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Abstract: The application of vacuum materials with low secondary electron yield (SEY) is one
of the effective methods to mitigate the electron cloud (EC). In this study, the Ti-Hf-V-Zr non-
evaporable getter (NEG) film was deposited on open-cell copper foams with different pore sizes for
the suppression of electron multipacting effects. Besides, the influence of the film thickness on the
secondary electron emission (SEE) characteristics of Ti-Hf-V-Zr NEG film-coated open-cell copper
foam substrates was investigated for the first time. The results highlighted that all uncoated and
NEG-coated foamed porous copper substrates achieved a low SEY (<1.2), which reduced at least 40%
compared to the traditional copper plates, and the foamed porous coppers with 1.34-µm-thick NEG
coating had the lowest SEY. Moreover, the surface chemistry and the morphological and structural
properties of foamed porous coppers of different pore sizes with and without Ti-Hf-V-Zr NEG films
were systematically analyzed.

Keywords: accelerators; open-cell metal foams; film

1. Introduction

Low-energy electrons generated and accumulated in accelerators interact with circulat-
ing beam, leading to the formation of EC, accompanied with other detrimental effects, such
as the increase in vacuum pressure [1], additional heat loads on the cryogenic vacuum sys-
tem [2], and adverse impact on the stability of accelerated beam [3,4], etc. Beyond a certain
electron density threshold, the EC can seriously affect the actual beam quality, and inducing
beam instability and even disruption, as well as the degradation of the vacuum [5,6]. Those
effects refer to the major limitations of present high energy colliders, such as the Large
Hadron Collider (LHC) [7], the PEP-II collider [8], the CERN Super Proton Synchrotron
(SPS) [9], Super KEKB [10,11], etc. Therefore, searching for reliable materials with low SEE
to mitigate electron cloud effects (ECEs) is an essential technological objective.

The characteristics of high strength [12], a large surface area [13], excellent thermal
properties [14], radiation features [15], and energy absorption capability [16] make Open-
cell Metal Foams (OCMFs) an attractive material to be applied for radiation shielding
and beam liner design [17,18] in particle accelerators. It is known that the geometrical
modifications on a material surface can effectively suppress SEE from it [19–22]. Multiple
reflections may take place when an electron hits a rough surface, which correspondingly
enhances the probability of capturing electrons. Meanwhile, porous metal foams have the
potential to create a rougher surface with a larger area and a higher depth-to-spacing ratio
than current smooth-surface substrates [23]. R. Cimino et al. [24] proposed and studied
some characteristics of foamed porous coppers with a pore size greater than 500 µm,
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especially their qualification in terms of SEY. Moreover, some characteristics of foamed
porous coppers for beam screen were demonstrated as well, such as excellent vacuum
behavior, low surface resistance, good mechanical structural properties, etc. [17,24]. These
benefits suggested some potential use of the foamed porous coppers as an EC moderator in
the accelerator technology. The effect of foamed porous coppers with a pore size less than
500 µm on the SEY property was studied in this article.

It is known that the enhancement and sustainability of the vacuum is important for
particle accelerators, which can be effectively solved by coating the non-evaporable getters
(NEGs) with micron/sub-micron thickness on the inner wall of the vacuum pipe [25–27].
The research by Malyshev O.B. et al. [28,29] demonstrated that the Ti-Hf-V-Zr NEG film
with a columnar thin film structure showed a good pumping capacity and a low electron-
stimulated desorption (ESD) yield after heated at the activation temperature of 140–150 ◦C
for 24 h. In addition, the NEG film could not only adsorb residual gas in the vacuum
chamber but also provide a low secondary electron yield [30]. In this study, the Ti-Hf-
V-Zr NEG film and the open-cell copper foam were proposed to intrinsically produce
low-SEY surfaces and simultaneously maintain vacuum stability in the accelerator. The
macroscopically grooved surfaces of foamed porous coppers coated with Ti-Hf-V-Zr films
were proposed and studied to reduce the SEY and hence mitigate ECEs. Besides, the
Ti-Hf-V-Zr coatings deposited on foamed porous copper substrates with a large surface
area also provided a good pumping capacity in the beam vacuum system.

Here, the SEY property of porous copper substrates with different pore sizes less
than 500 µm and the influence of the coverage of different NEG equivalent thicknesses
on the SEY of foamed porous coppers were discussed for the first time. The trends of
the SEY (δ) corresponding to the changes in film thickness were quantified to reveal the
differences among the SEYs of Ti-Hf-V-Zr NEG coatings with different NEG equivalent
thicknesses. Thus, the Ti-Hf-V-Zr NEG films were deposited on foamed porous copper
substrates with different pore sizes and in each case with a range of thicknesses. Besides, the
surface morphology, cross-sectional morphology, surface microstructure, and chemistries
of foamed porous coppers before and after NEG coating were analyzed.

2. Materials and Methods
2.1. Sample Preparation and Cleaning Procedures

Foamed porous coppers were purchased from Longshengbao Electronic Materials
Co., Ltd. (Kunshan, China), with the average pore diameters of ~100, ~300, and ~500 µm
produced by the electron deposition process. The polished Si wafers were purchased from
Topvendor Technology Company (Beijing, China) to measure the film thickness. Before
deposition, all samples were ultrasonically cleaned in acetone and ethyl alcohol solutions
for 10 min, respectively, to remove the impurities.

2.2. Film-Coating Equipment

For the purpose of evaluating the effect of different Ti-Hf-V-Zr film thicknesses of
coated and foamed porous coppers with different pore sizes on SEY, the Ti-Hf-V-Zr films
were deposited on Si<111> single-crystal and foamed porous copper substrates by the
direct current (DC) magnetron sputtering (Chuangshiweina, Beijing, China) method. Si
substrates were used to evaluate the sputtering rate taken as a reference, and the thickness
of the films was controlled by the duration of deposition. An alloy target consisting of Hf,
Ti, Zr, and V elements with an atomic ratio of 1:1:1:1 was used. The deposition was carried
out with the background pressure of ~5.8 × 10−4 Pa, the working gas pressure of 0.5 Pa, the
Ar gas flow of ~20 sccm, and the discharge power of 280 W, as well as the cathode voltage
of ~371 V, the sputtering current of ~0.76 A, and the distance from samples to the target of
8 cm. Due to the unevenness of the porous copper surface, the “NEG equivalent thickness”
in this study was used to represent the “film thickness.” During the Ti-Hf-V-Zr NEG film
deposition, the temperature of the sample disc increased from 19 ◦C to 71 ◦C. The target
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was pre-sputtered for 3 min to remove impurities on its surface, while the substrates were
blocked by the movable disks. The information of the samples are shown in Table 1.

Table 1. Detailed parameters for NEG coating deposition.

Sample #1 #4 #7 #2 #5 #8 #3 #6 #9

Pore size/µm 100 300 500 100 300 500 100 300 500
Deposition Time/s 448 896 1792

NEG equivalent
thickness/µm 0.65 ± 0.017 1.34 ± 0.055 2.65 ± 0.135

2.3. Characterization Method

The surface and cross-sectional morphologies of foamed porous copper samples before
and after the Ti-Hf-V-Zr NEG film deposition were measured by a JEOL 7800F Schottky
field scanning electron microscope (SEM, Japan Electron Optics Laboratory, Tokyo, Japan)
and a X-ray diffractometer (XRD, SHIMADZU, Kyoto, Japan) with a copper Kα radiation
(λ = 0.154 nm). The 2θ data were collected between 30◦ and 80◦ at a speed of 2◦/min. The
cross-sectional elemental compositions of the NEG film coatings were characterized by
using a Zeiss GeminiSEM 500 emission scanning electron microscope (FE-SEM, Carl Zeiss
GmbH, Hallbergmoos, Germany) with an energy dispersive spectrometer (EDS) system.
The surface chemical state was analyzed by using AXIS ULtrabld X-ray Photoelectron
Spectroscopy (XPS, Kratos, Manchester, UK) at a working pressure of ~10−7 Pa. An
individual sample with an area of 10 × 10 mm2 was mounted on the sample holder. All
XPS data were obtained with a 150 W Al Ka X-rays operator and a 45◦ analyzer at the
beam size of 300 × 700 µm2. The test area of the sample was 2 × 2 mm2. Here, the XPS
results were analyzed by CasaXps (2.3.17PR1.1, 2015, Casa Software Ltd, Devon, UK). C 1s
peak with the binding energy (BE) of 284.8 eV was used for the binding energy calibration.
Based on the multiple sets of data tested, the error of XPS chemical composition results was
about ±0.3 at%. The SEY measurement was carried out with a primary electron dose of
7 × 10−6 C·mm−2 with a current of 8 nA. During the SEY test, the base pressure in the test
chamber was below 2 × 10−7 Pa and the beam spot with a diameter of 1 mm. The test error
of SEY was within ±5%. The SEY measuring facility is introduced in detail in Ref. [31].

3. Results and Discussion
3.1. Surface and Cross-Section Morphology

SEM and XRD were utilized to study the structures and morphologies of all the
samples. The structures of the Ti-Hf-V-Zr NEG films were investigated by XRD for the
Si and foamed porous copper substrates, as shown in Figure 1. The peaks for the NEG
films were similar in both cases. The spectrum indicates that Ti, Zr, and V were hexagonal
close-packed (hcp) structures, and Hf had a body-centered cubic (bcc) structure. The peaks
at 2θ = 43.29◦, 50.43◦, and 74.13◦ in the XRD pattern were ascribed to (111), (200), and (220)
of copper, respectively (the same as seen previously in reports [32–34]). The 2θ position
of the major XRD peaks is in the 2θ range of 30–40◦ [28,29,35]. Here, the broad peaks
associated with the Ti-Hf-V-Zr film occur at 2θ = 36.5◦ and 2θ = 37.1◦ for Si and foamed
porous copper substrates, respectively. Calculated by the Scherrer equation, the average
grain sizes of the Ti-Hf-V-Zr coatings deposited on Si and foamed porous copper substrates
were 1.40 nm and 1.32 nm, respectively. This means that the surface conditions have a
negligible effect on the crystallite size and structure of the Ti-Hf-V-Zr coatings.

The morphologies of the as-prepared cleaned foamed porous coppers with and without
coating were obtained by SEM (Figure 2). It can be revealed from Figure 2a,e,i that the
foamed porous coppers are composed of connective pores (like a sponge) and a three-
dimensional (3D) reticulated structure. The wave-like sintered texture on the surface of
the foamed porous coppers can be seen with higher resolution. Besides the macropores,
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spherical micropores with a diameter less than 3 µm (Figure 2f) can also be observed on
the surface of the foamed porous copper.
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Figure 2. The SEM micrographs of the uncoated/NEG coated porous copper with average pore
sizes of 100, 300, and 500 µm, respectively. (a,b) Uncoated, 100 µm; (c,d) 0.65-µm-thick NEG coated,
100 µm. (e,f) Uncoated, 300 µm; (g,h) 0.65-µm-thick NEG coated, 300 µm. (i,j) Uncoated, 500 µm;
(k,l) 0.65-µm-thick NEG coated, 500 µm.

After depositing a 0.65-µm-thick Ti-Hf-V-Zr layer (Figure 2c,d,g,h,k,l), the 3D structure
remained almost the same but featured a rougher surface. The EDS mappings (Figure 3a–h)
show the elemental analysis of the 0.65-µm-thick Ti-Hf-V-Zr NEG film coated on foamed
porous copper substrates. There are some dark areas on the surface, and Ti, Hf, V, Zr, C, O,
and Cu elements can be seen as well. This may be caused by uneven grooves on the sample
surface and the accuracy of the EDS instrument [36]. Overall, the EDS results suggested
that the Ti-Hf-V-Zr NEG coating was successfully deposited on the surface.

Figure 4 shows the SEM images of different areas on the surface of the foamed porous
copper with a pore size of 500 µm and a 2.65-µm-thick NEG film (Sample #9), which
facilitates the exploration of the deposition behavior of NEG on foamed porous coppers.
Meanwhile, it can be seen from this figure that the NEG film has an island-like structure
with a size ranging from nm to µm (Figure 4a–c). As shown in Figure 4c, it is deposited



Materials 2022, 15, 2185 5 of 11

on the scaffold in the form of island-like aggregation, but in sharp contrast, it is densely
deposited on the scaffold of the foamed porous copper (Figure 4a,b). Figure 4d–f show that
within the same deposition time, the film density on the local surface of the sample varies
greatly (emphasized by red circles in Figure 4e,f), which is affected by the self-shadowing
effect caused by the 3D structure of open-cell metal foams. It is worth mentioning that the
growth morphology of the film of varied thicknesses on different substrates is the same
according to our SEM experimental results.
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Figure 4. SEM micrographs of different areas on the surface of sample #9. (a−c) film surface
morphologies with a scale of 2 µm and (d−f) with a scale of 20 µm.

The samples were brittlely fractured at room temperature (RT) to produce the fresh
cross-section surface after immersion in the 77 K liquid nitrogen for ~5 min. The cross-
sectional SEM micrographs and the EDS line scannings of Samples #2, #5, and #8 are
shown in Figure 5. The EDS line scanning results showed that the deposition of the coating
mainly occurred at the outer surface, because the Cu element was barely found on it but
the partial coating on the inner surface. Additionally, the contents of Ti, V, Hf, and Zr
elements obviously decreased from the outer surface of the substrate to the inner surface.
Compared with Samples #5 and #8, it is noteworthy that the line scanning of Sample #2
showed a low content of Ti, V, Hf, and Zr elements on the substrates, and only weak Ti, V,
Hf, and Zr signals were observed on the inner pore substrate surface. For open-cell porous
materials, the outer surface area is much smaller than the inner porous surface area [16].
It can be seen from the micrographs in Figure 5 that the film covers the inner surface of
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the 3D structure of the porous copper, suggesting that the 3D structure is beneficial for the
increase in surface area in film growth. Besides, Figure 5 also reveals that this foam metal
skeleton has a hollow throughhole structure.
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sample #2; (b) 300 µm, sample #5; (c) 500 µm, sample #8.

3.2. Surface Composition

It was reported that the further increase in the SEY may result in the introduction of
impurities such as carbon and oxygen on the sample surface [37,38]. As an example, the
states of the XPS-determined surface of NEG-coated and uncoated foamed porous coppers
with a pore size of 300 µm were characterized. As shown in Figure 6b, it can be seen that
after coating, the shake-up of the peaks corresponding to Cu(II) almost disappeared at
933 eV. In detail, the relative contents of Cu, C, O, Ti, V, Hf, and Zr in each state of Samples
#4–6 were compared by XPS calculations, as shown in Table 2. The XPS survey spectra
indicate that the ratios of Cu, Ti, V, Hf, and Zr elements of Sample #4 (with a film thickness
of 0.65 µm), Sample #5 (film thickness of 1.34 µm), and Sample #6 (with a film thickness of
2.65 µm) were around 0.35 at%, 4.83 at%, 1.79 at%, 1.01 at%, 5.31 at%, 0.26 at%, 4.75 at%,
1.93 at%, 1.43 at%, 5.09 at%, 0.09 at%, 5.32 at%, 2.35 at%, 1.64 at%, and 5.78 at%, respectively.
Besides, the XPS results revealed that carbon and oxygen contaminations could be found
on the NEG film surfaces. The percentage of C significantly decreased about 29.25–38.6%
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after coating, while that of O increased about 24.7–33.8%. Moreover, the further oxidation
of Ti-Hf-V-Zr during the sample transfer process led to a further increase in the O element.
The occurrence of these metal oxides is consistent with Ti 2p, Hf 4f, V 2p, and Zr 3d spectra,
and the signals of titanium oxide (Ti4+; BE at 458.7 eV), hafnium oxide (Hf4+; BE at 17.0 eV
and 18.0 eV), zirconium oxide (Zr4+; BE at 182.3 eV and 184.7 eV), and vanadium oxide
(V3+; BE at 517.5 eV) were observed.
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Table 2. XPS (at%) analysis for quantification of the concentrations of the copper foams with pore
size of 300 µm before and after coating.

Sample Cu C O Ti V Hf Zr

uncoated 6.68 55.29 38.03 0 0 0 0
#4 0.35 38.16 48.56 4.83 1.79 1.01 5.31
#5 0.26 39.12 47.41 4.75 1.93 1.43 5.09
#6 0.09 33.94 50.88 5.32 2.35 1.64 5.78

3.3. SEY Results

The SEY properties of foamed porous coppers before and after NEG coating are
summarized in Table 3, and the dependence of the maximum SEYs (δmax) as a function of
incident electron energy is shown in Figure 7a–d. As shown in Table 3, the primary electron
energy (Ep) varied from 100 to 3000 eV, and the δmax of uncoated foamed porous copper
of 100, 300, and 500 µm were 1.19, 1.18, and 1.20, respectively. Compared with δmax ≈ 2.0
at Ep ≈ 300 eV, which was found for flat coppers [39–42], the δmax of the foamed porous
copper substrates decreased about 40%.

Table 3. The SEY properties of samples used in this study.

Sample Pore Size/µm NEG Thickness/µm δmax Emax/eV

uncoated

100

0 1.19 300
#1 0.65 1.16 400
#2 1.34 1.09 400
#3 2.65 1.15 400

uncoated

300

0 1.18 300
#4 0.65 1.12 300
#5 1.34 1.10 300
#6 2.65 1.14 300

uncoated

500

0 1.20 300
#7 0.65 1.17 400
#8 1.34 1.13 300
#9 2.65 1.18 300
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Figure 7. The SEY curves of foamed porous copper substrates with and without coating. (a) Uncoated
foamed porous copper with 100, 300, and 500 µm pore size. (b) Samples #1, #2, and #3 and uncoated
100 µm. (c) Samples #4, #5, and #6 and uncoated 300 µm pore size. (d) Samples #7, #8, #9, and
uncoated 500 µm.

Secondary electrons are induced when primary electrons impact on the surface of the
material. As shown in Figure 8, when they are induced into the uneven 3D surface of the
foamed porous copper, the pores and uneven grooves trap secondary electrons (Figure 8a,c),
and they only partially escape to the outside (Figure 8b), while the rest are trapped in the
network-like open pore structure. Therefore, the probability that the electrons can escape
from the open-cell copper foam surface is reduced, resulting in a lower SEY.
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3D surface.

SEY thresholds have thus been evaluated for Large Hadron Collider arcs with a δmax
less than 1.5 [43]. Beyond this value, the beam-induced multipacting occurs. However,
to suppress the build-up of EC, a surface treatment with a SEY no greater than 1.0 may
be required in the Future Circular Collider: The Hadron Collider (FCC-hh) [44]. There
is no doubt that open-cell copper foam possesses unique advantages in terms of SEY
reduction as a simple and economical material. However, the SEY changing trend of the
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uncoated foamed porous copper substrates with pore sizes ranging from 100 to 500 µm
was unobvious.

An earlier study [45] showed that the δmax of the 2.2-µm-thick quaternary Ti-Hf-V-
Zr NEG-film-coated flat copper substrates was 1.37 at Ep ≈ 300 eV and that the δmax of
the foamed porous coppers covered by a 2.65-µm Ti-Hf-V-Zr film (Sample #3, #6 and #9)
decreased about 0.19–0.22, compared to that of the NEG-coated flat coppers. Moreover,
the NEG-coated foamed porous copper substrates have SEYs of 2.5–5.1%, 5.8–8.4%, and
1.7–3.4% after being coated with the Ti-Hf-V-Zr NEG film with a thickness of 0.65, 1.34, and
2.65 µm, which is lower than those of the uncoated foamed porous copper substrates. This
indicates that foamed porous coppers with a 1.34-µm-thick Ti-Hf-V-Zr NEG coating have
the lowest SEY, compared to others with different thicknesses investigated in this study.
It was also found that the 1.34-µm-thick Ti-Hf-V-Zr NEG coating reduces the δmax of the
300 µm foamed porous coppers from 1.19, 1.18, and 1.20 to 1.09, 1.10, and 1.13, respectively.

As shown above, the foamed porous copper coated with the Ti-Hf-V-Zr NEG film is a
promising method of reducing SEY to below 1.2 for electron cloud mitigation, which can
be considered to be applied in the accelerator vacuum systems.

4. Conclusions

Open-cell copper foams before and after the Ti-Hf-V-Zr NEG coating were proposed
to mitigate the EC in accelerators and other vacuum devices. The NEG film was deposited
on the foamed porous copper substrates of three different pore sizes and in each case with
three different thicknesses. For the first time, the relationship between the quaternary
NEG film thickness on foamed porous copper samples and the SEY was systematically
investigated. The results of this study are summarized as follows:

(1) The 3D reticulated structure on the foamed porous copper surface with a pore size of
100–500 µm can significantly reduce the SEY. It is clear that the network structure in
foam geometries can reduce the SEY since the uneven 3D regular surfaces and pores
trap the secondary electrons. Compared with flat coppers, the SEY of the open-cell
copper foam can be reduced by at least 40%, and the foamed porous copper has a
promising application potential for reducing SEY to below 1.2. However, the δmax of
foamed porous coppers with a pore size less than 500 µm decreases insignificantly.

(2) The δmax of the NEG-coated foamed porous copper substrates is lower than that of
the uncoated ones. After coated with the Ti-Hf-V-Zr NEG film with a NEG equivalent
thickness of 0.65, 1.34, and 2.65 µm, the foamed porous coppers had the maximum
SEYs that were reduced by 2.5–5.1%, 5.8–8.4%, and 1.7–3.4%, respectively. However,
when coated with a 1.34-µm-thick NEG film, such foamed porous coppers had the
lowest SEY.

(3) The Ti-Hf-V-Zr films have nanocrystalline structures on both Si and foamed porous
copper substrates. XPS results show that the NEG film containing impurities such as
carbon and oxygen were partially oxidized. Besides, the Ti-Hf-V-Zr NEG film was
unevenly deposited on the foamed copper substrate. The EDS line scanning maps
indicate that the inner surface of foamed porous coppers with high depth-to-spacing
ratios was also covered by a quaternary NEG film, which was thus provided with a
large specific surface area. Moreover, the combination of the NEG film with foamed
porous copper substrates could further reduce the SEY. Therefore, the NEG coated
open-cell copper foam walls seem to be a promising method to solve problems of high
vacuum and EC in the future particle accelerators.
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