approved animal care

protocol. As mice developed leukemia, they were sacrificed

and leukemia cells were harvested from the leukemia-

infiltrated spleen, bone marrow or liver for experiments.

Human leukemia cells were confirmed by flow cytometry

using anti-HLA-ABC and anti-CD10, CD19, CD22, CD34,

CD38, CD45 antibodies were used for phenotyping

(Biolegends & BD Biosciences).
Cell isolation and sorting

Leukemia cells were resuspended in glucose-free DMEM and

incubated with NBDG at 37°C in the dark for 30 minutes at 1ul

of 5mg/ml NBDG per 3 million cells (27). After 30 minutes of

incubation, leukemic cells were washed with PBS. The cells were

then stained with anti-HLA antibody and 4’, 6-Diamidino-2-

Phenylindole, Dilactate (DAPI) (Thermo Fisher Scientific).

NBDG-low, NBDG-med, or NBDG-high cells were sorted by

Cytopeia InFlux Cell Sorter (BD Biosciences) and BD Influx Cell

Sorter (BD Biosciences) using 488nm excitation and 505-522nm

emission wavelengths.
Frontiers in Oncology 03
Leukemia cell transplantation

The human leukemia mouse model was created by intratibial

cell injection. The cell numbers transplanted ranged from100 to2.5

million cells per mouse. Sorted cells were used for some in vivo

studies at the indicated cell doses. To determine the differentiation

capacity of NBDG-low cells in xenograft mice, phenotypes of

engrafted leukemia cells were compared with those of the original

patient sample and/or serially-transplanted xenografts. Serial

transplantations were established using the same technique and

leukemia cells harvested from bone marrow, leukemia-infiltrated

spleen, and liver (up to fourth generation mice).

Mice were monitored daily and euthanized when they showed

signs of sickness, such as unkempt fur, ataxia, orweight lossmore than

20% of pre-treatment body weight, in accordance with Institutional

Animal Care and Use Committee (IACUC) policy on Humane

Endpoints. Healthy mice were observed up to several months when

they were euthanized to check whether they developed leukemia.

Statistical significance for survival time (days) was

determined by the log-rank test. Kaplan-Meier survival curves

were plotted for the two groups. Mice that did not develop

human leukemia were censored. Two mice that had signs of

sickness, but negative expression of HLA, were excluded from

the study. Analyses used Prism 8.3 software (GraphPad).
RNA-Sequencing library preparation and
next-generation sequencing

Indexed, directional sequencing libraries were prepared

directly from intact cells using the SMART-Seq Stranded Kit

(Takara Bio, Inc.) according to the manufacturer’s standard

protocol. Briefly, 300 cells were lysed and followed by random-

primed first-strand cDNA synthesis, tailing, and template

switching with reverse transcriptase (SMARTScribe RT).

Illumina barcoded adapters were incorporated by PCR with

SeqAmp DNA Polymerase and rRNA-derived cDNA was

selectively depleted. The remaining mRNA-derived cDNA

fragments were PCR-enriched and the resulting libraries purified

with AMPure XP beads (Beckman Coulter, Indianapolis, IN). The

RNA-Seq libraries were quantified using a Qubit dsDNA High

Sensitivity Assay (Thermo Fisher Scientific) and sized by analysis

with an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa

Clara, CA) using the Agilent High Sensitivity DNA Kit. Libraries

werepooled andmultiplex sequenced (2x150bp,paired-end)onan

Illumina NovaSeq 6000 Sequencing System.
RNA-Seq data analysis

De-multiplexed raw sequencing data (FASTQ format) was

evaluated using FastQC (Babraham Bioinformatics) (28) and

passed standardqualitymetrics, suchas per base quality scoreswith
frontiersin.org
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≥ 85% of bases >Q30. Additional NGS data quality control, pre-

processing, alignment, quantification, differential expression, and

statistical analysis were performed with Partek Flow Genomic

Analysis software (Partek Inc., Chesterfield, MO). Sequence reads

were pre-processed to trim 3’ adapter sequences and SMART-Seq

Stranded library-specific sequence (i.e., first three bases of read

two). Reads were then mapped to the GRCh38/hg38 human

reference genome assembly using the STAR (Spliced Transcripts

Alignment to a Reference; version 2.7.8a) (29) aligner. Transcript

expression quantification was performed using the quantify to

annotation model (Partek E/M) with GENCODE Release 36

(GRCh38.p13) annotation. Differential expression analysis (e.g.,

group-wise comparison of NBDG-low vs. NBDG-med) was

performed with DESeq2 (30) using the poscounts estimation

method. Hierarchical clustering of differentially-expressed

transcripts (DETs) was performed using average linkage cluster

and Euclidean point distance metrics. Functional annotation

enrichment analysis was performed on DETs using the ToppFun

tool in the ToppGene Suite (31). Benjamini-Hochberg’s FDRs or

Storey’s q-values were used to correct for multiple testing.
Results

A distinct NBDG-low population
was identified in B-ALL cell lines
and patient samples

To address the hypothesis that we could distinctly characterize

B-ALL cells on the basis of metabolic features, we utilized the

fluorescent glucose analog 2-(N-(7-Nitrobenz-2-oxa-1, 3-diazol-4-

yl) Amino)-2-Deoxyglucose (NBDG) and distinguished low- and

high-fluorescing cellswithflowcytometry.These cellswere referred

to as NBDG-low (low glucose uptake) and NBDG-high (high

glucose uptake) cells, respectively (32). A distinct population of

NBDG-low cells was detected in the cell lines JM1 and Reh

(Supplementary Figure 1) as well as in patient-derived B-ALL

cells. The median rate of NBDG-low cell population was 1.92%

(ranging from 0.36 to 5.75%) of the whole leukemia population,

calculated by averaging theNBDG-lowpopulations as a percentage

of total leukemia cells, using 16 flow cytometry sorted samples

(Supplementary Table 1). NBDG-low cells were smaller in size,

ranging from 4.0 to 7.0 mm, compared to the counterpart NBDG-

high cells, ranging from 5.0 to 14.0 mm (Figures 1A-C, and

Supplementary Figure 2A). The NBDG-low cells also showed

lower HLA expression than the NBDG-high cells (Figure 1A).

NBDG-low cells isolated from patient
samples exhibit potent in vivo leukemia
initiating capacity

Leukemia initiating capacity for LICs is defined based on a

transplantation assay, which tests their capacity to initiate,
Frontiers in Oncology 04
propagate, and maintain bulk leukemia growth in vivo as a

xenograft in NSG mice. To confirm our hypothesis that NBDG-

low cells have leukemia initiating capacity, we isolated NBDG-

low or NBDG-high cells from six patient samples (PS) and

transplanted the cells into NSG mice. Sample information is

summarized in Supplementary Table 2 (PS1-5 and PS10). All six

patients were diagnosed with B-ALL; three patients were

considered standard risk and three as high risk based on the

currently used risk categorization (33). All the mice transplanted

with NBDG-low cells developed leukemia between five and 14

weeks, whereas those transplanted with NBDG-high cells did not

develop leukemia in the observed period, which was extended to

more than three to four months after leukemia development in

the NBDG-low group. The median survival time of the mice in

the NBDG-low group was PS1: 36.0 days, PS2: 53.5 days, PS3:

98.5 days and PS4: 82.0 days. Mice in the NBDG-high groups of

these four samples survived significantly longer than those of

NBDG-low groups (p ≤ 0.0001-0.002) (Figure 1D).

The potency of NBDG-low cells for in vivo LIC was next

examined by transplanting a very low number of cells (100 cells

per mouse) using two samples, PS4 and PS5. In PS4, eight out of

14 mice transplanted with NBDG-low cells developed leukemia,

whereas none of the 14 mice transplanted with NBDG-high cells

developed leukemia by the end of the study. In PS5, six out of 11

mice transplanted with NBDG-low cells develop leukemia by the

end of the study. However, none of the 12 mice transplanted

with NBDG-high cells developed leukemia except that one

mouse was found to have a partial leukemia phenotype at the

end of the study. The median survival time of mice in the

NBDG-low group is PS4: 263.5 days and PS5: 217.0 days. Mice

in the NBDG-high groups of these two samples survived

significantly longer than those in the NBDG-low groups

(p=0.0009-0.02) (Supplementary Figure 2B).

Of note, cells with an intermediate level of NBDG uptake

(NBDG-med), located between the NBDG-low and NBDG-high

populations (Figure 2A), from three patient samples (PS1, PS2,

PS6) were transplanted and these mice subsequently also

developed leukemia. Survival curves compared to NBDG-low

transplanted mice are shown in Figure 2B. Combined median

survival for the NBDG-med mice (n=14) from the three samples

was 52 days, compared to 51.5 days for the NBDG-low mice

(n=14). One mouse in the NBDG-med group and two mice in

the NBDG-low group showed no signs of leukemia at the end of

the experiment (247 days). These results indicate that NBDG-

med cells were also able to establish an in vivo leukemia

phenotype, similar to NBDG-low cells.
NBDG-low cells show in vivo
differentiation and self-renewal capacity

Overall, the leukemia developed from transplanted NBDG-

low cells recapitulate the original B-ALL phenotypes (results of
frontiersin.org
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PS4 are shown in Supplementary Table 3). These results

indicated that NBDG-low cells were able to reconstitute and

reestablish the complete leukemic phenotype in vivo, similar to

the original leukemia phenotype. We further confirmed the self-

renewal capacity of the NBDG-low cells by serial transplantation

of the PS1 xenograft model. All the serially-transplanted mice

successfully developed leukemia (n=9, three independent

experiments). Altogether, these results demonstrated the

leukemia initiating capacity of NBDG-low cells in six different

B-ALL xenografts (using five patient samples).
NBDG-low cells have a unique
transcriptome profile

As shown above, we identified a subpopulation of B-ALL

cells from patient-derived xenograft (PDX) models that is

characterized by low glucose uptake (i.e., based on NBDG
Frontiers in Oncology 05
fluorescence) and potent leukemia initiating capacity. To

better understand the mechanisms underlying this biologic

property, comprehensive molecular characterization was

performed using next-generation RNA-sequencing (RNA-

Seq)-based transcriptome analysis. This was performed on

leukemia samples from five different B-ALL PDX models that

were flow sorted into subpopulations based on NBDG

fluorescence intensity, and therefore glucose uptake: NBDG-

low (Low), NBDG-med (Medium), and NBDG-high (High). The

RNA-Seq data was processed with a STAR-Partek(E/M)-

DESeq2 analysis pipeline for read alignment, annotation,

transcript expression estimation, and differential expression

(DE) analysis as described in Materials and Methods.

As shown in Figure 3A, unsupervised analysis of the

normalized gene/transcript count data using principal

component analysis (PCA) demonstrated that the data from

the NBDG-low samples possessed sufficient variation from that

of the NBDG-med and NBDG-high samples to distinguish them
B

C D

A

FIGURE 1

Identification of a distinct subset of B-ALL cells based on low glucose uptake and leukemia initiating capacity. (A) Gating strategy and sorting
profile of patient-derived B-ALL cells by NBDG are shown. After gating DAPI-negative and HLA-positive cells, a distinct population was identified
from the rest of the population by NBDG uptake levels. Low-uptake NBDG cells (NBDG-low cells, orange dots) are smaller, HLA-dim, and a
small population. In contrast, high-uptake NBDG cells are bigger, HLA-strongly positive, and a majority of the population. Very high-uptake
NBDG cells (NBDG-high cells) (black dots) were used as the counterpart of NBDG-low cells. (B) The distinct population of NBDG-low cells is
detected in different patient samples. (C) Phase microscopy pictures of NBDG-low and NBDG-high cells show NBDG-low cells are smaller than
NBDG-high cells (example results of PS3 are shown). (D) All mice that were injected with NBDG-low cells, using four patient samples (PS1-4),
developed leukemia while none of NBDG-high groups developed leukemia (p ≤ 0.0001-0.002). In four patient samples (PS1-4), transplanted
cells ranged between 5,000 and 50,000 cells per mouse based on the available sorted cells at the time (PS1: 10,000 cells in three mice and
50,000 cells in five mice. PS2: 5,000 cells in four mice and 10,000 cells in four mice. PS3:10,000 cells in six mice for NBDG-low and five mice
for NBDG-high. PS4:10,000 cells in eight mice). ** means p<0.01.
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from the latter groups in the 3D plot and similarity in

expression. Notably, the NBDG-med and NBDG-high uptake

samples demonstrated tighter intra-group similarity of

expression profiles while the NBDG-low sample group

appeared to be more heterogeneous.

To identify genes/transcripts whose altered expression were

associated with and/or mediated the leukemia initiating

phenotype, differential expression analysis was conducted by

group-wise comparison of the NBDG-low and NBDG-med

samples. The results revealed an expression profile of 2,162

DETs (NBDG-low vs. NBDG-med, p<0.05) consisting of 895

up-regulated and 1,267 down-regulated transcripts

(Supplementary Table 4). Higher stringency statistical filtering

resulted in 588 DETs (NBDG-low vs. NBDG-med, false

discovery rate [FDR] p<0.05) (Supplementary Table 5) with a

stronger bias towards down-regulated genes (n=424, 72.1%).

Subsequent hierarchical clustering of these DETs and heatmap

visualization demonstrated robust clustering into two major

groups of samples: 1) NBDG-low and 2) NBDG-med with

NBDG-high. In addition, there were two major patterns, and

sub-clusters, of gene expression highlighted by marked

uniformity in the expression of down-regulated genes in the

NBDG-low samples and heterogeneous patterns of relative

increased expression of genes in both the NBDG-med and

NBDG-high samples (Supplementary Figures 3A, B). Similar

group comparison of NBDG-low and NBDG-high samples

revealed 1,104 DETs, with 656 and 448 being up- or down-

regulated (p<0.05), respectively. When combined (i.e., “NBDG-
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low vs. NBDG-med” and “NBDG-low vs. NBDG-high” DETs),

there were a total of 2,512 DETs, with 754 of these transcripts

having commonly altered expression compared to that of both

the NBDG-med and NBDG-high groups. In this instance,

hierarchical clustering of the combined set of DETs and

subsequent heatmap visualization demonstrated distinct

segregation of the samples into 1) NBDG-low and 2) NBDG-

med plus NBDG-high groups under two major branches of the

dendrogram (Figure 3B). Additionally, two general clusters of

increased and decreased gene/transcript expression were

apparent for each group of samples, as well as the

heterogeneity in up-regulated gene expression in each sample.

Consistent with the striking leukemia-initiating phenotype of

the NBDG-low subpopulations, these cells also exhibited a

number of marked transcript expression alterations in both

directions (e.g., log2 ratios of -19.93 and 11.10) (Figure 4;

Supplementary Tables 4, 5).

Insight into the potentially altered processes and pathways in

the NBDG-low cells was gained by conducting functional

annotation enrichment analysis of the DETs comprising the

leukemia-initiating phenotype transcript profile using the

ToppFun tool (31). The analysis yields over-represented genes

in functional categories and gene sets from across multiple

databases and collections, such as Gene Ontology Resource

(34), KEGG (35), Reactome (36), and the Molecular Signatures

Database (MSigDB) (37). The complete set of functional

enrichment results for the NBDG-low transcript expression

profi le is provided as Supplementary Table 6 and
B

A

FIGURE 2

The NBDG-med population also initiates leukemia in vivo. (A) The NBDG-med population has intermediate NBDG uptake and lies in between
the NBDG-low population and the NBDG-high population (not labeled; see Figure 1B). (B) In three separate experiments with the three patient
samples described in (A), mice that were transplanted with NBDG-med developed leukemia at a nearly identical rate to the NBDG-low mice,
with overall median survival of 52 days for NBDG-med compared to 51.5 days for NBDG-low. 5000 cells were transplanted per mouse.
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representative functional categories are presented in Figure 5.

Notably, multiple functional categories of RNA metabolic

processes, including RNA processing and splicing, followed by

chromatin organization, are highly enriched in NBDG-low cells.

Furthermore, we investigated the metabolism-associated

transcriptomic profile of the NBDG-low cells as these cells do

not uptake glucose. Pathway analysis indicated that glucose

metabolic steps, such as the TCA cycle and oxidative

phosphorylation, are negatively regulated in NBDG-low cells.

(Supplementary Figure 6).
Discussion

LSCs are thought to be the root of cancer and are responsible

for treatment resistance and disease relapse. However, LSCs have

not yet been defined in B-ALL and no study that focuses on

identifying B-ALL LSC populations by glucose metabolism has

been reported yet. In this study, our group discovered a unique

subpopulation of B-ALL cells by glucose uptake from primary B-

ALL samples. We demonstrated that this cell population has in

vivo leukemia initiating capacity and a distinct transcriptome

profile. As detailed below, this population seems quiescent yet

becomes activated in the appropriate in vivo environment,

evidencing significant heterogeneity in leukemia initiation.

Our study showed that NBDG-low cells represent a small

percentage of the entire leukemia population (median 1.92%)

and are smaller in size (4.0 to 7.0 mm), which is consistent with
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phenotypes of quiescent stem cells (22, 38–43) (Figure 1B,

Figure 1C, and Supplementary Figure 2A). The frequency of

HSCs and AML LSCs has been reported to be 0.001-0.1% (44–

48) and 0.00002-0.01% (10, 11), respectively. The frequency of

CSCs, including those for colon cancer, neck tumors and breast

cancer, has been reported to vary from 0.6 to 50%, depending on

the type of cancer (49). Our finding of NBDG-low cells in the

range 0.36 to 5.75%, with potentially only a fraction of these cells

representing true cancer stem cells, seems to be more

comparable to stem cells from hematopoietic origin.

There are two key functions that define stem cells:

proliferation/differentiation and self-renewal (13, 14). The

isolated NBDG-low cells consistently possess proliferative

capacity in the six different series of PDX mouse models tested

in this study (Figure 1D, Figure 2B, and Supplementary

Figure 2B). The NBDG-low cells also retained the capacity to

differentiate into leukemia phenotypically similar to that of the

original patient leukemia as demonstrated by the expression of

common cell surface markers, such as CD10 and CD19 (an

example shown in Supplementary Table 3). Cell differentiation

capacity, in that the NBDG-low cells form the same leukemia as

the original type, was also demonstrated (an example shown in

Supplementary Table 3). In addition, the self-renewal capacity of

isolated NBDG-low cells was shown by successful serial

transplantation of the isolated cells.

We additionally found that the NBDG-med population,

similar to NBDG-low, has in vivo leukemia initiating capacity.

As NBDG-low cells are quiescent yet possess leukemia initiating
BA

FIGURE 3

B-ALL LICs can be distinguished based on glucose uptake and molecular profile. RNA-Seq analysis was performed on five different human B-
ALL PDX models flow sorted into subpopulations based on glucose uptake and NBDG fluorescence intensity: NBDG-low (Low), NBDG-med
(Medium), and NBDG-high (High). Raw sequence data (FASTQ) were processed for read alignment, gene-level quantification, normalization, and
differential expression as described in Materials and Methods. (A) Principal component analysis (PCA) performed on normalized read counts
demonstrated organization of the samples into distinct groups of NBDG-low and a group comprised of NBDG-med and NBDG-high samples,
as illustrated in the 3D PCA plot. (B) Differential expression analysis (DESeq2) identified a combined total of 2,512 DETs (p<0.05) in group
comparison of NBDG-low samples to NBDG-med and NBDG-high samples. Hierarchical clustering and heat map visualization of the DETs
(NBDG-low vs. NBDG-med, NBDG-low vs. NBDG-high, p<0.05) is presented and demonstrated distinct clustering of the NBDG-low samples
and grouping of the NBDG-med and NBDG-high samples.
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capacity, we speculate that these cells become activated into the

NBDG-med population in vivo. This population may then

terminally differentiate into the NBDG-high population and

lose its leukemia initiating capacity, as well as potentially de-

differentiate back into the NBDG-low population. This notion is

supported by our transcriptome profiling showing that NBDG-

low cells have a distinct profile, whereas the NBDG-med and

NBDG-high populations cluster together (Figure 3B) (13).

NBDG-low cells also cluster separately from NBDG-high and

unsorted (Whole) cell populations using high throughput

quantitative RT-PCR analysis (Supplementary Figure 4),

establishing the NBDG-low profile as distinct from all other

populations. Moreover, in vitro colony forming assays were

performed using Reh and JM1 B-ALL cell lines, resulting in

colony formation between 6-36 days in NBDG-low cells versus

5-25 days in NBDG-high cells (Supplementary Figure 5). The

delayed colony formation observed in NBDG-low cells further

supports the quiescent behavior of NBDG-low prior to

activation and differentiation. Altogether, our findings suggest

that leukemia initiation is a highly fluid process that involves
Frontiers in Oncology 08
requisite circumstances for activation and the capacity for

continuous re- and de-differentiation.

Pathway analysis of glucose metabolism shows negatively

regulated glucose metabolism process in NBDG-low cells

(Supplementary Figure 6), which is consistent with the low

glucose uptake phenotype of these cells. Of note, part of fat

metabolism is upregulated in the NBDG-low cells, suggesting

these cells may use fat for their energy source. Previous studies

show that lipid metabolism is closely associated with

maintenance of stemness in cancer stem cells (50, 51),

indicating that LICs also utilize the lipidic metabolism

pathway to maintain their properties, such as stemness and

non-glucose dependency.

Interestingly, functional enrichment results show significant

enrichment of genes associated with RNA processing, including

mRNA splicing via spliceosome and the spliceosomal complex

(Figure 5). Previous studies indicated that cancer cells utilize

alternative splicing for their survival (52, 53). Interestingly, RNA

processing alterations are common in the five NBDG-low

samples, whereas PCA analysis of their transcriptome profiles
FIGURE 4

Transcripts exhibiting the highest level of differential expression in the NBDG-low population. Differentially-expressed transcripts (e.g., protein-
coding genes, lncRNAs) in low glucose uptake B-ALL PDX subpopulations were identified as described above in Figure 3 and Materials and
Methods. Higher stringency statistical filtering was imposed (FDR p<0.05). Representative, differentially-expressed transcripts exhibiting the
highest magnitude log2 ratios are presented in the bar chart with the corresponding values included as data labels.
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are heterogeneous (Figure 3). This suggests that RNA processing

changes commonly occur in NBDG-low cells affecting a variety

of other pathways contributing to the heterogeneity of NBDG-

low cells. Mutations in splicing have been shown to contribute to

aberrant hematopoiesis and may be among the first mutations to

occur in HSCs (54, 55). Recent studies have shown aberrant

splicing to be highly prevalent in leukemia driver genes and to

significantly contribute to leukemia pathogenesis in both AML

and B-ALL (56, 57). In fact, splicing can also represent a critical

target for future investigations on potential treatments and drug

resistance. For example, spliceosome inhibitors including

isoginkgetin and pladienolide B have been shown to be

cytotoxic in both mouse and human tumor cell lines (58),

supporting future in vivo studies on splicing inhibition in

leukemia. Moreover, alteration of CD19 splicing and resultant

impairment of recognition by CD19-specific T-cells has been

shown to contribute to treatment resistance (59); our study

provides a possible genetic explanation for this finding. These

suggest that NBDG-low cells modify the transcribed RNAs

through the RNA binding proteins as well as the gene

expression by the formation of heterochromatin to maintain

their quiescent and undifferentiated phenotype. Furthermore,

there is enrichment of genes associated with protein translation

in the NBDG-low group; this is consistent with the known effects

of aberrant translation on the pathogenesis of cancer (60, 61).

For example, assembly of the eukaryotic initiation factor 4F
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complex has been shown to be essential for translation of

mRNAs that contribute to cell growth and inhibition of

apoptosis (62). This represents an additional genetic factor

potentially driving the leukemia initiating properties of the

NBDG-low population, as well as a therapeutic target for

future studies.

Genes regulating chromosome organization, such as SMC1,

TP53, and PARP1 are also up-regulated in the NBDG-low,

leukemia-initiating subpopulation (Supplementary Table 6).

These genes have been reported to be associated with cell cycle

regulation and maintenance of stem cell quiescence (63–65).

Histone deacetylases (HDACs) play a major role in epigenetic

gene regulation via histone modification and chromatin

remodeling, and they maintain LSC survival in chronic

myeloid leukemia (CML) and AML (66–69). HDAC5, up-

regulated in the NBDG-low population, may lead to the

maintenance of quiescence in leukemia initiating cells.

In summary, our findings demonstrate the robustness of

utilizing NBDG to consistently and accurately identify a unique

subpopulation of leukemia-initiating B-ALL cells based on

glucose uptake. This suggests the future potential for using

other indicators of metabolic activity to develop a more

comprehensive characterization of LICs. Importantly, gene

expression profiling of multiple B-ALL PDXs demonstrated

that the NBDG-low population can be clearly distinguished

from the NBDG-med, NBDG-high, and whole cell populations
FIGURE 5

Functional annotation enrichment of the B-ALL NBDG-low expression signature. Differentially-expressed transcripts (p<0.05) in low glucose
uptake B-ALL PDX subpopulations (i.e., relative to medium glucose uptake subpopulations) were identified as described above in Figure 3 and
Materials and Methods. Functional annotation enrichment analysis was then performed using ToppFun on the list of DETs as input. The enriched
categories classified in GO; Molecular Functions, GO; Biological Process, GO; Cellular Component and Pathway were selected, and then the
representative top 50 enriched functional categories and gene sets (y-axis) are displayed in the chart along with the Enrichment q-value (x-axis)
and the number of gene hits from the NBDG-low expression profile in each category (data labels).
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by the differential expression of a distinct set of NBDG-low

signature genes. Therefore, the NBDG-low gene expression

signature provides further insight into the biological

mechanisms underlying their persistence and recurrence and

represents a molecular tool for identifying a distinct subset of

LICs in B-cell ALL PDXs.
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