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Abstract: This study investigated the polyphenol content, antioxidant activity, and inhibition ability
of mushroom tyrosinase and melanogenesis of Dendrobium tosaense (DT) extract. Ground DT was
extracted using deionized water (W) or 50% ethanol (50E) at room temperature (RT) or 50 ◦C (50T)
for 20 min. The 50T + 50E extract exhibited the highest total phenol content 47.0 ± 4.0 mg gallic
acid equivalent/g DT extract, the highest level of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic
acid) free-radical scavenging 66.0 ± 3.0 mg Trolox equivalent/g DT extract, and the highest reducing
power 12.00 ± 0.50 mg vitamin C equivalent/g DT extract. The RT + W extract had the highest total
flavonoid content 110.0 ± 3.0 mg quercetin equivalent/g DT extract. The RT + 50E extract had the
lowest half maximal inhibitory concentration 1.30 ± 0.00 mg/mL for 2,2-diphenyl-1-picrylhydrazyl
free-radical scavenging, and the lowest half maximal inhibitory concentration 6.40 ± 0.30 mg/mL for
mushroom tyrosinase inhibition activity. DT extracts, especially RT + W and 50T + W, exhibited potent
inhibitory effects on melanogenesis of B16/F10 cells. These results demonstrated the application
potential of DT extract for skincare.
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1. Introduction

The origins of orchids (Orchidaceae) can be traced back 120 million years [1]. Dendrobium, known
as “Shihu” in China, is the second largest genus in Orchidaceae [1]. Most Dendrobium species are
epiphytic and grown in tropical and subtropical regions [2]. Dendrobium serves numerous functions in
traditional Chinese medicine, including as an antipyretic, as an anti-inflammatory agent, for benefit of
the eyes and digestive system, and for lowering blood sugar [3]. Dendrobium has also attracted attention
for its potential inhibition and prevention of cancer, its immune-system stimulation, and its antioxidant
activity [4]. Dendrobium tosaense (DT), Dendrobium linawamum (DL), and Dendrobium moniliforme (DM)
are well-known medicinal plants, but DT and DM are more commonly used than DL [5]. DT is native
to Taiwan and can be mass-produced through tissue culture [6].

The chemical compounds in the Dendrobium species include alkaloids, bibenzyls, fluorenones,
phenanthrenes, sesquiterpenoids, trace elements, polysaccharides, and amino acids [1,5–9]. Dendrobine
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is most prevalent among the alkaloids and may combat cardiovascular disease and gastrointestinal
disorders, in addition to exhibiting antitumor, analgesic, and antipyretic properties [10,11]. Gigantol
is a type of bibenzyl compound [12] that functions as an antioxidant and contributes to inhibition of
cataractogenesis as well as exhibiting anti-lung-cancer and anti-platelet-aggregation properties [1,13].
Dendrobium is also rich in active polysaccharides, which exhibit antitumor and antioxidation properties
and contribute to enhanced immunity [14].

Tyrosinase acts as the critical enzyme in the melanin biosynthesis pathway [15–17].
Therefore, anti-melanogenic activity can be prescreened via tyrosinase inhibition. However,
many melanogenesis inhibitors do not exhibit inhibitory effects on mushroom tyrosinase
activity [16,18,19]. Accordingly, cell-based assays should also be further studied to investigate
melanogenesis inhibition in vivo. Many natural plant products catch scientists’ attention for becoming
new skin-whitening materials [18,20–22]. However, there are few reports about the evaluation of DT
for melanogenesis inhibition.

Solvent extraction is a simple and efficient technique for obtaining extracts from plants. However,
few reports have evaluated DT extracts that have been prepared through various methods. Therefore,
the aim of the present study was to determine the polyphenol contents, antioxidant activity, mushroom
tyrosinase inhibition ability and melanogenesis inhibition of DT samples obtained using various
solvent extraction methods.

2. Results and Discussion

2.1. Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC/MS/MS) Analysis

Gigantol in four extracts was identified through mass spectrometry as illustrated in Figure 1.
A peak in retention time at 5.13 min with a [M − H]− molecular ion at m/z 273 was detected for all
extracts except the room temperature plus water (RT + W) extract. The order of samples according to
amounts of gigantol from high to low level was RT + 50E, 50T + 50E, and 50T + W.
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Figure 1. LC/MS/MS chromatograms of gigantol in the four extracts.
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2.2. Total Phenol Content

Phenolics have significant antioxidation and anticancer effects and contribute to prevention of
cardiovascular diseases. The experimental results indicate that the 50T + 50E extraction had the
highest total phenol content, at 47.0 ± 4.0 mg gallic acid equivalent/g DT extract (Figure 2). Phenolic
compounds are more effectively extracted at an elevated temperature, which enhances both the
diffusion coefficient and the solubility of polyphenols [23,24]. Additionally, the aqueous extraction
may lead to an extract with a high percentage of impurities that interfere in determination of phenolic
compounds [25,26].
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2.3. Total Flavonoid Content

Flavonoids have more than 3000 varieties and are potent antioxidants with free-radical-scavenging
capabilities [27]. As depicted in Figure 3, RT + W extract in this study exhibited the highest total
flavonoid content, at 110.0 ± 3.0 mg quercetin equivalent/g DT extract. Flavonoids are water-soluble
ingredients, and degradation of flavonoids occurs at relatively high temperatures [28]. The lower
total flavonoid content at higher temperatures may also be related to the structures of particular
flavonoids [28]. These properties explain the study results, which indicated that a lower temperature
resulted in an extract with higher total flavonoid content.
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2.4. DPPH Free-Radical-Scavenging Assay

This study demonstrated that DT extract decreased the absorbance of DPPH solution.
The decrease in absorbance of DPPH solution most likely resulted from the reaction of antioxidants
and DPPH through hydrogen donation [29]. Polysaccharides play a critical role in free-radical
scavenging and contribute to DT’s favorable DPPH free-radical-scavenging ability [13]. In this research,
the experimental results indicated that the RT + 50E extract had the lowest half maximal inhibitory
concentration (IC50), 1.30 ± 0.00 mg/mL for DPPH (Figure 4). The IC50 of the RT + W, 50T + W,
and 50T + 50E extracts were 5.00 ± 0.40, 3.40 ± 0.20, and 1.50 ± 0.00 mg/mL, respectively.
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2.5. 2,2′-Azino-bis(3-Ethylbenzothiazoline-6-Sulphonic acid) (ABTS) Free-Radical Scavenging Assay

ABTS assay is often used in evaluating the total antioxidant power of plants [4]. In this study,
the 50T + 50E extract exhibited the highest level of ABTS free-radical scavenging, at 66.0 ± 3.0 mg
Trolox equivalent/g DT extract (Figure 5). This ABTS free-radical-scavenging assay revealed similar
results to those obtained from the DPPH free-radical-scavenging assay [30]. The finding that DT
extracted with 50% ethanol exhibited better DPPH and ABTS free-radical-scavenging abilities than DT
extracted with water was consistent with previous findings for Dendrobium flower extracts [31].
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2.6. Ferric-Reducing Power Assay

In this assay, all extracts exhibited the same ability to reduce Fe3+/ferricyanide complex to Fe2+

through electron donation. The experimental results revealed that the 50T + 50E extract exhibited
the highest ferric-reducing power, at 12.00 ± 0.50 mg vitamin C equivalent/g DT extract (Figure 6).
The extracts obtained using 50% ethanol exhibited higher ferric-reducing power than those obtained
with water. The results obtained for extraction with 50% ethanol at approximately 50 ◦C corresponded
to findings in a previous study regarding the optimal condition in response surface methodology for
the extraction of rice bran [32].
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2.7. Mushroom Tyrosinase Inhibition Activity Assay

In the melanogenesis process, tyrosinase converts L-tyrosine into L-dihydroxyphenylalanine
(L-DOPA) and then oxidizes L-DOPA to form dopachrome, which can be converted into melanin.
Therefore, inhibition of tyrosinase is generally evaluated in the process of screening potential inhibitors
of melanogenesis [33]. In this research, the experimental results indicated that the RT + 50E extract
exhibited the strongest mushroom tyrosinase inhibition ability, at IC50 6.40 ± 0.30 mg/mL (Figure 7).
The extracts obtained using 50% ethanol exhibited higher mushroom tyrosinase inhibition activity
than those obtained with water. These results were similar to those regarding DPPH and ABTS
free-radical scavenging.
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2.8. Cell Viability and Melanin Content Assessment

In the methylthiazol tetrazolium (MTT) assays (Figure 8), all DT extracts and 1 mg/mL of kojic
acid exhibited no cytotoxicity to the B16/F10 cells. Figure 9 shows the α-MSH-mediated melanogenesis
inhibitory effects of DT extracts which were determined by calculating the amount of intracellular
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melanin in the presence of α-MSH. Compared with the group treated with α-MSH alone, RT + W
and 50T + W significantly reduced the α-MSH-induced cellular melanin content, and were almost as
effective as the positive control, kojic acid. The inhibitory effects of RT + W, 50T + W, and kojic acid on
melanin production were 35.0 ± 3.0%, 33.0 ± 7.0%, and 36.0 ± 3.0%, respectively. The results of this
study suggested that RT + W and 50T + W can substantially inhibit the melanogenesis on B16/F10
cells, and induce no cytotoxicity.
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means with the same letter are not significantly different. 

Figure 9. Melanin content in B16/F10 cells treated with the four extracts and kojic acid. Treatment
means with the same letter are not significantly different.

3. Materials and Methods

3.1. Preparation of DT Extract

Stems of DT were powdered using a pulverizer. A total of 5 g of DT powder was extracted using
50 mL of deionized water (this method is labeled W) or 50% ethanol (50E) at room temperature (RT)
or 50 ◦C (50T) for 20 min. After centrifugation with 3000 rpms for 10 min at room temperature and
filtration, a liquid extract was obtained. The lyophilization process was further applied to obtain the
dry extract to determine the concentration of DT extract. Finally, the concentrations of DT extract
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in original working solutions of RT + W, 50T + W, RT + 50E, and 50T + 50E were 6.23, 6.60, 4.38,
and 4.70 mg/mL, respectively.

3.2. Liquid Chromatography–Tandem Mass Spectrometry (LC/MS/MS) Analysis

A liquid chromatography–tandem mass spectrometry system (UPLC-Xevo-TQMS) with a
reverse-phase column (ACQUITY UPLC BEH C18, 1.7 µm, 2.1 × 100 mm2) was used for analysis.
The mobile phase consisted of a mixture of 0.1% formic acid solution and acetonitrile containing 0.1%
formic acid. The proportion of 0.1% formic acid in the mobile phase was 95% at 0 min, 90% at 0–2 min,
82% at 2–3 min, 62% at 3–4 min, 0% at 4–6 min, and 95% at 6–10 min. The flow rate was 0.35 mL/min.
The MS/MS settings were a negative electrospray ion source, 3 kV capillary voltage, 3 V cone voltage,
350 ◦C desolvation temperature, and 0.15 mL/min collision gas flow.

3.3. Determination of Total Phenol Content

A homogeneous mixture of 200 µL of 0.5 N Folin-Ciocalteu phenol reagent and 200 µL of DT
extract was obtained, and then 200 µL of 10% sodium carbonate and 400 µL of deionized water
were added. The reaction was conducted in the dark at RT for 1 h. Subsequently, centrifugation
with 7000 rpms for 15 min at room temperature was applied. A total of 200 µL of supernatant was
collected and its absorbance measured at 700 nm using a spectrophotometer. Total phenol content was
determined by gallic acid standard curve and expressed as milligram gallic acid equivalent per gram
of DT extract.

3.4. Determination of Total Flavonoid Content

Mixture of 200 µL of DT extract, 80 µL of CH3OH, and 100 µL of 5% methanol was performed.
The mixture was subsequently left at RT for 5 min, followed by addition of 20 µL of 10% aluminum
chloride. After 6 min, 200 µL of 1 N sodium hydroxide was added. The reaction was conducted in
the dark at RT for 1 h. The absorbance of the resulting mixture was measured at 510 nm. The total
flavonoid content was evaluated from a quercetin standard curve.

3.5. Determination of 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Free-Radical Scavenging Activity

A homogeneous mixture of 500 µL of 95% ethanol solution of DPPH and 50 µL of DT extract was
obtained and then left in the dark for 30 min. The absorbance of the resulting mixture was measured
at 517 nm. Vitamin C was used as a standard, and pure water solution was used as the control.

DPPH free-radical scavenging activity (%) = [1− (
A 517 o f sample
A 517 o f blank

)]× 100% (1)

3.6. Determination of 2,2′-Azino-bis(3-Ethylbenzothiazoline-6-Sulphonic acid) (ABTS) Free-Radical
Scavenging Activity

A mixture of 250 µL of 7 mM ABTS and 250 µL of 2.45 mM potassium persulfate was obtained
and incubated at 4 ◦C for 16 hours in darkness. The background absorbance was diluted to 0.7 ± 0.05
using 95% ethanol. A homogenous mixture of 180 µL of the adjusted mixed solution and 20 µL of DT
extract was obtained and then incubated at RT for 10 min in darkness. The absorbance of the resulting
mixture was measured at 734 nm. ABTS free-radical scavenging activity was evaluated from a Trolox
standard curve.

3.7. Determination of Ferric-Reducing Power Activity

A mixture of 100 µL of 0.2 M phosphate-buffered saline (pH 6.6), 100 µL of 1% potassium
ferricyanide, and 200 µL of DT extract was obtained and subjected to a water bath at 50 ◦C. After 20 min
of reaction, the mixture was rapidly cooled for 3 min. After the addition of 100 µL of 10% trichloroacetic
acid and the application of centrifugation with 7000 rpms for 10 minutes at room temperature, 400 µL
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of supernatant was withdrawn and added to 400 µL of deionized water and 100 µL of 0.1% iron
chloride. After 10 min in the dark, Prussian blue formed in the mixture. The absorbance of the
resulting mixture was measured at 700 nm. The ferric-reducing power was evaluated from a vitamin
C standard curve.

3.8. Determination of Mushroom Tyrosinase Inhibition Activity

A 96-well plate was filled with 40 µL of 3 mM L-Dopa dissolved in 67 mM phosphate buffer at
pH 6.8, 20 µL of DT extract, and 40 µL of mushroom tyrosinase solution (200 U). In this experiment,
DT extract obtained using 50E was freeze-dried and then redissolved into dimethyl sulfoxide (DMSO).
The mixture was homogenized and incubated at 37 ◦C for 30 min. The absorbance of the resulting
mixture was measured at 475 nm for monitoring dopachrome which appeared during the reaction
catalyzed by mushroom tyrosinase. Kojic acid was used as a standard, and pure water solution was
used as the control.

Mushroom tyrosinase inhibition activity (%) = [1− (
A 475 o f sample
A 475 o f blank

)]× 100% (2)

3.9. Cell Viability

B16/F10 cells were cultured in Dulbecco’s minimum essential medium (DMEM) supplemented
with 100 units/mL of penicillin G, 10% fetal bovine serum, 0.25 µg/mL of amphotericin,
and 100 µg/mL of streptomycin, and then incubated at 37 ◦C with 5% CO2. The viability of cells
treated with 20 µL of DT extract with a quintuple dilution was determined using a methylthiazol
tetrazolium (MTT) assay. In brief, 3 × 104 B16/F10 cells were seeded on 96-well plates. After 24 h,
DMEM was removed, and 200 µL of fresh DMEM and DT sample were added. The cells were then
incubated for 24 h. After incubation, the medium was removed, and 100 µL of MTT in a PBS solution
(0.5 mg/mL) was added to each well. The cells were then incubated at 37 ◦C for 40 min. Subsequently,
the MTT solution was removed, 100 µL of DMSO was added to each well, and the plate was gently
shaken to dissolve the formazan crystals. The absorbance of each well was measured at 570 nm.

3.10. Assessment of Melanin Content

The cellular melanin content was determined as previously described [17]. In brief,
1 × 105 B16/F10 cells were seeded in 24-well plates and cultured at 37 ◦C with 5% CO2 for 48 h.
Subsequently, cells were treated with 200 nM α-MSH for 24 h, and then incubated with 20 mg/mL DT
extract or 1 mg/mL kojic acid for 24 h. The cells were washed twice with PBS, and the cell pellets were
then dissolved in 200 µL of 1 N NaOH in 10% DMSO for 1 h at 80 ◦C. The relative melanin content
was determined by measuring the absorbance at 405 nm. The melanin content was calculated using
the following equation, (absorbance of sample/absorbance of α-MSH) × 100%.

3.11. Statistical Analyses

The experiments were laid out in Completely Randomized Design (CRD) with three replications.
The evaluated data are presented as the mean ± standard error. The data collected were analyzed by
analysis of variance (ANOVA) using SAS version 9.4 (SAS Institute, Inc., Cary, NC, USA). If significant,
means were separated by least significant difference (LSD) at p ≤ 0.05. Treatment means with the same
letter are not significantly different at the 5% level.

4. Conclusions

In summary, this study confirmed that DT is rich in polyphenols and displays antioxidant and
inhibition on mushroom tyrosinase and melanogenesis properties. The DT extract obtained using 50%
ethanol at 50 ◦C exhibited the highest level of total phenol content and ABTS free-radical scavenging,
and had the highest ferric-reducing power. The DT extract by water at RT exhibited the highest total
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flavonoid content. The DT extract by 50% ethanol at RT had the lowest IC50 for DPPH free-radical
scavenging and mushroom tyrosinase inhibition ability. DT extracts showed no cytotoxicity to the
B16F10 cells, and the RT + W and 50T + W exhibited better effects on anti-melanogenesis than the
RT + 50E and 50T + 50E. The results in this study indicated that DT extracts may be a potential material
in skincare.
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