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SUMMARY
Mass-spectrometry-based proteomics enables quantitative analysis of thousands of human proteins. How-
ever, experimental and computational challenges restrict progress in the field. This review summarizes the
recent flurry of machine-learning strategies using artificial deep neural networks (or ‘‘deep learning’’) that
have started to break barriers and accelerate progress in the field of shotgun proteomics. Deep learning
now accurately predicts physicochemical properties of peptides from their sequence, including tandem
mass spectra and retention time. Furthermore, deep learning methods exist for nearly every aspect of
the modern proteomics workflow, enabling improved feature selection, peptide identification, and protein
inference.
INTRODUCTION

Nearly all cells in an organism share one genome that acts as a

library of instructions to produce diverse specialized cells and

tissues, each of which have unique and dynamic proteomes

(Jiang et al., 2020) that reflect the biological milieu of physiology

or disease. Liquid chromatography-tandem mass spectrometry

(LC-MS/MS) is currently the most effective method to discover

and quantify the human proteome (Aebersold and Mann,

2016), enabling a proteomic depth now comparable with RNA

sequencing (Bekker-Jensen et al., 2017). Mass spectrometry-

based proteomics is an essential approach for the study of bio-

logical systems, and is routinely applied for diverse applications

beyond relative or absolute proteome quantification (Xie et al.,

2011), including proteome stability measurement (Jarzab et al.,

2020; Mateus et al., 2016) and biomarker discovery (Meyer and

Schilling, 2017).

Computational methods are required for many parts of the

modern proteomics workflow, and the success of computational

methods relies on deep understanding of the technical and

experimental details (Figure 1). For example, peptides must be

identified from their tandemmass spectra, which requires an un-

derlying comprehension of peptide fragmentation. Peptides

must also be quantified, usually based on their elution profile,

which can be challenging due to missing values, interfering

masses, or shifts in chromatographic retention time. Countless

software tools exist to facilitate and expedite various proteomic

data analysis, including for design of data collection, feature se-

lection, peptide and protein identification and quantification, and

biological interpretation (Marx, 2020; Tsiamis et al., 2019). Still,

many computational challenges prevent more sensitive and ac-

curate peptide identification and quantification in the field of

shotgun proteomics (Schubert et al., 2017; Sinitcyn et al., 2018).

Along with the recent explosion of machine learning applica-

tions in economic and scientific sectors, machine learning tools

have emerged to facilitate proteomic analysis.Machine learning
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is a subfield of artificial intelligence (Alzubi et al., 2018; Domi-

ngos, 2012). Any machine learning model can be thought of as

a mathematical function approximator, which learns a relation-

ship that connects input data (X) to output data (y) when the un-

derlying relationship is not known from first principles. For

example, machine learning could take many examples of pep-

tide sequences (inputs) and their measured retention times (out-

puts) to build a model that then predicts retention time for other

unmeasured peptides. Thus, the benefit of machine learning is

that once we build a model to learn some relationship based

on measured examples, we can predict the model output in

the future given only the input, which saves the cost ofmeasuring

that output.

Among the many types of machine learning models, ‘‘deep

learning’’ with artificial neural networks provides highly general-

izable function approximation (Figures 2A–2C) (LeCun et al.,

2015). A key feature driving the success of deep learning is the

ability to automatically learn data representation, which obviates

a need for time-consuming feature selection or data engineering.

Over the last decade, deep learning has become democratized

through the wide availability of cheap graphics processing units

(GPUs) and the emergence of public software libraries written in

Python (namely TensorFlow [Abadi et al., 2016] and PyTorch

[Paszke et al., 2017]). Deep learning models often outperform

standard machine learning models for many problems given a

large enough set of example data (or ‘‘training data’’).

Within deep learning, there are many types of models that

differ primarily in how their neurons are connected. In particular,

sequence data are well suited for recurrent neural networks

(RNNs) (Rumelhart et al., 1986), including gated recurrent units

(GRU) (Chung et al., 2014) or long short-term memory (LSTM)

(Hochreiter and Schmidhuber, 1997) (Figure 2D). Convolutional

neural networks (CNNs) are another architecture for spatially ar-

ranged data (Figure 2E). Originally introduced in 1980 (Fukush-

ima, 1980), CNNs learn to filter local patterns in data, which

makes them excellent for image classification (Krizhevsky et
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Figure 1. General proteomics workflow highlighting challenges

Peptides are produced from enzymatic hydrolysis of the isolated proteome and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

This process involves detecting features and assigning retention times to peptides, detecting precursor peptide charge, and then measuring the fragment ion

spectra or tandem mass spectra for a peptide. The collection of tandem mass spectra is then subject to peptide-spectra matching to identify peptides, and the

original set of proteins is inferred. Red stars indicate that deep learning tools now facilitate these aspects of the workflow.
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al., 2012; Kuo and Huang, 2018). Bothmass spectra and peptide

sequences have local patterns that make the CNN architecture a

logical choice for predicting peptide spectra.

One limitation of deep learning is that usually tens of thou-

sands of example data points are required to effectively train a

neural network; however, models trained on a large number of

examples for one task can be applied to significantly fewer ex-

amples in a new task using a process called transfer learning

(Bozinovski, 2020; Lima et al., 2017). Transfer learning can be

applied across tasks when the input data have similar structure,

and enables transfer of learned data patterns across disparate

tasks, such as between object classification and drug classifica-

tion (Meyer et al., 2019).

Deep learning is increasingly applied to a variety of biomedical

research problems (Ching et al., 2018). Recent increases in the

speed and sensitivity of proteomic data collection have pro-

duced the quantities of data needed for training deep learning

models. Deep learning models have emerged to predict peptide

properties (Guan et al., 2019) from only a primary sequence,

including tandem mass spectra (Gessulat et al., 2019; Tiwary

et al., 2019; Zeng et al., 2019; Zhou et al., 2017), ionmobility (Me-

ier et al., 2020), and retention time (Ma et al., 2017, 2018; Moruz

and Käll, 2017). Furthermore, deep learning has been applied to

improve peptide identification (Demichev et al., 2020; Tran et al.,

2017, 2019), protein inference (Kim et al., 2017), and peak detec-

tion (Zohora et al., 2019). Other recent reviews cover more

generally machine learning in proteomics (Bouwmeester et al.,

2020a), machine learning specifically for data-independent

acquisition (DDA) experiments (Xu et al., 2020), and more

comprehensively all aspects of deep learning in proteomics

(Wen et al., 2020a). In comparison, here I summarize neural

network approaches for peptide property prediction and pep-

tide/protein identification, provide perspective on how deep

learning solves the associated challenges, and contrast the

different deep learning strategies. Finally, limitations and oppor-

tunities of deep learning tools for mass spectrometry-based pro-

teomics are also discussed.
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METHODS FOR PREDICTING PEPTIDE PROPERTIES

Predicting fragment ion intensities

Although the mass of possible peptide fragment ions can easily be predicted

from any amino acid sequence, the exact intensities of those fragments

depend on the unique chemistry of each peptide sequence (Huang et al.,

2005; Tabb et al., 2003). Several reports of deep learning methods to predict

fragment ion intensities in peptide MS/MS have emerged dating back to at

least 2006 (Table 1). Most of thesemethods are based on repurposing special-

ized neural networks originally designed for natural language processing (RNN

[Rumelhart et al., 1986] or a specific type of RNN, LSTM [Hochreiter and

Schmidhuber, 1997]) (Figure 3). RNNs in particular are uniquely well suited

to deal with the sequential nature of peptides, whose properties depend on

local and long-range interactions between their amino acids. Fortunately,

the common use of higher-energy collisional dissociation (HCD) between Q-

TOF and Orbitrap instruments produces overall very similar spectra (Szabó

et al., 2021), making predictions from models trained on one data type gener-

ally useful to the whole community.

The reproducibility of repeated peptide fragmentation spectra for the same

peptide can be considered an upper limit benchmark to determine the best

possible performance of a spectral prediction algorithm. Early work from Pre-

drag Radivojac’s group determined the Pearson correlation between frag-

ment ion intensities across repeated measurement of the same peptide

and found overall good agreement ranging from 0.76 to 0.93 depending on

the source and charge state of the peptides (Li et al., 2011). The authors

developed a two-layer neural network to predict tandem mass spectra

named PeptideART (Arnold et al., 2005). PeptideART-predicted spectra

with Pearson correlation approaching the reproducibility of measurements

across different experiments, which showed the promise of this approach

(Table 1).

In 2017, a leap forward in peptide fragment ion intensity prediction was

achieved using a bidirectional LSTM (Zhou et al., 2017) trained on proteome

tools fragmentation spectra (Zolg et al., 2017). This model, named pDeep,

was one of the first spectral prediction tools that could be considered

‘‘deep’’ as opposed to ‘‘shallow,’’ which refers to the use of many network

layers (Table 1). pDeep predicts fragmentation by HCD, electron transfer

dissociation, and electron transfer higher-energy collisional dissociation with

a median Pearson correlation between predicted and observed spectra of

over 0.9. At the time of introduction, pDeep greatly outperformed other spec-

tral prediction algorithms, and its performance approached the theoretical up-

per limit set by technical reproducibility of repeat spectra collection. The au-

thors further found that their network could differentiate isobaric amino acid



Figure 2. Basic neural network background

(A and B) Neural networks are simply collections of math operations that transform an input (x) to an output (y). Inputs and outputs are connected to the neuron by

weights, which are linear operators that multiply the previous value. The function in the hidden layer can be anything. In the simplest case with one neuron in the

hidden layer (A), the input value ismultiplied by the first weight, and then the new value x*weight1 is input to the function in the neuron. The output of that function is

multiplied by weight2 to calculate the output. When a neural network is ‘‘trained,’’ inputs are passed forward through themath to compute the output. The value of

the output is compared with the true known value of y, and then the weights are updated slightly to make the output value closer to the true value of y. A simple

example of this is shown in (B) where weight1 is 2, the function is 2*x, and weight2 is 2. Note that neuron functions are often not linear (such as a rectified linear unit

(ReLU) or sigmoid).

(C) The output y of this neural network is 16 when the input = 2.

(D) A simple recurrent neural network accepts sequence or time series data and adds a connection between the hidden layer and itself across time points, which

allows the network to learn interactions between inputs in the series.

(E) A simple one-dimensional convolutional neural network showing how local patterns are summarized by a filter kernel into a new output vector with fewer

dimensions.
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differences (for example, GG versus N, or isoleucine versus leucine). This sem-

inal paper opened the floodgates for additional deep learning methods of

spectral and peptide property prediction.

Two years later, an updated model was published by the same group,

pDeep2 (Zeng et al., 2019), which was trained and tested on approximately

8,000,000 peptide-spectra matches (PSMs). The full model was further adapt-

ed for prediction of fragmentation spectra from peptides containing 22 post-

translational modifications (PTMs) using transfer learning (Table 1). Transfer

learning is a process by which a neural network is trained on a large dataset,

and then later adapted to another similar but distinct type of prediction by tun-

ing with a smaller training dataset (Bozinovski, 2020; Lima et al., 2017; Meyer

et al., 2019). To learn modified spectra, as few as 7,000 PTM PSMs were

required. Transfer learning from the full model was critical to enable accurate

PTM spectra prediction.

Another approach to peptide sequence prediction called DeepMatch

directly incorporated the process of peptide identification (Schoenholz et al.,

2018) (Table 1). To achieve this, the authors used a neural network with three

parts: (1) an LSTM to predict fragments for a sequence, (2) a fully connected

network to represent those fragments, and (3) a scoring system to compare

the observed spectra with the predicted fragments for a sequence. Weak su-

pervision was used to train this combined system, which means labels were

assigned for each experimental spectrum based on the best scoring peptide

(due to a lack of known ‘‘gold standard’’ PSMs). DeepMatch identified signif-

icantly more peptides than a traditional peptide identification software Comet

(Eng et al., 2013), even after Comet results were refined with Percolator (Käll

et al., 2007).

The following spring of 2019 brought a pair of spectra prediction papers:

Prosit (Gessulat et al., 2019) and DeepMass (Tiwary et al., 2019). Both models

focused on prediction of only b/year fragment ions, and were mostly applied to

tryptic peptides. Prosit used a GRU (Chung et al., 2014) with attention (Bahda-

nau et al., 2016) architecture trained on the ProteomeTools synthetic peptide

resource of 550,000 tryptic peptides measured by 21 million tandem mass

spectra at various collision energies. Prosit predicts both tandem mass

spectra and peptide retention time with high quality, and the quality of pre-

dicted spectra exceeded that of experimental measurement in some cases.

Prosit was integrated into a database search to lower false discovery rates,

and was applied to predict spectra for non-tryptic peptides. DeepMass also

produced spectra within the measurement uncertainty of repeated MS/MS
events, and the authors performed model analysis to show how distant amino

acids interact to influence fragment ion intensity. Furthermore, both Prosit and

DeepMass were used to generate spectral libraries for data-independent

acquisition (DIA) proteomics experiments for any organisms based only on

protein sequences (Table 1).

An obvious application of peptide property prediction is for DIA mass

spectrometry (Meyer and Schilling, 2017; Meyer et al., 2017), which pro-

vides better analysis depth and more consistent peptide quantification

across samples than DDA. One original limitation slowing adoption of DIA

was the requirement for a spectral library, including the retention time for

each peptide. Usually those libraries are built from separate exhaustive

sample fractionation and repeated mass spectrometry analysis by DDA.

DeepDIA takes advantage of property prediction to enable streamlined

DIA analysis without a need to collect spectral libraries (Yang et al., 2020)

(Table 1). DeepDIA identified slightly more proteins from DIA analysis of

Hela proteome samples than libraries from Prosit or from DDA. DeepDIA

also performed better than DirectDIA, which is a strategy that generates

spectral libraries directly from DIA data similar to DIA-Umpire (Tsou et al.,

2015).

Most of the above-mentioned spectra prediction algorithms used RNN ar-

chitectures, but the CNN and variations thereof are also well suited for predic-

tion from ordered peptide sequence data. A model named MS2CNN showed

that CNNs predict fragment ion spectra with good accuracy (Lin et al.,

2019). Instead of using the CNN directly on the peptide sequence to learn

spatial structure of amino acids, the model input was an engineered feature

vector (Table 1). Notably, the MS2CNN model was slightly worse at spectral

prediction than pDeep for peptides with +2 precursor charge, but slightly bet-

ter for peptides with +3 precursor charge.

Tandem mass spectra from the most common dissociation, HCD, are pri-

marily composed of sequence informative b and y ions from the N- and C-ter-

minal portions of the peptide, respectively, after fragmentation of the amide

bond along the peptide backbone. Therefore, most spectra prediction strate-

gies only predict the abundance of these fragments. However, MS/MS spectra

can have significant contributions from other types of ions, such as losses of

water or ammonia, or internal ions resulting from multiple peptide backbone

cleavages. Liu et al. (2020) built a model that predicts these non-backbone

fragments along with the typical backbone fragments. In contrast with other

models, they used a sequence-to-sequence CNN architecture. They showed
Cell Reports Methods 1, 100003, June 21, 2021 3



Table 1. Methods for fragment ion intensity prediction

Year Name Neural network details Comments Citations

2005 PeptideART feedforward network engineered peptide feature

inputs, outputs of fragment

probabilities

Arnold et al. (2005),

Li et al. (2011)

2017 pDeep bidirectional LSTM, multi-output

regression; Keras v1.2.1,

TensorFlow 0.12.1

limited to peptides of up

to 20 amino acids

Zhou et al. (2017)

2018 DeepMatch bidirectional LSTM, weak

supervision

direct integration with peptide

spectrum matching algorithm

outperforms COMET

Schoenholz et al. (2018)

2018a Prosit

(latin for ‘‘of benefit’’)

encoder: bidirectional GRU with

dropout and attention, parallel

encoding of precursor charge and

collision energy; decoder:

bidirectional GRU with dropout

and time-distributed dense;

multi-output regression Keras

2.1.1 and TensorFlow 1.4.0

over half a million training

peptides and 21 million MS/MS

spectra at multiple collision

energies, predicts MS/MS spectra

and retention time, integration with

database search to decrease FDR,

integration with Skyline (MacLean

et al., 2010), web tool https://www.

proteomicsdb.org/prosit/

Gessulat et al. (2019)

2019a DeepMass encoder: three bidirectional LSTM

with 385 units each; decoder: four

fully connected dense layers 768

units each; multi-output regression

TensorFlow v.1.7.0

predicted fragmentation with

accuracy similar to repeated measure

of the same peptide’s fragmentation.

Predicted spectra used for DIA data

analysis nearly equivalent to spectral

libraries

Tiwary et al. (2019)

2019 pDeep2 bidirectional LSTM, multi-output

regression

original pDeep model adapted to

predict spectra of modified peptides

using transfer learning

Zeng et al. (2019)

2019a N/A encoder: bidirectional LSTM with

dropout; iRT model, two dense layers,

tanh, single output regression.

Charge state distribution model, two

dense layers, softmax activation, multi-

output regression length 5 for charge 1–5.

Spectral prediction model, a time-

distributed dense layer with sigmoid

activation function, multi-output

regression; Keras

predicts retention time, precursor

charge state distribution, and

fragment ion spectra

Guan et al. (2019)

2019 MS2CNN basic CNN architecture, engineered

peptide features as input with a CNN

kernel size of 4

better than pDeep for prediction

of spectra from +3 charge state

peptide precursors

Lin et al., 2019

2020a DeepDIA hybrid CNN and bidirectional LSTM,

CNN first extracts features from

pairs of amino acids, then LSTM, then

dense layer. Multi-output regression

of the b/year ions, including

water/ammonia losses. Keras 2.2.4

and TensorFlow 1.11

predicts MS/MS spectra and indexed

retention time (iRT). Slightly more protein

identifications from DIA analysis of Hela

proteome than libraries from DDA or Prosit

Yang et al. (2020)

2020 N/A sequence-to-sequence CNN full-spectrum prediction, not only

fragment ions

Liu et al. (2020)

Abbreviation are as follows: FDR, false discovery rate; N/A, not applicable.
aIndicates methods that predict other factors apart from fragment ion spectra.
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that their model outperformed pDeep, DeepMass, and Prosit for overall

spectra prediction, probably due in part to the lack of non-backbone ion pre-

diction by these other methods.

The unique chemistry of a peptide sequence determines its observable

properties. Therefore, a neural network model that learns any peptide property

captures the fundamental chemistry, and can be applied to predict other pep-
4 Cell Reports Methods 1, 100003, June 21, 2021
tide properties. As an example of this, Guan et al. (2019) trained peptide prop-

erty encoding networks with three different decoders for various peptides,

including retention time, precursor charge state distribution, and fragmenta-

tion pattern in tandem mass spectra. These models were accurate relative

to other work, and the added prediction of charge state distribution may be

useful for peptide identification tasks.

https://www.proteomicsdb.org/prosit/
https://www.proteomicsdb.org/prosit/


Figure 3. Concept of LSTM neural network

applied to fragment ion spectra prediction

for peptides

Each amino acid in the sequence is converted to a

string of ones and zeros unique to that amino acid

(called ‘‘one-hot encoding’’). The encoded se-

quences are fed into one or more bidirectional LSTM

layers. The output from the hidden layers is essen-

tially multi-output regression, where real values are

predicted for each possible b and y ions corre-

sponding to the relative abundances of those frag-

ments. Network weights are learned that accurately

convert a given sequence in the correct proportions

of fragment ions.
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Predicting retention time and collisional cross-section

In addition to some of the tandem mass spectrum prediction models above

that also predict peptide retention time, several other models have been intro-

duced to predict only peptide retention time (Table 2). These models have

different strengths and weaknesses, but in general deep learning methods

outperform other peptide retention time prediction methods. The success of

these diverse neural network architectures can be useful to inform other pep-

tide property prediction tasks.

Maybe the first example of an artificial neural network applied to predict any

peptide property was from Richard Smith’s group in 2003 (Petritis et al., 2003).

In this early work, a simple feedforward 3-layer neural network was used: the

input layer had 20 neurons (one for each amino acid), the hidden layer had 2

neurons, and the output was a single value between 0 and 1 indicating relative

peptide retention time. The input layer took counts for each amino acid in the

peptide. This simple neural network design allowed determination of relative

weights for each amino acid’s contribution to the observed elution time. The

authors found that 95% of the predicted peptide retention times were within

10% of their true value, and the predicted retention time helped disambiguate

isobaric peptides with the same molecular formula. This approach was later

improved by adding inputs of several features, including sequence instead

of only composition (Petritis et al., 2006). A similar strategy was published

for peptides from LysC digestion of the E. coli proteome (Shinoda et al., 2006).

Roughly 15 years later, Siqi Lui’s group revisited the use of neural networks

for peptide retention time prediction by using LSTM, but also CNNs (Fukush-

ima, 1980). Their first iteration, DeepRT (Ma et al., 2017), used the LSTM and

CNN for feature extraction from the peptide sequences followed by an

ensemble of more traditional models, predictions from which were averaged

by ‘‘bagging’’ (Breiman, 1996). The following year, they introduced DeepRT+

(Ma et al., 2018), which used a type of CNN called a capsule network (Sabour

et al., 2017) to make retention time predictions. DeepRT+ trained on data from

C18 peptide retention was even able to be retrained to predict retention time of

peptides on a completely different stationary phase, such as strong cation ex-

change (Table 2). At the time each of thesemodels was introduced, they signif-

icantly outperformed previous benchmarks set by GPTime (Maboudi Afkham

et al., 2016) and Elude (Moruz et al., 2010).

The ability to accurately predict peptide retention time could be used to

reveal whether putative peptide identifications are true or false hits. Such
Cell R
filtration of putative PSMs would be especially

useful when new data analysis strategies are

needed, for example, for identification of peptides

resulting from somatic mutation. Wen et al.

(2020b) developed a strategy called autoRT based

on an ensemble of CNN and LSTM models

(Table 2). AutoRT was more accurate than the

other retention time prediction models according

to median absolute error. AutoRT was useful in as-

sessing various filtration strategies for peptide

identification; two-stage false discovery rate

calculation and additional validation by the Pep-

Query algorithm (Wen et al., 2019) were useful in
limiting putative peptides with large errors in observed versus predicted

retention time.

Much like the proteome tools PTM peptide dataset was used by pDeep2 to

predict spectra for modified peptides, a model named DeepLC used the same

data to enable prediction retention times for modified peptides (Bouwmeester

et al., 2020b) (Table 2). DeepLC was trained and tested using 20 diverse data-

sets, including reversed-phase, hydrophilic interaction, and strong cation ex-

change chromatography. As expected, the model performance improved with

increasing dataset size. A key difference to the DeepLC strategy is inclusion of

one input layer that encodes amino acids by their chemical composition. The

authors showed that this allowed them to predict the retention time for modi-

fications that were not included in the training data. The authors also showed a

further generalization of this strategy where they encode amino acids as a

modified form of glycine. This approach is promising for predicting and evalu-

ation of retention times for modified peptides.

LSTM networks are also extremely accurate at predicting other peptide

properties. For example, Meier et al. (2020) recently described a deep learning

strategy for accurate prediction of peptide collisional cross-sections (CCSs) as

measured on the TimsTOF instrument (Meier et al., 2015). This strategy

enabled prediction of peptide CCS values with �1% median relative error,

and SHAP analysis (Lundberg and Lee, 2017) revealed how amino acids

contribute to the observed CCS. As demonstrated for peptide retention time

prediction (Wen et al., 2020b), CCS prediction may prove to be a useful filter

for the peptide identification process.

Deep learning methods for peptide and protein identification

In addition to peptide property prediction, numerous deep learning strategies

have emerged to enable better peptide and protein identification. Deep

learning models are effective in detecting LC-MS features (Kantz et al.,

2019; Zohora et al., 2019), assessing if spectra are high enough quality to be

identified (Ma, 2017), and even predicting which peptides from a protein are

likely observable (i.e., proteotypic) (Serrano et al., 2019). Deep neural networks

are also effective in de novo peptide sequencing (Tran et al., 2017, 2019),

which is essentially the opposite task described for spectrum prediction

above. Instead of asking ‘‘what is the spectra for this peptide?’’ they ask

‘‘what peptide explains this spectra?’’ DeepNovo achieves this using both a

CNN and LSTM to learn features ofMS/MS, fragments, and sequence patterns
eports Methods 1, 100003, June 21, 2021 5



Table 2. Methods for prediction of retention time

Year Name Neural network details Comment Citation

2003 N/A fully connected neural network with 2

hidden layers, 20 inputs and one output

95% of retention predictions

within 10% of the true value

Petritis et al. (2003)

2006 N/A fully connected neural network with 16

inputs, 4 hidden neurons, and 1 output

mean prediction error ~5.8% Shinoda et al. (2006)

2006 N/A 1,052 input nodes, 24 hidden nodes,

1 output node

average elution time precision

of 1.5%

Petritis et al. (2006)

2017 DeepRT feature extraction by LSTM and CNN,

retention prediction from bagged

ensemble of standard prediction

models. Theano (0.9.0 dev1),

Keras (1.0.1), and sklearn (0.17.1)

95% of retention predictions

within 28 min versus best

benchmark of 45.8 min

Ma et al. (2017)

2018 DeepRT+ capsule network (a type of CNN) 95% of retention predictions within

15.7 min versus DeepRT at 24.7 min

or best benchmark of 45.8 min

Ma et al. (2018)

2019 Prosita

(latin for

‘‘of benefit’’)

encoder: bidirectional GRU with dropout

and attention, parallel encoding of

precursor charge and collision energy;

decoder: bidirectional GRU with dropout

and time-distributed dense; multi-output

regression Keras 2.1.1 and TensorFlow

1.4.0

over half a million training peptides

and 21 million MS/MS spectra at

multiple collision energies, predicts

MS/MS spectra and retention time,

integration with database search to

decrease FDR, integration with

Skyline (cite), web tool https://www.

proteomicsdb.org/prosit/

Gessulat et al. (2019)

2019 DeepMassa encoder: three bidirectional LSTM

with 385 units each; decoder: four

fully connected dense layers 768

units each; multi-output regression

TensorFlow v.1.7.0

predicted fragmentation with

accuracy similar to repeated

measure of the same peptide’s

fragmentation. Predicted spectra

used for DIA data analysis nearly

equivalent to spectral libraries

Tiwary et al. (2019)

2019 N/A encoder: bidirectional LSTM with

dropout; iRT model, two dense layers,

tanh, single output regression.

Charge state distribution model,

two dense

layers, softmax activation, multi-output

regression length 5 for charge 1–5.

Spectral prediction model, a time-

distributed dense layer with sigmoid

activation function, multi-output

regression; Keras

predicts retention time, precursor

charge state distribution, and

fragment ion spectra

Guan et al. (2019)

2020 DeepDIAa hybrid CNN and bidirectional LSTM,

CNN first extracts features from

pairs of amino acids, then LSTM,

then dense layer. Multi-output

regression of the b/year ions,

including water/ammonia losses.

Keras 2.2.4 and TensorFlow 1.11

predicts MS/MS spectra and

indexed retention time (iRT).

Slightly more protein identifications

from DIA analysis of Hela proteome

than libraries from DDA or Prosit

Yang et al. (2020)

2020 DeepLC hybrid network: three CNN input

paths (1) one-hot amino acid

sequence, (2) amino acid pairs,

and (3) amino acid composition.

One dense input of peptide features.

Inputs concatenated and processed

through dense layers

predicts retention time for

previously unseen peptide

modifications

Bouwmeester et al.

(2020b)

2020 AutoRT ensemble of 10 best CNN and LSTM,

networks returned by transfer learning.

Keras 2.2.4 and TensorFlow 1.13.1

used predicted retention time as a

filter to assess identification

strategies for mutated peptides

Wen et al. (2020b)

Abbreviations are as follows: FDR, false discovery rate; N/A, not applicable.
aIndicates methods that predict other factors beyond retention time.
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Table 3. Methods for protein and peptide identification

Year Name Neural network details Comment Citation

2012 Barista special type of network or tripartite graph

where layers represent proteins, peptides,

and spectra

protein inference through integration of

protein and peptide identification

Spivak et al. (2012)

2017 DeepPep CNN, torch7 framework predicts peptide probability from binarized

protein sequence, protein scored based on

change in peptide prediction without each

protein

Kim et al. (2017)

2017 DeepNovo LSTM/CNN hybrid network built with

TensorFlow

application to DDA data. Iteratively predicts

one amino acid at each step. Up to 64%

better than previous algorithms

Tran et al. (2017)

2018 DeepMatch bidirectional LSTM, weak supervision spectral prediction integrated with peptide

identification

Schoenholz et al. (2018)

2019 DeepNovo LSTM/CNN hybrid network built with

TensorFlow

adapted to DIA data by incorporating the

retention time dimension

Tran et al. (2018)

2020 DIA-NN ensemble of dense, feedforward classifiers.

Implemented with Cranium DNN

operates with or without a user-supplied

spectral library

Demichev et al. (2020)

2020 DeepRescore uses AutoRT and pDeep2 models generates new scores derived from

comparing observed peptide properties to

deep learning-predicted properties. Those

scores are input to Percolator

Wen et al. (2020b)
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(Tran et al., 2017) (Table 3). DeepNovo outperformed other de novo

sequencing algorithms according to multiple metrics and was able to recon-

struct over 97% of antibody sequences with over 97% accuracy without a

sequence database.

In a subsequent paper, DeepNovo was adapted to identify peptides from

DIA data by incorporating the retention time dimension (Tran et al., 2019).

CNNs learned to embed precursor and fragment ion profiles over time, and

again LSTMnetworks decoded the best matching amino acids. Peptides iden-

tified by DeepNovo-DIA were highly complementary to those found by two

other library-free methods, PECAN (Ting et al., 2017) and DirectDIA.

Compared with these other tools, DeepNovo-DIA did not require any data-

base, and enabled discovery of human leukocyte antigen peptides.

DeepMatch (Schoenholz et al., 2018), mentioned in the tandem mass

spectra prediction section, also directly incorporates the peptide identification

process with their spectral prediction. Another approach related to DeepDIA

(Yang et al., 2020) showed that the supplementation of experimental spectral

libraries with predicted libraries could enable improved coverage of specific

proteins of interest, such as membrane proteins (Lou et al., 2020). Similarly,

Searle et al. (2020) generated libraries in silico but showed that empirically cor-

recting the library further improved the number of detectable peptides. All

these approaches using predicted spectra and retention time used standard

downstream DIA processing tools, e.g., Spectronaut (Bruderer et al., 2015).

The key step in peptide identification is assigning a score that segregates

truematches from decoymatches. Approaches, such as PeptideProphet (Kel-

ler et al., 2002) and Percolator (Käll et al., 2007), build models from multiple

peptide scores or properties to improve the separation of decoys and targets

and increase peptide identification. Deep neural networks were recently

applied to build such a classifier for discrimination of peptide peaks in DIA.

DIA-NN uses multiple interference correction strategies and a simple dense

feedforward neural network to improve peptide identification from DIA exper-

iments (Demichev et al., 2020) (Table 3). DIA-NN significantly outperformed

other tools for peptide identification from DIA data (Gotti et al., 2020). DIA-

NN can operate with or without a spectral library, and is therefore an excellent

addition to our proteomic toolkit.

An extension of the idea to use predicted peptide properties, such as reten-

tion time, to filter peptide identifications (Wen et al., 2020b) is to rather use pre-

dicted peptide properties to re-score peptide identifications. DeepRescore

does exactly this using both predicted retention time and predicted tandem

mass spectra. Compared with DIA-NN that replaces Percolator to learn the dif-
ference between targets and decoys, DeepRescore directly used features

derived from comparison with deep learning-based predictions to add scores

for input to Percolator. This strategy improved the sensitivity and quality of

non-tryptic peptide identifications purified from human leukocyte antigen.

Protein inference has also been tackled with neural networks. An early

example was Barista, which combined protein and peptide identification tasks

into a single goal of optimizing protein identifications (Spivak et al., 2012) (Ta-

ble 3). This approach produced up to 34% more protein identifications than

competing approaches. More recently, an interesting strategy called DeepPep

(Kim et al., 2017) approached protein inference using CNN models trained to

predict the probabilities of identified peptides from binarized protein se-

quences with 1 where peptides match and 0 everywhere else (Table 3).

Once trained, the model was used to predict the peptide probabilities by iter-

atively holding out each of the protein sequence inputs, enabling calculation of

each protein’s importance in explaining the peptide list. DeepPep performed

similar to the five other compared models, and thus provides a new perspec-

tive on protein inference.

DISCUSSION AND FUTURE PROSPECTS

For decades, each proteomic experiment has been treated inde-

pendently of all previous work, requiring de novo re-identification

ofpreviouslyobservedpeptides.This ispartiallydue to theoriginal

data collection strategy for peptide discovery, stochastic DDA. A

recent shift has devoted significant energy to reuse previous pep-

tide identifications (Martens and Vizcaı́no, 2017) and more

comprehensively sample peptides using data collection by DIA.

A shortfall of DIAoriginallywas the requirement for library spectra,

but ingenious strategies based on co-elution of peptide precursor

ions and fragment ions changed this (Tsou et al., 2015), including

for PTM discovery (Meyer et al., 2017). These new deep learning

tools to predict spectra and retention time now remove nearly

all barriers to DIA analysis, and will likely push the field of prote-

omics further toward DIA analysis (Van Puyvelde et al., 2020).

Although we have seen great progress in recent years in the

application of deep learning to proteomics, there are still several
Cell Reports Methods 1, 100003, June 21, 2021 7
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limitations to widespread adoption. First, making predictions

from trained models is feasible on standard computers, but

training new models requires specialized hardware called

graphics processing units, or GPUs. Furthermore, different

deep learning libraries are used for model generations, namely

TensorFlow or PyTorch, and these models are not intercompat-

ible (see ‘‘neural network details’’ columns in Tables 1, 2, and 3).

These requirements are compounded by the need for specialist

scientists who understand the advanced computational require-

ments along with the relevant advanced mass spectrometry de-

tails. These challenges may limit the adoption of deep learning

methods in proteomics but these barriers may be ameliorated

with a shift to public cloud resources (Neely, 2021).

Another limitation in thecurrent proteomicsdeep learning land-

scape is the lack of unified metrics to use for comparing tools.

Currently, each paper has its own comparison between tools us-

ing different datasets and differentmetrics.Machine learning sci-

entists in other fields often create a unified set of tasks to serve as

benchmarks by which new strategies can be compared (for

example, see ImageNet [Krizhevsky et al., 2012]). A common

set of peptides to be used for property prediction tasks for prote-

omics would benefit the field and enablemore direct comparison

across various algorithms. This would also enable more scrutiny

of the reported results as anyone would more easily be able to

verify the performance of an arbitrary algorithm.

A major unexplored opportunity for the application of deep

learning with proteomics is for automating the interpretation of

large omic datasets. This will require framing experiments as

regression or classification problems instead of hypothesis gen-

eration experiments. Interpretation of data by deep learning will

require the production of thousands of proteome examples,

which represents a major barrier given the average throughput

of most experiments. However, recent advances have enabled

much higher throughput proteome quantification, such asmicro-

flow LC (Bian et al., 2020), short gradient LC (Bache et al., 2018),

and even the lack of LC altogether with direct infusion shotgun

proteome analysis (Meyer et al., 2020).

Another potential source of large volumes of data required for

deep learning is from public repositories; there is growing hunger

for machine-readable datasets, including detailed metadata

about the sample preparation, individual treatments, and data

acquisition. Unfortunately, requirements for additional metadata

come at a cost of less desire by researchers to use repositories.

However, increasing the amount of metadata provided with all

studieswouldopenupnewpossibilities in trainingneural networks

for additional tasks. For example, is this concentration of trypsin

associated with observing a specific proteolytic cleavage, or is a

common reagent associatedwith adetrimental artifact?Oracross

similar sample preparation and data collection parameters, can

we learnhowgeneknockouts influence theproteomemoregener-

ally?Thesequestionsmightbecome tractable if availabledatasets

included very detailed metadata. These questions would also be

more tractable if samplepreparation anddata collectionprotocols

were more standardized across labs and continents.

One fascinating example of deep learning for omic data

interpretation completely ignores the peptide and protein identifi-

cationprocessandusesDIAdatamapsas images for sampleclas-

sification by a CNN (Zhang et al., 2020). Instead of learning from
8 Cell Reports Methods 1, 100003, June 21, 2021
curated identitiesofproteinsorpeptidequantities, thisworkshows

that deep learning can directly classify samples into diseased or

healthy conditions from the rawdata. Notably, benign thyroid nod-

uleswere distinguished frompapillary thyroid carcinomawith over

91% accuracy, and the model based on the DIA-based image

(called DIA tensor) performed better than amodel based on quan-

tified proteins. Further work could use model analysis methods to

determine which pixels (corresponding to peptide fragments) are

responsible for the differential classification.

With the explosion of deep learning tools for mass spectrom-

etry in recent years, it will take time for the dust to settle and

reveal those tools that are both easy to use and effective. We

have already seen that integration with Skyline software (Ma-

cLean et al., 2010) has increased adoption and use of Prosit

(Gessulat et al., 2019). It will also take time for experiments to

determine the best ways to incorporate these new tools. For

example, by optimizing the isolation windows for in-silico-pre-

dicted spectral libraries, recent work showed that even an old

Q-Exactive could identify over 7,000 human proteins from a sin-

gle analysis (Doellinger et al., 2020).

In summary, deep learning tools have transformed the field of

proteomics over the last few years, and will likely be ingrained in

all aspects of proteomics for the foreseeable future.
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