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ABSTRACT

In some dimeric cases of transcription factor (TF)
binding, the specificity of dimeric motifs has been
observed to differ notably from what would be ex-
pected were the two factors to bind to DNA indepen-
dently of each other. Current motif discovery meth-
ods are unable to learn monomeric and dimeric mo-
tifs in modular fashion such that deviations from
the expected motif would become explicit and the
noise from dimeric occurrences would not corrupt
monomeric models. We propose a novel modeling
technique and an expectation maximization algo-
rithm, implemented as software tool MODER, for
discovering monomeric TF binding motifs and their
dimeric combinations. Given training data and seeds
for monomeric motifs, the algorithm learns in the
same probabilistic framework a mixture model which
represents monomeric motifs as standard position-
specific probability matrices (PPMs), and dimeric
motifs as pairs of monomeric PPMs, with associ-
ated orientation and spacing preferences. For dimers
the model represents deviations from pure modular
model of two independent monomers, thus making
co-operative binding effects explicit. MODER can an-
alyze in reasonable time tens of Mbps of training
data. We validated the tool on HT-SELEX and ChIP-
seq data. Our findings include some TFs whose ex-
pected model has palindromic symmetry but the ob-
served model is directional.

INTRODUCTION

In transcriptional regulation, proteins called transcription
factors (TFs) bind to specific DNA motifs, to have a regula-
tory effect on the transcription rate of particular genes. The
regulating TFs may bind co-operatively in clusters of two
or more factors which makes the regulation combinatorial
by nature (1–4). Therefore, it is of interest not only to find
the binding motifs for individual monomeric TFs but also
motifs for dimeric and higher order co-operative binding
of several TFs on the same regulatory area in DNA. With
the massive training data currently available from, e.g. high-
throughput SELEX (5,6) and ChIP-seq experiments (7), it is
possible to learn complex binding models from quite weak
signals.

In a large number of dimeric cases of TF binding, the
specificity of the dimeric motif has recently been observed
to differ notably from what would be expected were the
two factors to bind to DNA independently of each other
(4,6,8). Current automatic motif discovery tools do not
learn monomeric and dimeric motifs soundly within one
probabilistic framework in modular fashion such that the
effects of co-operative binding on motifs could be shown
and analyzed. In this paper, we propose such a learning
algorithm and a software tool for modular discovery of
monomeric and dimeric binding motifs for TFs.

The algorithm uses a class of probabilistic mixture mod-
els for (possibly multi-profile) monomeric binding motifs
and all their dimeric combinations. Our model represents
each monomeric motif as a standard position-specific prob-
ability matrix (PPM) (9,10). Each dimeric motif is repre-
sented in modular fashion as a pair of monomeric PPMs,
with associated information on the relative orientation and
spacing of the two monomeric components. In our model,
the monomeric components need not be spatially separate
but their sites may overlap; such overlaps have been re-
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ported, e.g. in (4,11). A novel feature of our model is that it
includes a deviation matrix that represents explicitly how
much the discovered dimeric PPM deviates from the ex-
pected PPM for independent component monomers. An-
other novelty is that monomeric and dimeric models are
learned such that the effect of the noise from dimeric oc-
currences on monomeric models is minimized. Moreover,
the mixing parameters of the model reveal the relative abun-
dances of different motif combinations. In particular, the
mixing parameters for the dimeric variants give precise
quantitative indication of orientation and spacing prefer-
ences of the two monomers that make the dimer.

For learning our binding model we describe an expecta-
tion maximization (EM) algorithm (12), called MODER
(MOtif DEtectoR). Given a data set of sequences that
contain enriched motif instances, MODER learns by EM
search the parameters of all model components simultane-
ously, as a mixture of several PPMs, by optimizing the align-
ment of the model with the training data using maximum
likelihood estimation. The EM search is initialized with
user-given seed sequences for the monomeric profiles of the
model. It finds PPMs for the monomers as well as for their
dimeric combinations within given range of spacings and
orientations. Higher-order combinations are not included,
as it would exponentially increase the complexity and the
size of the model. Monomer PPMs are learned using prun-
ing techniques that minimize contamination from near-by
motifs occurrences and from background. The requirement
to provide seeds is a limitation of MODER which depends
on prior knowledge (such as motif databases) or the use
of other motif discovery algorithms. On the other hand,
seed-based initialization makes MODER fast and capable
of processing in reasonable time a training data consisting
of sequences that are hundreds of bps long and are several
Mbps in total size. MODER was designed for motif discov-
ery from HT-SELEX reads, but other type of training data,
such as ChIP-seq data sets, can be used as well.

Validation experiments of MODER show robust and fast
performance both on HT-SELEX and ChIP-seq data. We
applied MODER on six HT-SELEX data sets, each con-
sisting of 105–106 reads of length 30 or 40, and found
varying amounts of difference between observed and ex-
pected motifs: for example, for factors FLI1 and PKNOX2
the expected homodimeric model has palindromic symme-
try but the observed model is directional, reconfirming an
earlier observation in (6). From ChIP-seq data MODER
finds for factor CTCF essentially the same dimeric model
as reported in (13,14), and for modular receptor RXRA
a dimeric model that the Tomtom tool (15) matches with
a known RXRA heterodimer. For factor NRSF, MODER
finds from ChIP-seq data essentially the same multi-profile
model as in (16).

In previous research, a dimer model quite similar to
ours but without explicit modular structure and overlaps of
monomers within dimers was introduced, with an entropy
minimization learning algorithm Bipad/Maskminent (17–
19). Discovery of spaced dyads (pairs of relatively short mo-
tifs) was considered in (20,21). Gibbs sampling based Bio-
Prospector (22) is another early dimer search algorithm. Re-
cent dimer prediction methods include SpaMo (23), iTFs
(24), and TACO (25). All start from given monomeric PPMs

and find, using thresholding, the occurrence sites of the
PPMs in the training data. Then enrichment of specific
spacings of pairs of occurrences is detected, with an anal-
ysis of the statistical significance but without an analysis
of co-operative effects of dimer components. SpaMo was
designed for finding preferred distances between the site of
the primary TF and the sites of secondary TFs in ChIP-seq
data. The dimer model of iTFs includes relative orientation
of the components but it does not consider overlaps and
uses binned distances. Finally, TACO’s model includes ori-
entation and distance and allows the components to over-
lap, but does not analyze the effect of overlap on the binding
profile.

Using the EM algorithm in motif discovery was initiated
by Lawrence and Reilly (26) and was used for finding mo-
tifs with spacers by Cardon and Stormo (27). The mixture
model and the EM learning of MODER generalize the tech-
niques of MEME (28,29) to multi-profile dimeric case. As
compared to MEME, an important feature of MODER is
that it learns all submodels simultaneously, using all train-
ing data symmetrically. coMOTIF (30) is another simul-
taneous multi-profile motif finder based EM algorithm. It
does not, however, keep track of the distances between bind-
ing sites and does not allow overlaps of binding sites, nor
does it have the modeling of deviation or learning of the
motif in the gap positions between the dimer components.
MODER can be seen as a generalization of coMOTIF. Re-
cent EM algorithm based finders of monomer motifs in-
clude GADEM and rGADEM (31,32) which use genetic
algorithm with EM to improve starting PPMs, SEME (33)
which uses importance sampling to speed-up the search,
EXTREME (16) which achieves speed-up by using the on–
line version of the EM algorithm, and STEME (34) which
resorts to suffix-trees. Moreover, Liu et al. (35) use Gibbs
sampling and Ikebata and Yoshida (36) use a repulsive
MCMC version of MEME type search for simultaneous
discovery of several motifs, Alipanahi et al. (37) use deep
learning for motif discovery with good validation results
but non-modular structure of the underlying model, and
Colombo and Vlassis (38) find monomeric motifs with a
fast spectral learning algorithm. Recent motif finders spe-
cially designed for large ChIP-seq data include rGADEM
(32), HOMER (39), ChIP-Munk (40), and MEME-ChIP
(41), evaluated in (42).

In the rest of the paper, the next section defines the mix-
ture model of MODER, the next one gives the associated
EM algorithm for estimating the model parameters, then
our implementation of MODER is described, with tech-
niques to initialize and prune the search, and finally we re-
port some validation and comparison experiments and dis-
cuss motifs found by MODER for TFs FLI1, HOXB13,
HNF4A, TFAP2A, FOXC1, PKNOX2, NRSF, CTCF and
RXRA.

MATERIALS AND METHODS

Model structure

The binding affinity model learned by MODER, specified
by parameters η = (�, � , �), gives a probability distribution
for sequences in some alphabet �. We will use always the
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DNA alphabet � = {A, C, G, T} but the model works for
arbitrary alphabets.

Model η is a mixture of distributions for monomeric se-
quences that contain one occurrence of a monomeric mo-
tif, and distributions for dimeric sequences that contain
two monomeric motifs in a specific relative orientation
and spacing, and a distribution for background sequences.
Monomeric distributions are built from the PPMs of the
monomers and the background. For all orientation and
spacing alternatives between the two monomers in a dimer,
dimeric distributions are built either from the PPMs of the
monomers and the background or from the PPM of the en-
tire dimer and the background. If the two monomers of
a dimer do not overlap and have a long gap in between,
then the dimeric distribution is just the product of the two
monomer PPMs, that is, the model assumes that there is
no co-operative effect affecting the independence of the
two binding profiles. If the monomers overlap or the gap
between them is short, then the binding profiles of two
monomers do not necessarily remain independent. There
can be interaction between the components of a dimer as
they may physically contact each other, or the interaction
can be DNA mediated (4). Therefore the model allows devi-
ating from pure reduction to monomer PPMs and also rep-
resents, using the so-called deviation matrix, how the PPM
learned from data differs from the product of monomer
PPMs which would be the expected model if there are no
interactions.

The three parameter groups of η = (�, � , �) and the
parametrization of the dimeric structures are defined in de-
tail in the following subsections.

Monomeric PPMs θk and background θ0. Parameter θ =
(θ0, θ1, . . . , θp) gives the background distribution θ0 and p
monomeric motifs �k. Each θk, k �= 0, is a 4 × �k PPM

θk =

⎡
⎢⎢⎣

θ
A,1
k θ

A,2
k · · · θ

A,�k
k

θ
C,1
k θ

C,2
k · · · θ

C,�k
k

θ
G,1
k θ

G,2
k · · · θ

G,�k
k

θ
T,1
k θ

T,2
k · · · θ

T,�k
k

⎤
⎥⎥⎦,

where θ
a,h
k := θk[a, h] gives the probability for an alphabet

symbol (nucleotide) a to occur in position h of θk, and �k

denotes the length of θk. The reverse complement θ−1
k of θk

is a PPM such that θ−1
k [a, h] = θk[ā, �k − h + 1] for each a

and h, where ā is the complementary base of a (e.g., A = T).
The mononucleotide background model θ0 =

[θA
0 , θC

0 , θG
0 , θT

0 ]T gives the occurrence probabilities of
each alphabet symbol in a position that is outside the
occurrences of monomers or dimers. The background
model is position-independent.

Dimer specification k1k2od. The model uses monomeric
motifs �k as building blocks of dimeric motifs. The possi-
ble dimeric motifs are indexed with quadruples (k1, k2, o, d)
which we abbreviate as k1k2od (this should not be confused
with the multiplication of these symbols). A dimer with in-
dex k1k2od is composed of monomers θk1 and θk2 whose ori-
entation is o and distance (spacing) from the end of θk1 to
the start of θk2 is d, where o = (o1, o2) ∈ �k1k2 and d ∈ �k1k2 .

Figure 1. Parametrization of dimeric structures. On top, a non-overlapping
dimer with spacing d and head-to-tail orientation. Parameter � gives the
lower bound such that monomers separated by a space ≥� are assumed
independent. Below, a dimer with reversed first monomer and overlap of
length d. When d < �, the model also includes the bridging PPM � that
covers the bridging segment of the dimer.

Table 1. Relative orientation of two motif occurrences within a dimer

Orientation o Short-hand o1 o2

Head-to-Tail HT → → +1 +1
Head-to-Head HH → ← +1 −1
Tail-to-Tail TT ← → −1 +1
Tail-to-Head TH ← ← −1 −1

Exponents o1 and o2 give the orientation of the first and the second PPM:
for a PPM �k, θ+1

k leaves the matrix intact but θ−1
k takes the reverse com-

plement.

Because of co-operative binding effects, monomer motifs
alone are not enough for building dimeric models. To model
such effects we will use an additional PPM (see the next sub-
section) that covers the middle area of the dimer, called the
bridging segment. Figure 1 illustrates our parametrization
of dimeric structures; cf. (17).

The set of possible pairwise orientations o is �k1k2 =
{HT, HH, TT} if k1 = k2 (homodimer), and �k1k2 =
{HT, HH, TT, TH} otherwise (heterodimer). Table 1 de-
scribes different orientations o = (o1, o2) giving the direc-
tions of motifs θk1 and θk2 . Note that for homodimers the
orientations HT and TH are identical, and one can use HT
to represent them both. We assume that motif θk1 always
occurs before motif θk2 when moving from 5′ end to 3′ end
and using motif start position as reference point. The re-
verse order of the two motifs transforms back to this case
by considering the complementary strand.

The possible distances between the two occurrences are
given as an interval �k1k2 = [dmin(k1, k2), dmax(k1, k2)]. If
d ∈ �k1k2 is non-negative, it gives the number of gap po-
sitions between the two occurrences. If d < 0, then the
occurrences overlap by −d positions. The smallest pos-
sible distance dmin(k1, k2) has to be > −�k1 . MODER
implementation uses (optionally adjustable) default value
dmin(k1, k2) = − min(�k1, �k2 )/2, that is, overlaps only up to
half of the length of the monomers are allowed. The longest
distance possible for sequences of maximum length Lmax is
dmax(k1, k2) = Lmax − �k1 − �k2 .

We use parameter �≥ 0 to give the minimum spacing such
that if the space between the two monomers of a dimer is ≥�
then the monomer profiles are assumed independent, i.e. in
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this case the model ignores the possible co-operative inter-
actions that would change the binding preferences of the
two TFs or the gap between them. Parameter � is a user-
given constant (default value � = 4 in our implementation).

In what follows, we refer to the available monomeric and
dimeric motifs with index k that may belong to the following
three separate sets:

M = {1, . . . , p}: the indices for monomeric motifs.
D+ = {k1k2od: d ≥ �, k1, k2 ∈ M}: the indices for dimeric

motifs whose monomers θk1 and θk2 have a gap of length ≥�
in between. This is called the independent case.

D− = {k1k2od: d < �, k1, k2 ∈ M}: the indices for dimeric
motifs whose monomers θk1 and θk2 have a gap of length <�
in between. This is called the dependent case. Note that this
case includes dimers whose monomers overlap.

Dimeric PPMs τ k1k2od, bridging PPMs ψk1k2od and devi-
ation matrices κk1k2od. We use τk1k2od to denote the PPM
(which is a 4 × (�k1 + �k2 + d) matrix) for motif k1k2od ∈
D+∪D−. Each τk1k2od is a derived parameter, composed of
free parameters, such that if k1k2od ∈ D+ then τk1k2od is built
from θk1 , θk2 , and background �0, and if k1k2od ∈ D− then
τk1k2od is built from θk1 , θk2 , and the bridging PPM ψk1k2od to
be defined below. Constructions are as follows.

If k1k2od ∈ D+, then we put simply

τk1k2od = θ
o1
k1

• θ0 • . . . • θ0 • θ
o2
k2

(1)

where • concatenates matrices. There are d column-matrices
�0 in the middle of τk1k2od , that is, the middle gap is filled with
the background.

If k1k2od ∈ D−, then a middle segment of τk1k2od is a free
parameter learned from data: for d < 0, the columns that are
on the overlap area (plus one more column on both sides)
are free parameters, and for 0 ≤ d < �, the columns that are
on the area between the monomers (plus one more column
on both sides) are free parameters. This area of length |d|
+ 2 in the middle of a dimer is called the bridging segment,
and the 4 × (|d| + 2) PPM for the bridging segment is called
the bridging PPM. We let ψk1k2od denote the bridging PPM.
Now, the columns of τk1k2od that cover the bridging segment
come from ψk1k2od while the columns outside this segment
are supposed to reduce to the monomer motifs, i.e. they are
as in the implied prefix and suffix segments of monomer ma-
trices θ

o1
k1

and θ
o2
k2

. So we get

τk1k2od = θ
o1
k1

[·, 1 : �k1 + min(d, 0) − 1)] • ψk1k2od

• θ
o2
k2

[·, max(0,−d) + 2 : �k2 ].
(2)

Next, we make it explicit how PPM τk1k2od differs from
the PPM that would be expected were the monomer motifs
independent in the dimer. We denote such an expected PPM
as Ek1k2od . It models the situation that motifs θ f = θ

o1
k1

and
θr = θ

o2
k2

have independent instances at distance d from each
other in sequences a1a2 · · · a�k1 +�k2 +d with an occurrence of
�f at the left end and �r at the right end.

Let first d ≥ 0. Consider the occurrence probability P(ai)
of the ith symbol ai. Obviously, if i ≤ �k1 , then P(ai) = �f[ai,
i]; if �k1 < i ≤ �k1 + d, then P(ai) = �0(ai), i.e., we expect
to see the background distribution between the two mo-
tifs; and if i > �k1 + d, then P(ai ) = θr [ai , i − �k1 − d]. This

means that Ek1k2od is just �f followed by d columns, each
equal to �0, followed by �r; c.f., the definition of τk1k2od in
the independent case (1).

Let then d < 0, i.e., the motifs overlap by |d| symbols. Con-
sider again the probability P(ai). If i ≤ �ki + d, then P(ai)
= �f[ai, i], and hence the ith column of the expected PPM
is Ek1k2od [·, i ] = θ f [·, i ]. Similarly, if i > �k1 , then P(ai ) =
θr [ai , i − (�k1 + d)], and hence Ek1k2od [·, i ] = θr [·, i − (�k1 +
d)]. In the remaining case we have �k1 + d < i ≤ �k1 , and the
ith symbol ai belongs to the area where the two motifs over-
lap. Hence ai is generated by both �f and �r, under the con-
dition that both generate the same symbol because in the
overlapping area the two motifs have to coincide. Therefore
P(ai) would be equal to θ f [ai , i ]θr [ai , i − (�k1 + d)], normal-
ized by the condition that both motifs generate the same
symbol. This gives

P(ai ) = θ f [ai , i ]θr [ai , i − (�k1 + d)]∑
c∈� θ f [c, i ]θr [c, i − (�k1 + d)]

, (3)

and therefore the ith column becomes

Ek1k2od [·, i ] = θ f [·, i ]θr [·, i − (�k1 + d)]∑
c∈� θ f [c, i ]θr [c, i − (�k1 + d)]

, (4)

where × denotes element-wise product.
Finally, the deviation matrix κk1k2od , defined as

κk1k2od = τk1k2od − Ek1k2od ,

gives the difference between observed and expected model.
Deviation matrices will be visualized using a variant of the
sequence logo in which positive values are shown above a
separating line and negative values below it, see Figure 2.
Note also that the expected PPM of homodimers is always
palindrome symmetric for orientations HH and TT.

Mixing parameters λ. Mixing parameters � = {�k: k ∈
{0}∪M∪D+∪D−} give the probability of each component
of the mixture as follows:

�k, k ∈ M, is the probability that the sequence contains
exactly one monomeric occurrence of motif �k and no other
occurrences.

�k, k = k1k2od ∈ D+∪D−, is the probability that the se-
quence contains exactly one occurrence of motif τk1k2od and
no occurrences of other motifs.

�0 is the probability that the sequence contains no motif
occurrences.

For each pair (k1, k2), the array (λk1k2od )o∈�k1k2 ,d∈�k1k2
of

mixing parameter values is called the co-operative binding
table (COB table) of motifs θk1 and θk2 . The values in a COB
table indicate the orientation and spacing preferences of the
dimeric structures that are composed of θk1 and θk2 .

Figure 2 illustrates model η for binding motifs of TF
FLI1.

Learning by expectation maximization

Given a training data set X = {X1, X2, . . . , Xn} consisting of
n DNA sequences Xi = Xi1 · · · Xi Li , where Li is the length
of the ith sequence, we use the EM algorithm (12,28) to find
model parameters η which maximize the expectation of the
likelihood L(η|X, Z) = P(X, Z|η), where latent variables Z
give the ’missing information’ used by an EM algorithm.
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Figure 2. Example model η for factor FLI1. The model was learned by MODER from a HT-SELEX data set (PRJEB14550, 143 389 reads of length 40),
see Section Validation results. (A) Monomeric PPM �1 with original seed ACCGGAAGTN. (B) Dimeric PPM τ1,1,HH,−6 with (above) the seed and arrows
indicating the orientation, and (below) horizontal bar indicating the bridging segment, and deviation matrix κ1,1,HH,−6 with the positive values visualized
above and the negative values below the horizontal line. (C) Dimeric PPM τ1,1,HH,1 and its deviation matrix. (D) Background PPM �0. (E) Mixture break-
down into monomer, all dimers, and background. For example, 0.21 is the sum of mixing parameter values �k, k ∈ D+∪D−. Note that the proportion of
background is larger than the signal, because data from an early SELEX cycle with lots of background was used. (F) Heat map of COB table (�1, 1, o, d) for
homodimers of FLI1, giving the break-down into individual dimers and indicating that τ1,1,HH,−6 (panel b), τ1,1,HH,1 (panel c), and τ1,1,HH,2 are the strongest
dimers. Horizontal axis gives the distance d, and a cell with no value indicates that the corresponding dimeric case was pruned during the EM search; see
Section Pruning the search. The units in the COB table are integer multiples of 0.001.

Latent variables are 0–1-valued random variables that in-
dicate how the data X is aligned to the model. To align Xi,
there are latent variables Zik ·, k ∈ {0}∪M∪D+∪D−, with
exactly one of them having value 1, that code the alignment
as follows.

Case Zi0 = 1: Sequence Xi has no occurrences of motifs
and is generated by the background model �0 alone.

Case Zikj = 1: If k ∈ M, then the sequence Xi has an occur-
rence of motif �k starting at position j. The rest of Xi is gen-
erated by the background model. If k = k1k2od ∈ D+∪D−
then the sequence Xi has an occurrence of motif � k at posi-
tion j, that is, an occurrence of motif θk1 at position j and an
occurrence of motif θk2 at j + �k1 + d such that the occur-
rences of θk1 and θk2 have relative orientation o.

We denote by Sik the set of positions j at which motif
k may occur in Xi. For k ∈ M we have Sik = {1, . . . , Li
− �k + 1}, and for k = k1k2od ∈ D+∪D−, Sik = Sik1k2od =
{1, . . . , Li − (�k1 + �k2 + d) + 1}.

The probability of Xi in model η, given the missing in-
formation Zi ·, is straightforward to evaluate as follows. If
sequence Xi contains no motif occurrences, i.e. Zi0 = 1, its
probability is

P(Xi |Zi0 = 1, η) =
Li∏

h=1

θ0[Xih ]. (5)

If the sequence Xi contains one motif occurrence, i.e. Zikj
= 1 for some k ∈ M, j ∈ Sik, its probability is

P(Xi |Zikj = 1, η) =
∏
h∈B1

θ0[Xih ] ·
�k∏

h=1

θk[Xi, j+h−1, h], (6)

where B1 = {1, . . . , Li}\[j, j + �k).
For the dimeric binding we have two cases: independent

(d ≥ �) and dependent (d < �). Let first k = k1k2od ∈ D+.
Define the set B2 = {1, . . . , Li } \ (

[ j, j + �k1 ) ∪ [ j + �k1 +
d, j + (�k1 + �k2 + d))

)
. Then the probability of Xi is

P(Xi |Zikj = 1, η) =
∏
h∈B2

θ0[Xih ]

·
�k1∏

h=1

θ
o1
k1

[Xi, j+h−1, h] ·
�k2∏

h=1

θ
o2
k2

[Xi, j+�k1 +d+h−1, h]. (7)

Let then k = k1k2od ∈ D−. The probability of Xi is

P(Xi |Zikj = 1, η) =
∏

h∈B2
θ0[Xih ] ·

�k1 +�k2 +d∏
h=1

τk1k2od [Xi, j+h−1, h]. (8)

Recall from (2) that τk1k2od is composed of bridging PPM
ψk1k2od in the middle and of flanking segments taken from
PPMs θk1 and θk2 .
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Now the joint likelihood of the model parameters, given
data X and missing information Z, is the product of mixture
probabilities of each Xi:

L(η|X, Z) = P(X, Z|η) =
n∏

i=1

(
Zi0 · λ0 · P(Xi |Zi0 = 1, η)

+
∑

k∈M∪D+∪D−

∑
j∈Sik

Zikj · λk

|Sik| · P(Xi |Zikj = 1, η)
)
.

It is important to note here that, to simplify notation, we
have ignored the fact that we should consider motif occur-
rences appearing in the reverse DNA strand as well. For this
algorithm to work in the two-stranded case, a new index
should be added, which specifies the direction (+1 or –1) of
a monomer or a dimer occurrence. Then in all the places
where we sum over j, we should sum over the directions as
well. Moreover, to make sure that the probabilities add up
to one, an additional division by two should be performed
where we currently divide by |Sik|.

As for each i, exactly one of the latent values Zi · equals 1
and the others are zeros, the log-likelihood has the following
form:

log P(X, Z|η) =
n∑

i=1

[
Zi0 log

(
λ0 P(Xi |Zi0 = 1, η)

)

+
∑

k∈M∪D+∪D−
j∈Sik

Zikj log
( λk

|Sik| P(Xi |Zikj = 1, η)
)]

. (9)

The EM algorithm repeatedly applies the following rule
to update η = (�, �, �) until convergence:

η(t+1) := arg max
η

EZ|X,η(t) log P(X, Z|η(t)).

One iteration of the algorithm, indexed with t, consists of
an E-step and an M-step. These steps are described next.

Expectation step

E-step finds the expectation of log-likelihood (9) for current
parameter values η(t). By linearity of expectation, this re-
duces to finding the expected values zi · of latent variables
Zi ·. By noting that 0 and 1 are the only possible values of
a latent variable, and by applying the Bayes rule, one can
see that the expected values and hence the update rule of
the E-step becomes, for k ∈ {0}∪M∪D+∪D− and j ∈ Sik, as
follows:

z(t)
i0 := E[Zi0|X, η(t)] = P(Zi0 = 1|Xi , η

(t))

= λ
(t)
0 · P(Xi |Zi0 = 1, η(t))

P(Xi |η(t))
, (10)

z(t)
ikj := E[Zikj |X, η(t)] = P(Zikj = 1|Xi , η

(t))

= λ
(t)
k /|Sik| · P(Xi |Zikj = 1, η(t))

P(Xi |η(t))
. (11)

Here, probability P(Xi|Zi0 = 1, η(t)) is given by (5) and prob-
ability P(Xi|Zikj = 1, η(t)) by (6), (7) or (8), and

P(Xi |η(t)) = λ
(t)
0 · P(Xi |Zi0 = 1, η(t))

+
∑

k∈M∪D+∪D−
j∈Sik

λ
(t)
k /|Sik|·P(Xi |Zikj=1, η(t)). (12)

Maximization step

M-step maximizes the expectation of log-likelihood for cur-
rent z(t) by updating parameters η = (�, � , �). The form of
log-likelihood (9) is such that the M-step is of Baum–Welch
type: parameters are updated by normalizing the expected
counts of using different components of the model when X
is aligned to the model according to z(t).

The update rules for mixing parameters become:

λ
(t+1)
0 := 1

n

n∑
i=1

z(t)
i0 , and (13)

λ
(t+1)
k := 1

n

n∑
i=1

∑
j∈Sik

z(t)
ikj , k ∈ M ∪ D+ ∪ D−. (14)

To update � and � we first accumulate the expected
counts of how many times each mixture component is used
when X is aligned with η(t). For all k ∈ M, we get the 4 × �k
matrices of expected counts of the monomer motifs as

Wk =
n∑

i=1

[ ∑
j∈Sik

z(t)
ikj I�k(i, j )

+ ∑
kk′od∈D+

∑
j∈Sikk′od

z(t)
ikk′od j Io1

�k
(i, j )

+ ∑
k′kod∈D+

∑
j∈Sik′kod

z(t)
ik′kod j Io2

�k
(i, j + �k′ + d)

]
.

Here I�k(i, j ) is 4 × �k matrix-valued indicator function
such that I�k(i, j )[a, h] = 1 if Xi[j + h − 1] = a, and other-
wise I�k(i, j )[a, h] = 0. Again, I−1

�k
(i, j ) is the reverse com-

plement of I�k(i, j ). Note that the above aggregation of Wk
implements the modularity of binding: a monomer model
�k gets its counts from monomeric occurrences of �k as
well as from occurrences of �k as an independent compo-
nent of a dimer. Since the monomer models are not learned
from the overlapping cases, there is no coupling between
the monomers and the deviations matrices, i.e. both are
uniquely defined.

For k ∈ D−, the 4 × (�k1 + �k2 + d) matrix of the expected
counts is

Wk = Wk1k2od =
n∑

i=1

∑
j∈Sik1k2od

z(t)
ik1k2od j I�k1 +�k2 +d (i, j ).

According to our modularity constraint the columns of
Wk1k2od that are outside the bridging segment should be
modeled with θk1 and θk2 . They should therefore be added
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to Wk1 and Wk2 as follows

Wo1
k1

[·, 1 : �k1 + min(d, 0) − 1] +=
Wk1k2od [·, 1 : �k1 + min(d, 0) − 1], (15)

Wo2
k2

[·, max(−d, 0) + 2 : �k2 ] +=
Wk1k2od [·, �k1 + max(d, 0) + 2 : �k1 + �k2 + d]. (16)

The count vector of the background model is obtained as

W0 = QX −
∑
k∈M

�k∑
h=1

Wk[·, h]

−
∑

k1k2od∈D−

�k1 +1+max(d,0)∑
h=�k1 +min(d,0)

Wk1k2od [·, h],

where QX = [QA
X, QC

X, QG
X, QT

X]T is the column-vector of
total counts of alphabet symbols in the data set X.

When normalized column-wise, the matrices Wk (with
pseudo-counts possibly added) give updated �k for k ∈
{0}∪M:

θ
(t+1)
0 [·] := W0[·]∑

a∈� W0[a]
, (17)

θ
(t+1)
k [·, h] := Wk[·, h]∑

a∈� Wk[a, h]
. (18)

Similarly, the bridging segments of Wk, k = k1k2od ∈ D−,
give updated bridging PPMs � k:

ψ
(t+1)
k1k2od [·, h] :=

Wk1k2od [·, h + �k1 + min(d, 0) − 1]∑
a∈� Wk1k2od [a, h + �k1 + min(d, 0) − 1]

, (19)

where h = 1, . . . , |d| + 2.

Implementation of MODER

In this section we give practical details of our implementa-
tion of the MODER algorithm and provide some modifica-
tions to improve its efficiency.

Input. The input of MODER consists of the following
items.

(1) Data set X that consists of DNA sequences X1, X2, . . . ,
Xn, with |Xi| = Li for all i = 1, . . . , n.

(2) The seeds s1, s2, . . . , sp. Each sk is an IUPAC sequence of
length |sk| = �k. Seeds should be high-affinity represen-
tative sequences, one for each monomeric motif to be
learned from data X. They will be used for constructing
initial values for PPMs �k.

(3) Set R⊂{1, 2, . . . , p}2 of pairs that restrict the set of
dimeric motifs represented in η. MODER learns only
dimers k1k2od such that (k1, k2) is in R.

(4) Minimum gap length in dimers whose monomers are
assumed independent, �; maximum number of EM-
iterations, maxiter; and the convergence threshold for
parameter change in consecutive EM-iterations, �.

EM iterations. As the EM algorithm converges to a local
optimum, it is crucial to use good initial values for the pa-
rameters. Initial PPMs θ

(1)
1 , . . . , θ

(1)
p are obtained from input

data X and seeds s1, . . . , sp using the multinomial method
(5). Initial bridging PPMs ψ

(1)
k1k2od are obtained from input

data X and combined seeds s(1)
k1k2od using the multinomial

method. A combined seed is constructed by orienting seeds
sk1 and sk2 according to o, spacing them by d symbols, and
replacing the symbols in the bridging segment by the neu-
tral IUPAC symbol N. This gives sequence y. Then the com-
bined seed s(1)

k1k2od is the highest counting non-palindromic
subsequence of input data X that matches with y. A non-
palindromic seed makes it possible for the EM search to
break the symmetry and find non-palindromic PPMs. Back-
ground model is initialized as θ

(1)
0 := QX/|QX| where QX =

[QA
X, QC

X, QG
X, QT

X]T is the column-vector of total counts of
alphabet symbols in X. The mixing parameters �(1) are ini-
tialized as follows:

• λ
(1)
0 := 0.5,

• λ
(1)
k :=

{
0.3/p if R is non-empty and
0.5/p otherwise, for all k ∈ {1, . . . , p},

• λ
(1)
k1k2

:= 0.2/|R|, for all (k1, k2) ∈ R. Within a COB ta-
ble the value 0.2/|R| is divided evenly among the cells as
λ

(1)
k2k2od := λ

(1)
k1k2

/(|�k1k2 | · |�k1k2 |).

The EM iterations then proceed as follows:

It should be noted that the above algorithm outputs the
deviation matrix � just for completeness. As � is a derived
parameter, it could be evaluated from � and � in a post-
processing phase as well.

Pruning the search. MODER implementation makes
some heuristic modifications to the EM framework of Sec-
tion 3 in order to speed-up the search and to utilize prior
knowledge of data quality.

First, as the information content of well-known binding
affinity PPMs is on average quite high while low informa-
tion content may indicate contamination from background,
MODER trims during the EM all overlapping dimeric mix-
ture components k whose average column-wise information
content in the overlapping area goes below a threshold (de-
fault 0.40 bits). This is done by setting �k := 0. Similarly, any
dimeric component k whose �k gets below a small threshold
(default 0.001) is eliminated as k is too weak. Blank entries
of COB tables indicate eliminated dimers.
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Second, MODER learns new values θ
(t+1)
1 , . . . , θ

(t+1)
p of

monomeric PPMs not from the full data but from dimeric
occurrences of the monomer such that the distance d be-
tween the components is large enough (default d ≥ � = 4).
This is because such isolated occurrences within a dimer are
supposed to give the best data for a monomer PPM, not dis-
torted by close-by other sites such as the other component
of a dimer. However, if the share of these dimeric cases in
the mixture is less than 0.02, then the dimeric data is treated
too small. In this case distances d ≥ 0 are included into the
analysis.

The third modification is motivated by the fact that tran-
scription factors may have different binding motifs whose
consensus sequences are only a few Hamming steps apart.
To minimize disturbance from such similar motifs and from
background, MODER tends to restrict the learning of
PPMs θ

(t+1)
k and ψ

(t+1)
k to high-affinity training sequences.

Such sequences are identified by the heuristic rule that they
are in small Hamming neighbourhood of the consensus se-
quences (sequences with highest probability) of the PPMs
found so far. Monomer PPM θ

(t+1)
k is learned from data

sites that are in the 1-Hamming neighbourhood of the seed
(using the consensus sequence as the seed) of θ

(t)
k . Bridg-

ing PPM ψ
(t+1)
k1k2od is learned from data sites that are in the

1-Hamming neighbourhood of combined seed s(t)
k1k2od . The

combined seed is obtained as the initial combined seed
s(1)

k1k2od (see Section EM Iterations) but using the seeds of θ
(t)
k1

and θ
(t)
k2

. MODER uses this seed-guided EM search by de-
fault, with the standard search as an option.

RESULTS

Generated data

As an initial sanity test we created a model η, generated
a data set using it, and checked that MODER is able to
learn η back from the generated data. We first created
one monomeric PPM and deviation matrices �HH − 4 and
�HT − 4. From these we constructed a model that had uni-
form background (� = 0.71) and PPMs for homodimers
HH 5 (� = 0.12), HH –4 (0.08) and HT –4 (0.09). Using this
model, we generated 100 000 sequences of length 40 bp. The
sequences contained dimeric motifs and background only,
no monomeric sequences were included. MODER accu-
rately relearned the model from this data as the learned pa-
rameter values deviated from the original at most by 0.036;
see Supplementary Figure S1 for details.

Validation using HT-SELEX data

Next we measured the quality of PPM models produced by
MODER using correlation (R2) between occurrence counts
and PPM scores of 8–mers or 10–mers of SELEX data.
When counting the k–mers, all occurrences and both direc-
tions were considered. As the score of a k-mer x by a single
PPM 	 we used the maximum value of log ρ ′(y)

θ0(y) when y and
	 ′ go over all intersections of 	 and x and of 	 and reverse
complement x. As the score of x by a mixture of PPMs 	 1,
. . . , 	 t, whose mixing parameters by MODER are �1, . . . , �t,

we used �1S1 + ··· + �tSt where S1, . . . , St are the individ-
ual scores of x by the PPMs. The scatter plots in the figures
visualize the counts and scores of different 8- or 10-mers
in hexagonal bins. The color of a bin reflects the number
of different k–mers in that bin, with a darker color mean-
ing higher number of different k–mers. As the early cycles
of SELEX data can contain large proportion of nonspe-
cific sequences (i.e. background), the counts were corrected
against background using the data of the previous SELEX
cycle, as described in (5).

We report results for the monomer and dimer PPMs of
factors HOXB13, HNF4A, TFAP2A, FLI1, FOXC1 and
PKNOX2 learned from HT-SELEX data. A basic corre-
lation analysis is done for factor HOXB13. For HNF4A,
TFP2A, FLI1, FOXC1, and PKNOX2 we also analyse the
differences between observed and purely modular motifs. In
all validations, the SELEX data sets were randomly divided
into two halves, one half used for learning the model and
other half used for validating it.

We used the following HT-SELEX data sets: HOXB13
(PRJEB14550, 164 768 reads), HNF4A (ERX169045,
(6), 655 432 reads), TFAP2A (ERX1085476, (43),
168 053 reads), FLI1 (PRJEB14550, 143 389 reads),
FOXC1 (ERX169015, (6), 189 009 reads), and PKNOX2
(ERX1084652, (43), 423 339 reads). Each read was 40 bp
long except for FOXC1 whose reads were 30 bp long. The
following seeds, selected by hand using the models pub-
lished in (6), were used as input: HOXB13 (CTCGTAAAA,
CCAATAAAA), HNF4A (RGGTCA, RGTCCA), TFAP2A
(GGGCA), FLI1 (ACCGGAAGTN), FOXC1 (RTAAAYA),
and PKNOX2 (TGACANN). Note that it was essential to
use non-palindromic seeds for overlapping dimers as, for
example, the observed cases HH -6 for FLI1 and HH -2 for
PKNOX2 are directional; see Figure S3 in (6) and Section
EM iterations.

Selecting strong components of the model. The learned to-
tal model is likely to contain useless, weak components
(weak dimeric motifs) that should be removed before the
model is applied, e.g. to predict new putative binding sites.
One could, for example, include model components in de-
creasing order of weight � until a certain fraction of the non-
background sequences is covered. Here we used the fraction
of 85% to select the models for validation experiments. In
addition, we also studied the effect of parameter � (mini-
mum gap length in the independent case) by experimenting
with large values (up to Lmax ) of �. As all larger deviations
from expected were observed to usually occur in dimers with
gap <4, default value � = 4 was selected.

Factors HOXB12, HNF4A, TFAP2A, FLI1, FOXC1 and
PKNOX2. Figure 3 shows the sequence logos of the
learned PPMs for factor HOXB13 and reports correlations
of the scores of individual PPMs and of their mixture with
counts of 8-mers. Since MODER did not find any strong
dimeric motifs, the model for this factor is composed of two
monomers only. The power of multi-motif modeling can be
seen: the combined mixture consistently gives the highest
R2.

HNF4A, TFAP2A, FLI1, FOXC1 and PKNOX2 are ex-
amples of TFs for which many dimeric PPMs deviate clearly



PAGE 9 OF 16 Nucleic Acids Research, 2018, Vol. 46, No. 8 e44

8−mer count (log10)

S
co

re

0

5

10

15

0 1 2 3

R2 = 0.68

8−mer count (log10)

S
co

re

0

5

10

0 1 2 3

R2 = 0.22

8−mer count (log10)

S
co

re

0

5

10

0 1 2 3

R2 = 0.83

Figure 3. Correlation analysis of HOXB13 binding motifs. Two monomer PPMs and their mixture (last panel) with weights �1 = 0.187, �2 = 0.198 were
used. No dimer models were included. The combined model has higher correlation than the component models.

from the purely modular PPMs. Analyses of these factors
are shown in Figures 4–8, where the correlations are shown
for both the expected (purely modular) and the learned
models, and the deviation matrices are also visualized. The
number of dimeric models included into the mixture by the
85% rule ranged from 3 to 14 for different factors, only
the top three dimeric models shown in the Figures. The
full set of models, weights, and resulting correlations are
available in the Supplementary File S1. Not surprisingly,
the learned model has always higher correlation, but with
varying margin. Sometimes (TFAP2A) deviating from the
expected model gives strongly improved model while some-
times (FOXC1) the difference to the expected model is mi-
nor. As for the directionality of the motifs, sometimes both
the expected and learned motifs are palindromic (Figure 5)
while sometimes expected palindromes become directed in
the learned motif (Figures 6 and 8).

Validation using ChIP-seq data

We then tested for factors HOXB13, HNF4A, and TFAP2A
the validity of the obtained in vitro models on in vivo
data. We performed standard ROC analysis to measure
the performance of the models learned from SELEX data
on binary classification of ChIP-Seq peaks. The following
ChIP-seq data was used: HOXB13 (European Nucleotide
Archive accession ERX332516, IgG: ERX332513) (44),
HNF4A (Sequence Read Archive accession SRR952427,
IgG: SRR952608) (45) and TFAP2A (SRR952485,IgG:
SRR952608) (45). To find the peaks, the reads were aligned
with BWA (46), and peak calling was done with Peakzilla
(47). The genome assembly used was GRCh37 (hs37d5).
From each ChIP-seq peak set, top n = 230 peaks with high-
est quality score were selected, and for each peak a sequence
of length L = 190 bp flanking the peak summit was chosen
for the positive set. A negative set of the same size was cho-
sen randomly from the human genome, making sure that
the positions were mappable. Sequences were scored using
the SELEX models of HOXB13, HNF4A and TFAP2A
shown in Figures 3, 4and 5. The resulting ROC curves of
the (very good) classification performance of PPM scores
are shown in Figure 9.

We also applied MODER on the ChIP-seq data set of fac-

tor NRSF on the GM12878 cell line produced by (48) and
further analyzed by (16). To obtain the seeds, we first took
all the k-mers of lengths 9–11 from the data set, applied hier-
archical clustering, and selected two best clusters and their
representative k-mers (TTCAGCACC and GGACAGCTCC) by
using the order given by the z-score. MODER finds 9 out
of 10 models reported by Quang and Xie, for details, see
Figure 2 of (16) and Supplementary Figure S2. Note that
as NRSF has two monomeric motifs, MODER discovers
heterodimeric motifs whose COB-table has all four orienta-
tions.

Next, we tried to detect the core and side motifs of factor
CTCF. This should test MODER’s capabilities in detecting
long sites, as together these motifs are known to form a site
of length about 34 bp (13). We used raw ChIP-exo data from
human LoVo cells targeting factor CTCF from Katainen
et al. (49) (ENA accession ERX986066). Mapping and peak
calling was done as in Hartonen et al. (50), briefly: align-
ment was done using BWA (46) against assembly GRCh37
and the peaks were called using PeakXus (50). Five thou-
sand highest scoring peaks were selected, and around the
peak summits sequences of length 60 were extracted (black-
listed regions (51), ENCODE accession ENCFF001TDO,
and centromeres were removed). Results in Supplementary
Figure S3 show that MODER is able to detect similar con-
figurations of distances and orientations between the core
and side motifs of CTCF as in Schmidt et al. (13) (Figure 2)
and Nakahashi et al. (14) (Figure 4). The strongest dimer
formed by the core and side motifs, namely � 1, 2, HT, 8, was
found in 20% of the top 5000 peaks.

As nuclear receptors commonly bind as dimers (52), we
chose another factor, in addition to HNF4A, from this fam-
ily to display the performance of MODER. ChIP-seq data
from ENCODE for factor RXRA in cell line HepG2 was
used (ENCODE accession ENCFF002CKZ). Ten thou-
sand highest scoring peaks were selected, and around
the peak summits sequences of length 40 were extracted
(blacklisted regions and centromeres were removed). The
monomer seed GGGGTCA for the experiment was hand-
picked based on the Rxra mouse model in Jaspar (53). The
seed finding method used with NRSF for k-mer lengths
6–15 would give AGGTCA, which could have been used as
well. Supplementary Figure S4 shows that MODER detects
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Figure 4. Modularity analysis of HNF4A binding motifs. (A) Monomer models 1 and 2 (�1 = 0.073, �2 = 0.056) and the COB tables in units of integer
multiples of 0.001. Since all the mixing parameters are in the same scale, comparison of � values is also possible between two distinct COB tables. Also
shown is correlation analysis for the two monomer models. (B) The first monomer PPM and dimeric models �1, 2, HT, 1, �2, 2, HT, 1, �1, 1, HT, 1, and �1, 2, HT, 2
were included in the analysis by the 85% rule (only the best three dimeric models are shown in the Figure). Deviation matrices are depicted below the logos
of the dimeric PPMs. Their mixture used corresponding weights � = 0.073, 0.328, 0.206, 0.104, 0.062. The combined model has much higher correlation
than any individual model. (C) Correlation analysis as in B but for the PPMs E1, 2, HT, 1, E2, 2, HT, 1, E1, 1, HT, 1 and E1, 2, HT, 2 that are expected under the
independence assumption. All R2-values for the learned and expected PPMs differ remarkably, reflecting the large deviations between the learned and the
expected PPMs. The purely modular model cannot detect the AAA sequence connecting the half-sites.
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Figure 5. Modularity analysis of the binding motifs of TFAP2A. (A) The monomer model (�1 = 0.003) and the COB table in units of integer multiples
of 0.001. The monomer model was not included in the correlation analysis of the mixture by the 85% rule. (B) Correlation analysis of the model learned
for TFAP2A by MODER: three dimeric PPMs �1, 1, TT, 2, �1, 1, TT, 1 and �1, 1, TT, 3, and their mixture. Deviation matrices are depicted below the logos of
the dimeric PPMs. The mixture of the PPMs uses weights � = 0.381, 0.208, 0.133. (C) Correlation analysis as in B but for the PPMs E1, 1, TT, 2, E1, 1, TT, 1,
E1, 1, TT, 3 that are expected under the independence assumption. All R2-values for the learned and expected PPMs differ remarkably, reflecting the large
deviations between the learned and the expected PPMs. It is obvious that the purely modular model is not able to capture the binding affinity of TFAP2A.
Note that all three PPMs TT 1, TT 2 and TT 3 that are palindromic in the expected model, stay palindromic in the learned model.

a strong dimeric binding motif � 1, 1, HT, 0, which could ei-
ther be a homodimer of RXRA or a heterodimer such as
NR1H2-RXRA, as suggested by Tomtom (15).

MODER versus MEME

When comparing MODER with the popular tool MEME it
should be noted that the models of motifs of the two meth-
ods are different. MEME learns separate monomer models
in successive passes, deleting the found sites of a model from
data before the next pass, while MODER aims at discov-
ering the modularity of motifs and hence learns the entire
modular structure of monomeric and dimeric motifs in the

same probabilistic framework in one run. The difference is
illustrated in Supplementary Figure S5 that compares the
models learned for factors TFAP2A and FLI1 by the two
methods.

MODER versus Bipad/Maskminent

We also compared MODER with Bipad/Maskminent
(17,19) which among the previous tools comes closest to
MODER. An example qualitative comparison using align-
ment of models is illustrated in Supplementary Figure S6.
Similarities between motifs obtained using these two al-
gorithms are obvious, although Maskminent seems to in-
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Figure 6. Modularity analysis of the binding motifs of FLI1. (A) The monomer model (�1 = 0.08) and the COB table in units of integer multiples of 0.001.
Also shown is the correlation analysis using only the monomer model. (B) Correlation analysis of the model learned for FLI1 by MODER: the monomer
model and six dimeric PPMs �1, 1, HH, 2, �1, 1, HH, −6, �1, 1, HH, 1, �1, 1, HT, 2, �1, 1, HT, 1, �1, 1, HH, 3 (only three best are shown in the Figure) were included
in the analysis by the 85% rule. Deviation matrices are depicted below the logos of the dimeric PPMs. The mixture of the PPMs uses weights � = 0.080,
0.040, 0.040, 0.038, 0.027, 0.020, 0.019. (C) Correlation analysis as in B but for the expected PPMs E1, 1, HH, 2, E1, 1, HH, −6, E1, 1, HH, 1, E1, 1, HT, 2, E1, 1, HT, 1,
E1, 1, HH, 3 under the independence assumption. The R2-values for the learned and expected PPMs differ clearly for the mixture and the dimeric case HH
–6. The purely modular model cannot handle the dimeric case HH –6 properly, since expected PPMs are always palindromic for orientations HH and TT,
while here the learned model HH –6 turns out to be directed. Albeit quite weak, the directionality has a clear effect on R2.

troduce some background noise into the motifs. Compar-
ison using correlation analysis was not performed since
Maskminent does not learn the monomer model and the
two orientation classes of dimers (DR and IR) in the same
commensurate model, and hence the weights for models of
different types could not be decided.

In order to make a quantitative comparison to Maskmi-
nent, we used the data sets for which a bipartite Maskmi-
nent model is available from Lu et al. (19). There were 53
such data sets in ENCODE (51), and we used 40 of those (6
had been revoked from ENCODE, 7 were unidentifiable).
The identification problems were due to Lu et al. not giv-

ing the accession codes, but merely describing the used data
sets. For all the data sets we managed to identify, we have
now included the accessions in the Supplementary Table
S1. The same number of top scoring peaks were used as
in (19), but only 100 bp around the peak summit was se-
lected, and these data sets were randomly divided into learn-
ing and validation sets of equal size. We selected the ini-
tial seeds for MODER based on Jaspar (53) in the follow-
ing way: for JUN-like factors (ATF3, BACH1, BATF, FOS,
FOSL1, FOSL2, JUN, JUNB, JUND, NFE2) we used the
seed ATGA, for EBF1 the seed TCCC, for ESR1 the seed AG-
GTCA, for MAFF and MAFK the seed TCAGCA, and for
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Figure 7. Modularity analysis of the binding motifs of FOXC1. (A) The monomer model (�1 = 0.071) and the COB table in units of integer multiples of
0.001. Also shown is the correlation analysis using only the monomer model. (B) Correlation analysis of the model learned for FOXC1 by MODER: the
monomeric model and five dimeric PPMs �1, 1, HH, −2, �1, 1, HH, −3, �1, 1, HT, −3, �1, 1, TT, 10, �1, 1, TT, 9 were included in the analysis by the 85% rule. Deviation
matrices are depicted below the logos of the dimeric PPMs. The mixture of the PPMs uses weights � = 0.071, 0.080, 0.033, 0.029, 0.012, 0.011. (C) Corre-
lation analysis as in B but for the PPMs E1, 1, HH, −2, E1, 1, HH, −3, E1, 1, HT, −3, E1, 1, TT, 10, E1, 1, TT, 9 that are expected under the independence assumption.
The R2-values for the learned and expected PPMs differ quite clearly, for HT –3 and HH –3 in particular, as also suggested by their large deviation matrices,
while the difference is small for HH –2, the heaviest component of the mixture. It is obvious that the purely modular model is not able to fully capture the
binding affinity of FOXC1. Note that expected palindromic PPM HH –3 becomes directed while expected PPM HH –2 stays palindromic in the learned
model.

STAT1 the seed TTC. Then MODER was run on learning
data sets, and the best dimeric PPM (according to lambda)
was chosen for each data set. For Maskminent we used their
published model for each data. The results displayed in Sup-
plementary Table S1 and Figure S7 show that MODER
gets better AUC value in 35 cases out of 40. Note also that
MODER wins in 33 out of 35 cases, when considering only
the optimal IDR-thresholded data sets (the other five data
sets are initial peaksets, marked with a star in the table).
The selection of factors used by Lu et al. (19) was unfortu-

nately quite repetitive, but the comparison shows consistent
behaviour for both methods.

DISCUSSION

The MODER algorithm is based on reductionist view that
PPM models for dimers can be built in a modular fashion
from monomer PPMs.

As noted e.g. by (4), such modularity is not always valid
as in a number of dimeric cases the specificity of the dimeric
motif differs notably from what could be expected from its
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Figure 8. Modularity analysis of the binding motifs of PKNOX2. (A) The monomer model (�1 = 0.256) and the COB table in units of integer multiples
of 0.001. Also shown is the correlation analysis using only the monomer model. (B) Correlation analysis of the model learned for PKNOX2 by MODER:
14 dimeric PPMs were included in the analysis by the 85% rule but only the best three, �1, 1, HH, −2, �1, 1, HT, 3, and �1, 1, HT, 4, are described here. In the
mixture the weight for the monomer and three best dimeric models were � = 0.256, 0.177, 0.068, 0.065. The sum of the lambdas for the last 11 dimeric
models was 0.267. Deviation matrices are depicted below the logos of the dimeric PPMs. (C) Correlation analysis as in A but for the PPMs E1, 1, HH, −2,
E1, 1, HT, 3, E1, 1, HT, 4 that are expected under the independence assumption. Here the 85% rule selected very many dimeric models, because the lambda
values have quite even distribution in this case. Again the R2-values for the learned and expected PPMs differ quite clearly. It can be seen that the purely
modular model is already satisfactory but can be improved somewhat by allowing deviations. Note that the palindromic HH -2 motif of the expected model
becomes directed in the learned model.

monomeric components. The deviation matrix of MODER
represents such differences explicitly. These deviations from
the expected models are especially important for orienta-
tions HH and TT, for which all expected models are always
symmetric (palindromes), whereas the real binding motifs
might have a direction (6). This was demonstrated by sev-
eral examples in our validation experiments. In addition, the
deviations from expected motif commonly occur when the
core segments of the motifs of two factors are closely packed
and the overlapping flanks are distorted from the expected
model. In TF-DNA binding, the core positions in a motif
are usually recognized by direct bonds to the bases, whereas

the weaker positions are recognized by contacts to DNA
backbone (4) and are hence more prone to deviations.

The motif discovery algorithm of MODER considers si-
multaneously all possible orientation–distance pairs and
finds the preferred dimeric motifs. Learning multiple motifs
in serial manner––first finding one motif, then removing its
occurrences from the data, and then running the algorithm
again––does not treat symmetrically the sequences that may
belong to several motifs. MODER improves over the sim-
ilar coMOTIF algorithm (30) by including the spacing in-
formation in the overall model, and by adding overlapping
motifs and the deviations from the expected motif. Allow-
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Figure 9. Classification performance of multi-motif models for HOXB13, HNF4A, and TFP2A. ROC curves of classification using the scores by PPMs
and their mixtures on ChIP-seq data. The area under each curve is also shown. Same models were used as in the correlation analysis (Figures 3–5).

ing overlaps of monomer motifs within a dimer turned out
a very useful feature. In fact, for factors FLI1, FOXC1 and
PKNOX2 the strongest dimer has such an overlap.

Simultaneous learning of all motif components and their
mixing parameters makes direct comparison of the relative
strengths of the motifs possible by using the mixing param-
eters. Depending on the application, it might be useful to
rescale the obtained mixing parameters, after the actual al-
gorithm is finished. This was done, when we chose the mo-
tifs for performance testing by the 85% rule: the mixing pa-
rameters were rescaled to exclude the background. Then
motifs were included in descending order, until the motifs
covered 85% of the signal. Sometimes it might also be use-
ful to rescale the mixing parameters in each COB table sep-
arately, although this would prevent the comparison of mix-
ing parameters between distinct COB tables.

MODER is not too sensitive to noise in the seeds. For
factor HOXB13, we mutated the first initial seed in two po-
sitions and the second seed in three positions, including in-
formative positions. Still the algorithm managed to obtain
the same results as with the original seeds. MODER is rea-
sonably fast. For example, it took 2 min 18 s wall-clock time
and 15 min 30 s CPU time when run simultaneously on
eight cores to learn the model for FLI1 in Figure 2 from
a 2 865 880 bp long HT-SELEX data set. The seeds for
MODER can be found from existing PPM databases or can
be produced by seed-finding tools such as DREME (54) or
by using the procedure in section Validation using ChIP-seq
data to find representative k-mers.

AVAILABILITY

MODER is implemented in C++ on Linux platform and is
available from https://github.com/jttoivon/MODER. Euro-
pean Nucleotide Archive, accession code PRJEB14550.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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