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Abstract: Vertical heterogeneity of the biochemical characteristics of crop canopy is important
in diagnosing and monitoring nutrition, disease, and crop yield via remote sensing. However,
the research on vertical isomerism was not comprehensive. Experiments were carried out from the
two levels of simulation and verification to analyze the applicability of this recently development
model. Effects of winter wheat on spectrum were studied when input different structure parameters
(e.g., leaf area index (LAI)) and physicochemical parameters (e.g., chlorophyll content (Chla+b) and
water content (Cw)) to the mSCOPE (Soil Canopy Observation, Photochemistry, and Energy fluxes)
model. The maximum operating efficiency was 127.43, when the winter wheat was stratified into
three layers. Meanwhile, the simulation results also proved that: the vertical profile of LAI had an
influence on canopy reflectance in almost all bands; the vertical profile of Chla+b mainly affected
the reflectivity of visible region; the vertical profile of Cw only affected the near-infrared reflectance.
The verification results showed that the vegetation indexes (VIs) selected of different bands were
strongly correlated with the parameters of the canopy. LAI, Chla+b and Cw affected VIs estimation
related to LAI, Chla+b and Cw respectively. The Root Mean Square Error (RMSE) of the new-proposed
NDVIgreen was the smallest, which was 0.05. Sensitivity analysis showed that the spectrum was more
sensitive to changes in upper layer parameters, which verified the rationality of mSCOPE model in
explaining the law that light penetration in vertical nonuniform canopy gradually decreases with the
increase of layers.

Keywords: SCOPE; sensitivity analysis; FAST; vertical heterogeneity; vegetation index; spectral
reflectance; winter wheat

1. Introduction

Vegetation modelling is a nondestructive technique for quantifying vegetation properties and
analysing the physiological conditions of crops, such as growth potential and nutrition [1]. The soil
canopy observation, photochemistry, and energy fluxes (SCOPE) model simulates the transmission
law of light in uniform canopy [2]. However, the SCOPE model is a vertically integrated radiative
transfer and energy balance model based on the classical 1-D SAIL model [3,4]. Disregarding
vertical heterogeneity in vegetation canopy may negatively affect fluorescence and reflectivity spectra,
a condition that leads to erroneous interpretation of the physiological characteristics of natural plants [4].
In reality, the biochemical components of the canopy with 3D structure are not evenly distributed and
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exhibit vertical heterogeneity. Therefore, the influence of vertical heterogeneity on spectral response is
not negligible [5–7]. Furthermore, vertical heterogeneity may greatly influence the accuracy of actual
growth detection and remote estimation of nutrient characteristics of crops [8]. Zhao et al. [8] also
found that the chlorophyll, leaf moisture, and leaf area index (LAI) of winter wheat have vertical
heterogeneity. Moreover, the physiological and biochemistry indices of crops and canopy are correlated
with the spectra at visible light, near-infrared, and middle-infrared bands [8,9].

Remote sensing techniques are rapidly developing. These techniques allow time-effective and
noninvasive data collection over large scales [10–14]. Remote sensing techniques have two directions
in estimating vegetation characteristics: one is an empirical statistical method for analysing the
physiological variables and spectral vegetation indexes (VIs) of vegetation; the other involves the
establishment of a physical canopy reflection model [15]. Harnessing the advantages of spectral
technology will allow the accurate and efficient monitoring and evaluation of the growth and yield of
large-scale crops [16]. However, spectral technology can obtain canopy spectra only. Combining the
spectral data obtained by satellite and the vegetation model mentioned herein can invert the biochemical
information of different layers in vegetation. On the basis of the SCOPE model, Yang et al. [3] developed
the mSCOPE model. This model adds vertical stratification of crops to explain better the correlations
between remote sensing observations and plant functional traits. However, few studies using this
multilayer model have been conducted on the spectral effects of crops on vertical biochemical
contents. The interdependence between vegetation biophysical parameters and spectral data must
be understood to infer crop status from spectral data that represent the shape of crops and the
colour of their leaves [17]. The laws of radiative transfer within vegetation can be obtained through
empirical and theoretical studies [17]. In the field, the statistical distribution of reflectivity denotes
the comprehensive effects of canopy variables, soil environment, growth stage, and other factors.
Numerous studies have approximated this reflectivity as a Gaussian distribution. However, in practice,
this assumption is too harsh because the physiological distribution of the canopy is always not uniform.
Leaf area index (LAI, m2lea f /m2 soil) [16], chlorophyll (Chla+b, µg/cm2) [18], and vegetation water
content (Cw, g/cm2 fresh weight) [19] are important parameters used in characterizing photosynthesis,
biomass, and evapotranspiration. Previous studies have demonstrated that many remote sensing
spectral vegetation indexes have good correlation with LAI. Shibayama et al. [20] confirmed the
correlation between LAI and spectra. The normalized vegetation index (NDVI) is closely related to the
biochemical parameters of crop canopy scale [21]. Tan et al. [16] found that the ratio of near-infrared to
green light (reflectance at 810 and 560 nm) has a remarkable relationship with LAI. In consideration of
the penetration characteristics of chlorophyll absorption feature bands in inner canopy, a combination
of sensitive spectral bands (near-infrared band at 810 nm and green band at 560 nm) was selected to
evaluate vertically layered chlorophyll [22]. Previous studies that adopted hyperspectral technique in
measuring the water content in the upper, middle, and lower layers of potato have revealed different
spectral characteristic reflectance and water content distributions in different leaf positions [19].
Previous works have observed good correlations between vegetation indexes and water content. Wang
et al. [23] found that the reflectivity ratios of 1450 and 1940 nm have a good effect on water condition
estimation. Ceccato et al. [24,25] highlighted that the reflectance ratios of 1600 and 820 nm have a
strong correlation with the equivalent water thickness of canopy leaves. Furthermore, sun-induced
chlorophyll fluorescence (SIF) can track the photosynthetic activity of vegetation, and this information
is important in determining plant stress and yield [26]. The measurement of chlorophyll fluorescence
is nondestructive and noninvasive [27]. The effects of SIF on plant physiology can be monitored by
exploring the relationship between reflectance and fluorescence spectrum and chlorophyll. The effects
of chlorophyll concentration on chlorophyll fluorescence ratio (F685/F730) in intact leaves mainly
depends on the reabsorption of fluorescence in the 685 nm band, which increases with the increase
in chlorophyll concentration [18]. Owing to the complexity of internal and external factors in the
canopy [28], the relationship between spectral characteristics of a single band and canopy variables
is usually not universal. Converting vegetation index from spectral data, which always contain
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at least two or three spectral bands to minimize interference from external factors [28], is simple
with high computational efficiency, but it lacks universality. Thus, combining empirical methods
and models is necessary. Klem et al. [29] emphasized the influence of canopy vertical heterogeneity
on spectral reflectivity by calculating the spectral index of spring wheat in different vertical parts.
The mSCOPE model proposed by Yang et al. can be used as an effective tool to study the influence of
vertical heterogeneity on canopy reflectance. On the basis of the understanding of the law of radiation
transmission in the canopy, the authors extended the 1D model SCOPE to vertical stratification and
simply verified the performance of the mSCOPE model in simulating canopy reflectivity. However,
the model requires further verification to analyse the influence of various physiological parameters.
The reliability and generalization of a model must be verified via sensitivity analysis before it is
employed. On the basis of a global sensitivity analysis of selected stratified crop parameters via the
Fourier amplitude sensitivity test (FAST), we discussed the sensitivity of these selected parameters to
the spectrum of winter wheat [30]. FAST is a sensitivity test method that converts all multidimensional
integrals of the input of an uncertain model into one-dimensional integrals [31,32]. FAST mainly
calculates the variances and means of results by combining the distribution ranges of input factors.
The transformation from multidimensional to one-dimensional is essentially the sensitivity analysis
of means and variances. First-order and global sensitivity analyses of the selected parameters were
conducted to explore the executable ability in this model. Winter wheat, an important crop worldwide,
was selected to test this model. The reflectivity and fluorescence spectra of winter wheat at different
vertical strata were measured using the mSCOPE model. Furthermore, vegetation index was calculated
from simulation data to analyse further the physiological state of vegetation. Sensitivity analysis
(SA) helps in selecting the parameter factors that contribute most to the instability of model output.
Furthermore, SA simplifies the difficulty of analysis and provides the necessary foundation and
prerequisite for the subsequent simplification of model running time.

The purpose of this study is to explore the method of simulating the winter wheat spectrum with
the mSCOPE model and verifying its rationality from multiple perspectives. Firstly, the appropriate
number of layers was selected. Based on the spectral data generated by mSCOPE simulation,
the correlation between vegetation index and spectrum was analysed. Then, the accuracy of vegetation
index (VIs) inversion was evaluated using statistical indicators. Finally, SA was carried out to further
verify the rationality of model operation and parameter selection. The rest of this study was organized
as follows. Section 2.1 introduced the parameterization of mSCOPE model; Section 2.2 introduced the
selection of vegetation index; in Section 2.3, two scenarios were designed, which were used for selecting
the optimal number of layers and for accuracy assessment using statistical indicators, respectively;
in Section 2.4, SA was applied to verify the accuracy. Section 3.1 gave the analysis results between
simulated spectral and VIs; in Section 3.2, the inversion accuracy was verified by field measured data;
Section 3.3 gave the SA results. In Section 4, the strengths and weaknesses of the developed approach
were analysed in detail. Section 5 summarized the results of this study.

2. Materials and Methods

2.1. Model Parameterization and Calibration

The winter wheat data of Xiaotangshan National Precision Agriculture Research Demonstration
Base in 2015 were combined with the biochemical parameters of the PROSPECT model as a reference
to identify a reasonable parameter range as inputs (Table 1). According to different vertical distribution
scenarios of canopy biochemical parameter contents, the contents of LAI, Chla+b, and Cw at different
vertical canopy strata were measured. Input indicators under the vertical distribution profiles of
crop parameters in different scenes were given. Only the parameters selected herein were changed
according to the requirements of the scene and other parameters were not changed with the field
measurement simulations. These values were selected after careful consideration and in accordance
with actual situations. To measure the influence of specific parameters on model output, we changed
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the values of research parameters according to different research scenarios and retained the standard
values of other parameters. The distribution of LAI, chlorophyll, and water content initially increased
and then decreased in the vertical layers. The middle layer had the highest content.

Table 1. Synthetic input parameter data of vertical leaf area index (LAI, m2leaf/m2soil), chlorophyll
(Chla+b, µg/cm2), and vegetation water content (Cw, g/cm2 fresh weight) profile in three-layered
canopy scenarios.

Value Parameter
Top Layer Middle Layer Lower Layer

Min Max Min Max Min Max

Layered
value

LAI 0.15 1.2 0.25 2 0.1 0.8
Chla+b 7.5 82.5 10 110 5 55

Cw 0.001 0.07 0.0012 0.07 0.0005 0.04

Standard
value

LAI 0.75 1.25 0.05
Chla+b 80 60 40

Cw 0.02 0.021 0.01

The mSCOPE model was used to obtain spectral data. Vertical stratification was performed
on the basis of the SCOPE model. The modules of the mSCOPE model still followed the SCOPE
model and mainly included four modules: one biochemical model (Fluspect) and three energy balance
routines (RTMo, RTMf, and RTMt). The Fluspect module simulates the reflectivity, transmittance,
and fluorescence of a blade [33]. RTMo and RTMf are used to calculate the radiation transmission
of incident radiation and emitted fluorescence in canopy, respectively [34]. RTMo, RTMf, and the
energy balance model are closely related to each other [4]. First, light is incident on the leaves, and the
excitation mechanism inside the leaves is triggered to carry out photosynthesis. Moreover, certain
optical phenomena, such as reflection, refraction, and transmission, occur in the canopy. This process
can be mathematically summarized as the following algorithm: first, Fluspect is used to calculate the
fluorescence excitation–emission matrices as the required input for RTMo and RTMf; second, RTMo
predicts the distribution of irradiance and net radiation on surface elements (leaves and soil); finally,
the algorithm inputs the elements calculated in the first two steps into RTMt and RTMf. The mSCOPE
model uses soil reflectance and total incident crown radiation, which are easily obtained, to calculate
surface reflectance layer by layer from the bottom to the top. The vertical flux profile of each layer is
then derived from the top to the bottom. According to the main input parameters of the SCOPE model
(Table 2), the mSCOPE model adds 60 vertical sublayers to input additional parameters (Table 3),
and then any number of N layers less than or equal to 60 can be chosen during simulation. When one
of the varying parameters selected the layered value, the standard values were selected for the other
parameters. The values for each layer were entered in sequence. The carotenoids were set at 25% of
Chla+b in these experiments.

Table 2. Main input parameters of the SCOPE model and partial parameters of the mSCOPE model.

Parameter Explanation Unit Standard
Valve Range

Cab Chlorophyll a + b content g/cm2 40 0–100
Cdm Leaf mass per unit area g/cm2 0.01 0–0.02
Cw Equivalent water thickness cm 0.015 0–0.05
Cs Senescence material (brown pigments) - 0.1 0–1
Cca Carotenoid content g/cm2 10 0–30
N Leaf structure parameter - 1.5 1–3

LAI Leaf area index - 3 0–6
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Table 2. Cont.

Parameter Explanation Unit Standard
Valve Range

LIDFa Leaf inclination function parameter a - −0.35 −1–1
LIDFb Leaf inclination function parameter b - −0.15 −1–1
ε1 fluorescence efficiency of photosystem I - 0.004 0–0.01
ε2 fluorescence efficiency of photosystem II - 0.02 0–0.05
θs sun zenith angle ◦ 45 0–90
ϕ relative azimuthal angle ◦ 0 0–360

PAR photosynthetically active radiation mol/m2
·s 1200 0–2200

Table 3. Extra parameters of the mSCOPE model.

mSCOPE SCOPE

Layer index 1 2 . . . N
Leaf properties v(1) v(2) . . . v(N) vcanopy

LAI L(1) L(2) . . . L(N) LCanopy

Note: Leaf attribute parameters include Cab, Cdm, Cw, Cs, Cca, and N.

The mSCOPE model stratifies the canopy in accordance with the principle of uniformity. The height
of each layer is 1/N of the total height from the soil to the top of the canopy. In order to simplify
the calculation and facilitate the implementation of the algorithm, the average height hierarchical
way was carried out. The mSCOPE model integrated the vertical changes of vegetation attributes,
but it did not consider the horizontal changes. Therefore, mSCOPE can be regarded as a 2D model
(Figure 1). The mSCOPE model maintained the same model structure and output were the same as
SCOPE but adopted different solutions for incident emission radiation transmission in vegetation
canopy. The reflectivity was solved by bottom-up “adding” method and the flux profile was calculated
by top-down “peeling” method. The specific algorithm implementation was shown in Figure 2.
In conclusion, stratification can be extended to any multistratification mode between 2–60 layers on the
premise of considering both accuracy and cost performance. Considering the labour cost and operation
difficulty, field measurement verification data generally adopt three layers according to the highly
uniform stratification of winter wheat. The parameter values of each layer were obtained through
field measurement. Then they were inputted into the input table provided by mSCOPE, and the
program will automatically call to simulate the results. The model simulates the spectra of top of
canopy (TOC) reflected radiation, fluorescence emission in the observed direction, and light synthesis
of leaf characteristics, vegetation structure, and microscopic meteorological conditions. These spectra
help in expanding our understanding of remote sensing data and photosynthetic mechanism of canopy.
After successfully running the model in Matlab2017 to obtain experimental data, Excel and Origin were
used to analyse the effects of input parameters on spectral characteristics and calculate the correlation
of vegetation index analysis. Simlab2.2 was used to analyse the sensitivity of the mSCOPE model.
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Figure 2. Algorithm implementation diagram of the mSCOPE model.

2.2. Selection of Relevant Vegetation Indicators

This study referred to several spectral indexes proposed by predecessors to make a further analysis
between the input parameters of mSCOPE model and the spectrum to study the correlation between
them. These spectral VIs were mainly divided into two categories: two-band spectral index and
three-band spectral index (Table 4). Due to the difficulty in measuring the spectrum inside the canopy,
the internal stratified VIs could not be verified. We collectively analysed the influence of different
vertical distributions of three main parameters on the canopy vegetation index. Two LAI-related,
two chlorophyll-related, and four water-related vegetation indexes were selected to monitor the effects
of model inversion. In analysing the correlation between LAI and related VIs, we selected the NDVI
of near-infrared light combined with red light bands and CIgreen of 810 nm combined with 560 nm to
calculate the vegetation indexes of canopy. In analysing chlorophyll-sensitive bands, we chose the
green chlorophyll index, that is, CIgreen of 810 nm combined with 560 nm. The original vegetation
index NDVIgreen (810 nm combined with 560 nm) was also used for Chla+b. Water index (WI), two type
of Water ratio vegetation index (WRVI), and normalized difference water index (NDWI) were chosen
to investigate the correlation between VIs and canopy moisture content with vertical variation.

Table 4. Vegetation indexes selected in the experiment. Units of the selected parameters are as
follows: leaf area index (LAI, m2leaf/m2soil), chlorophyll (Chla+b, µg/cm2), and water content
(Cw, g/cm2 fresh weight).

Vegetation Index Formula Related Canopy Parameters

Normalized difference vegetation index (NDVI) (R810 −R685)/(R810 + R685) LAI [21]
Green chlorophyll index (CIgreen) (R810/R560) − 1 LAI and Chla+b [16,35]

Green NDVI (NDVIgreen) (R810 −R560)/(R810 + R560) Chla+b
Water index (WI) R900/R970 Cw [36]

Water ratio vegetation index (WRVI) R1450/R1940 Cw [23]
R1600/R820 Cw [24,25]

Normalized difference water index (NDWI) (R860 −R1240)/(R860 + R1240) Cw [37]

2.3. Scenario Design

2.3.1. Using Seven Synthetic Datasets to Verify the Optimal Number of Winter Wheat Canopy
Stratification Number

The canopy was divided into 1 up to 60 layers in the mSCOPE model. To select the optimal
number of layers, we conducted seven experiments, in which LAI and chlorophyll content were
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selected as the controlled variables. Because water content mainly affects the near-infrared band
and has little influence on the vegetation index selected to evaluate the results, it can be ignored in
this scenario. The experimental scenario was set as shown in Table 5. The parameter distribution of
different levels from the top to the bottom of the canopy was shown from left to right as enumerated in
Table 5. When the stratification number was i, LAI and Chla+b selected the values of the corresponding
i-th layer, respectively. The number of parameters entered into the model represent the number of
layers. In this experiment, we selected standard reference values for the other parameters as input
listed in Table 2. For example, water content was 0.009 cm.

Table 5. Parameter distribution of canopy scenes with different layers. Values in a row, from left to
right, represent input values for stratification parameters from top of the canopy to the bottom.

Layer LAI, m2leaf/m2soil Chla+b, µg/cm2

1 4.78

70

2 2.1 2.68

50

3 1.5 2 1.28

40
4 1.29 1.32 1.22 0.95

30
5 1.2 0.9 1.5 0.68 0.5

206 0.7 1.02 0.9 0.76 0.8 0.6
107 0.52 0.62 0.7 1.4 0.54 0.54 0.5 5

2.3.2. Statistical Indicators to Evaluate the Accuracy of 21 Real Scenes

In order to distinguish the simulation scene from that of the simulation work, the latest winter
wheat data of Xiaotangshan National Precision Agriculture Research and Demonstration Base in April
2020 was selected to verify the inversion accuracy of the model. The parameters in Table 6 were
changed according to different scenes, and other parameters were retained in the field measurement
simulation. The units of equivalent water thickness of chlorophyll leaves and LAI are shown in Table 5,
which will not be repeated later. In the experiment, the real data measured in the field was input into
the mSCOPE model. The standard input parameters inherent in the model were selected as additional
parameters without changing them during the routine.

Table 6. Mean, maximum, and minimum value of elected parameter factors for verification.

Top
LAI

Middle
LAI

Lower
LAI

Top
Chla+b

Middle
Chla+b

Lower
Chla+b

Top Cw
Middle

Cw

Lower
Cw

max 2.37 1.97 1.05 71.06 76.17 55.05 0.0084 0.0091 0.0094
min 0.24 0.36 0.14 30.08 24.25 15.86 0.0076 0.0080 0.0082

mean 1.48 1.42 0.58 58.95 54.30 37.12 0.0081 0.0086 0.0089

The simulated spectrum was obtained and then the corresponding VIs were calculated. In order
to analyse the accuracy of simulation results of mSCOPE model, we compared simulated VIs values
with real VIs values of 21 groups through deviation (Bias) and root mean square error (RMSE) analysis.
The formula for calculating deviations between measured and simulated values is as follows:

Bias =
ŷ − y

ŷ
. (1)

We also selected RMSE to evaluate systematically the overall accuracy of the 21 group inversions.
The formula is

RMSE =

√√√
1
N

N∑
i=1

(ŷi − yi)
2, (2)
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where y and ŷ represent the measured and simulated VIs of different scenes, respectively; N indicates
the total experiment numbers; and i represents the i-th experiment. In the experiment, 21 different
scenarios from dense to sparse without removing ear of winter wheat in booting stage were selected
for simulation (Figure 3). The number of stems sampled is usually 50 single stems. Leaves in the
upper-layer are all green leaves. the middle-layer leaves are treated individually with a small amount of
unseparated yellow leaves and the lower-layer leaves are divided into green leaves and yellow leaves.
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FAST is a sensitivity test method, which is mainly used to calculate the variance and mean value 
of simulation results by combining the distribution range of input factors. The experimental steps are 
as follows (Figure 4). Firstly, the parameters need to be sampled before SA. Simlab2.2 provides 
various sampling algorithm choices for different sample sets, and the selection of sampling methods 
affects the type of sensitivity analysis in the later stage. In this study, the FAST method was used to 
conduct 585 experiments to meet the accuracy requirements of the method. The upper and lower 
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Figure 3. Field plant profiles of winter wheat with different crop physiological contents without
removing the ears. The images of 21 plots selected in the experiment were respectively corresponding
to (a–u), and their LAI were gradually increase from 0.78 to 5.33.

2.4. Data Generation and Processing of Sensitivity Analysis

FAST is a sensitivity test method, which is mainly used to calculate the variance and mean value
of simulation results by combining the distribution range of input factors. The experimental steps are
as follows (Figure 4). Firstly, the parameters need to be sampled before SA. Simlab2.2 provides various
sampling algorithm choices for different sample sets, and the selection of sampling methods affects
the type of sensitivity analysis in the later stage. In this study, the FAST method was used to conduct
585 experiments to meet the accuracy requirements of the method. The upper and lower limits of the
selected parameter factors are shown in Table 7. The input parameters are then programmed to loop
into mSCOPE and the output is saved in a TXT format document in the format specified by Simlab.
Finally, we selected the TXT file under the Simlab interface, performed Monte Carlo simulation, and
sensitivity analysis was conducted through the postprocessor.
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Table 7. Upper and lower limits of the selected parameter factors in the sensitivity analysis (SA).

Input Factors Lower Limit Upper Limit Mean Value

LAI1 1 6 3.50
LAI2 0.5 5 2.75
LAI3 0.5 4 2.25

Chla+b1 10 80 45
Chla+b2 10 110 60
Chla+b3 10 60 35

Cw1 0.001 0.03 0.016
Cw2 0.001 0.02 0.011
Cw3 0.001 0.01 0.006

The FAST method applies to both monotone and nonmonotone models. This method can not only
perform first-order sensitivity analysis but also obtain global sensitivity analysis results, which makes
up for the fuzziness of global influence of single variable. Furthermore, this method assumes a
relationship between inputs and outputs. The principle of FAST analysis method can be divided into
four stages. First, in the space defined by the input parameters, the expected value and variance of y
were expressed in the form of an integral, and then they were estimated. Second, multidimensional
integral transformation was defined as a one-dimensional integral. Third, the expected value and
variance of y were then estimated. Finally, the sensitivity index of y was calculated. The first-order
sensitivity index and the total sensitivity index were obtained by rapidly expanding the same set of
models for n times by using the terms in the Fourier decomposition of the model output. The number i of
LAIi, Chla+bi and Cwi in Table 7 represent the upper, middle, and lower layers of the canopy respectively.

3. Results

3.1. Using mSCOPE Model to Simulate Spectrum of Winter Wheat

The relationship between vegetation biochemical content and spectral reflectance characteristics
could be easily investigated by changing a series of parameters in the mSCOPE model. That is hard to
realize in real field experiments. Previous studies found that influencing factors of the spectrum from
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visible light to near-infrared bands could be described as follows [38–41]: the absorption segment of
visible light from 500–750 nm was mainly affected by pigments (such as chlorophylls a and b, carotene
and xanthophylls); the near-infrared (SWNI) band of 750–1350 nm was greatly affected by the internal
structure of the blade; the medium and long wave infrared bands (MWNI and LWNI) of 1350–2500 nm
were mainly affected by the water content in tissues. Spectral analysis of different LAI, Chla+b and
water content were conducted to analyze and verify the interpretability of layered spectral analysis
by mSCOPE model. Furthermore, the first derivative of the spectral data was analysed. Derivative
spectroscopy can compress the influence of background noise and low-frequency signal, and it is
helpful to eliminate the influence of low-frequency spectral components such as soil background and
atmosphere on the target.

3.1.1. Selection of the Optimal Stratification Number for Winter Wheat Canopy in mSCOPE Model

To evaluate the adaptability of the mSCOPE model in simulating the relationship between spectra
and vegetation biochemical contents, we selected the three major agronomic parameters LAI, Chla+b,
and Cw as stratified simulation variables. The number of canopy layers selected was three. Through
seven experiments, we found that the efficiency divided into three layers was higher and the calculation
time could be reduced and ensure the accuracy. Figure 5 provides a schematic of NDVI analysis for
one to seven layers. With regard to simulation time consumption, the simulation time of four layers
was about 1.8 times longer than that of three layers. Moreover, their accuracy was not considerably
different, and the accuracy of three layers was enough. The higher the layers, the slower the simulation
speed would be. Furthermore, the accuracy did not substantially improve. The mean values of the 7
stratified NDVI was calculated. We use the average value to minus the measure value and the result
divided by the average value. Thus, the error rate (ER) was computed in Equation (3):

ERi =
ŷ − yi

ŷ
, (3)

ŷ was the average of these groups. ERi and yi represented ER and the NDVI value of the i-th experiment
respectively. The accuracy of the five layered canopy is at the expense of time. The computing time
increases 2.3 times over from three layers to five layers. Considering time and accuracy, three-layers
simulation was a more reasonable choice. To further verify the conclusion, we calculated the operating
efficiency by time and error, and the formula is as follows:

E =
1

T ∗A
(4)
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The program run time (T) which was the running time when output the layered spectrum, was
measured in seconds. The error (A) was obtained from the absolute difference between the simulated
vegetation index and the mean value. Efficiency is inversely proportional to time (T) and error (A).
The statistics of running time error and efficiency are shown in Table 8.

Table 8. Running time, error, and efficiency statistics for 7 layers.

Layered Number Time, Second Error Efficiency

1 181.647 0.0037 88.91
2 177.311 0.0051 66.88
3 182.027 0.0026 127.43
4 312.134 0.0018 109.85
5 423.791 0.0015 93.21
6 446.987 0.0045 29.73
7 493.191 0.0101 12.03

Note that in order to balance the weight ratio of time and error, we multiply the time with the
weight of 60 to convert it into minutes. Figure 5 shows the simulation efficiency of the 7 layers drawn
according to Table 8. It could be seen from Table 8 and Figure 5 that the efficiency of the three layers is
the highest. The operation efficiency in our experiment is an inverse proportional function of time
and error. When the number of layers rises, calculation amount and time consumption increase,
while the accuracy rises to a limited extent. Three, four, and five layers are better options when data
acquisition conditions allow. However, the high number of layers will make it more difficult to collect
data, and the cost of labour and material resources is not cost-effective compared with the improved
accuracy. Combined with the above analysis on the operating efficiency of the model, it is suggested to
choose three layers as the best layer.

3.1.2. Effects of Changing Simulation Parameters on Reflectivity Spectrum

After a relatively reasonable stratification standard was obtained, simulation work goes on
smoothly. We made a qualitative analysis of the spectrum obtained from the experiment. Firstly,
the influence of the vertical profile of LAI was analysed. Vegetation coverage related to LAI and
an increase in vegetation coverage will increase leaf area. Hence, the higher the slope of the red
border, the better the vegetation will grow. Although the total LAI content gradually increased, the
difference in overall stratified reflectance was marginal, showing only differences in amplitudes. In
general, two turning points appeared in the reflectance spectrum in the red and infrared bands. These
turning points were mainly determined by the physiological and structural characteristics of the leaves
(Figure 6). Figure 6a was the three-layered canopy reflectance diagram of the fifth group which was
the standard reference scenario. The upper, middle, and lower layers were made for the winter wheat
diagram on the right. TopRi; MiddleRi; LowerRi in Figure 6a–c represented the upper, middle, and
lower reflectance curves of the i-th experimental. As shown in Figure 6b–d, the upper layer had a
lower reflectance in the visible light bands and better light absorption than the other layers. In the
experiments, the design of the middle layer LAI value was the largest among the three layers of
canopy. When light is transmitted in the canopy, light reflection and absorption by the upper blade will
attenuate light radiation that is stronger than the influence of enlarged leaf area of middle layer within
a reasonable range. Near the 740 nm band, light absorption by the pigments gradually decreased,
whereas light reflection by cells increased. The reflectivity in the near-infrared region is the most
sensitive to canopy and blade structure. Water content of the leaves has the most remarkable influence
on light reflectivity. An obvious extreme value point of the first derivative near 740 nm appeared
(Figure 6). This extreme value point was the inflection point of the reflectance spectrum. When
chlorophyll amount was the same, the reflectivity of the upper, middle, and bottom layers followed
the same trend. However, the reflectance amplitude was greatly affected by the vertical structure of
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the canopy, thereby demonstrating the phenomenon that the reflectance of the upper layer was lower
but the reflectance of the bottom layer was higher compared with that of the other layers. LAI had
a negative correlation with the reflectivity of visible light band, but LAI was remarkably positively
correlated with the reflectance of near-infrared band, in which 810 nm had the best correlation.
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Figure 6. Response diagram of stratified spectra to LAI changes. (a) The three-layered canopy
reflectance diagram of the fifth group which was the standard reference scenario. (b–d) represent
reflectance spectra of three layers (top, middle, and bottom layers) to vertical changes in LAI and their
first derivatives.

Next, the effect of chlorophyll vertical profile on spectral characteristics was analysed. As indicated
by the three-layered reflectance spectral profile shown in Figure 7, chlorophyll mainly affected the
visible light band. Figure 7a is the three-layered canopy reflectance diagram of the eighth group which
was the standard reference scenario. The upper, middle, and lower layers were made for the winter
wheat diagram on the right. TopRi; MiddleRi; LowerRi in Figure 7a–c represents the upper, middle,
and lower reflectance curves of the i-th experimental group. A green peak appeared in the same
position of the three strata at about 550 nm in the green light wave band. The correlation coefficient
between Chla+b and VIs was also strongly correlated with the green light band. An obvious extreme
value point of the first derivative appeared near 550 and 710 nm. This point was the inflection point
of the reflectance spectrum, indicating that the spectral characteristics changed and the correlation
between the spectrum and chlorophyll content was demonstrated. Chlorophyll in cells is in the
hydrosol state and has strong infrared reflection. Mesophyll cells contain numerous chloroplasts, which
are the main sites of photosynthesis. The reflectance spectra of spongy tissues with large amounts of
chlorophyll in the cavity varies greatly.
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Figure 7. Response diagram of stratified spectra to Chla+b changes. (a) The three-layered canopy
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Finally, the effect of equivalent water thickness on spectral reflectance was analysed (Figure 8).
Figure 8a was the three-layered canopy reflectance diagram of the third group which was the standard
reference scenario. The upper, middle, and lower layers were made for the winter wheat diagram on
the right. TopRi; MiddleRi; LowerRi in Figure 8a–c represents the upper, middle, and lower reflectance
curves of the i-th experimental group. The water and leaf structures substantially changed because
of the reflection characteristics of cells in the leaves after filling with water. The water content of the
leaves almost had no effect on the spectral reflectance of visible band because water reflected almost
all of the visible light. Results showed that water and leaf structure had a strong influence on the
800 nm band of the near-infrared region, and the reflectance of the top layer was higher than that of
the other layers. Three obvious extremum points of the first derivative appeared in the reflectance
spectrum from 800 nm to 2400 nm. These points were the characteristic points of concurrent spectral
changes. Correlation analysis also verified this result. The selected infrared bands of 820, 1450, 1600,
and 1940 nm were also near the spectral change feature points and could well realize the inversion of
moisture. Given that the reflection characteristics of the cells in the leaves considerably changed after
filling with water, water and leaf structures affected the various characteristics of reflectance spectrum.
Water content almost had no effect on the visible band of spectral reflectance because water reflected
almost all of the visible light. Results showed that water and leaf structure had a great influence in the
800 nm band of the near-infrared region, and the reflectance of the top layer was higher than that of
the other layers.
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Figure 8. Response diagram of stratified spectra to Cw changes. (a) The three-layered canopy
reflectance diagram of the third group which was the standard reference scenario. (b–d) represent the
reflectance spectra of three layers (top, middle, and bottom layers) to vertical changes in Cw and their
first derivatives.

3.1.3. Effects of Changing Simulation Parameters on Fluorescence Spectra

To verify the simulation effects of the model on fluorescence spectrum, we performed a series
of spectral outputs and analysed the influence of the parameters on fluorescence spectrum. SIF is a
fluorescence reaction caused by natural light (from 400 nm to 760 nm) during photosynthesis of crops
(Figure 9). Compared with the reflectance spectrum, the fluorescence spectrum was directly related
to the photosynthetic mechanism and revealed the photosynthetic physiological state of vegetation.
Compared with the reflectance spectrum, the acquisition of SIF via nondestructive observation of
large areas of vegetation can reveal the physiological state of vegetation during photosynthesis
because fluorescence spectrum is directly related to the mechanism of photosynthesis. In this study,
the fluorescence spectra of the changing LAI, chlorophyll content, and equivalent water thickness
were constructed using the fluorescence data output from the mSCOPE model. Moreover, the relevant
fluorescence vegetation index RVIf (fluorescence spectrum ratio of 685–730 nm) was calculated. The R2

of LAI, Chla+b, and Cw was 0.9707, 0.7662, and 0.9884, respectively. Good correlations of the results
indicated that the selected fluorescence index was universal and that the mSCOPE model was robust.
The fluorescence gradually decreased as LAI increased (Figure 9a). As chlorophyll concentration
increased, the fluorescence increased in the beginning and then weakened thereafter. The fluorescence
peak shifted to the right. Compared with the reflectance spectrum, slope gain and right-shift were
observed on the red edge, indicating that the fluorescence spectrum could reflect the growth state of
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crop (Figure 9b). The increase in water content in the leaves would lead to a decrease in fluorescence.
Thus, water content and fluorescence had a negative correlation. A fluorescence peak also appeared
at 740 nm (Figure 9c). The red edge, which is an important indicator of plant pigment status and
health, is closely related to the physical and chemical parameters of vegetation. Therefore, the red
edge is an ideal tool for surveying vegetation status via remote sensing. TOC fi represents the canopy
fluorescence spectra of the i-th experiment.
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3.1.4. Correlation Analysis between Spectral Vegetation Indexes and the Three Selected Parameters

The relationship between vegetation index and biochemical properties of vegetation in specific
spectral combinations of bands is also of great interest to us. Firstly, correlation analysis between VIs
and LAI was carried out. Since the sensitive bands and robust vegetation index proved in previous
experiments were selected, the results obtained were satisfactory. The correlation coefficients of TOC
LAI with NDVI and RVI were 0.9687 and 0.9925, respectively, by which the selected VIs showed a
good positive correlation between LAI (Table 9). The ratio vegetation index showed a better correlation
than that of NDVI. The correlation coefficient between chlorophyll fluorescence index and LAI was
0.9707. Vegetation spectrum was a complex and mixed response of vegetation to a variety of factors
such as the shadow of soil environment and atmosphere, which is influenced by many natural factors.
The values of different vegetation indices have certain differences and uncertainties, and the effects of
some known factors can only be removed by adding and subtracting ratios of different bands of the
spectrum. RVI, which was also known as greenness, is defined as the ratio of the reflectivity of two
channels, which can better reflect the difference of vegetation coverage and growth status. Therefore,
when LAI changes were only controlled in the simulation, the correlation between LAI and RVI was
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the highest. Then, the analysis of the effect of Cab content on VIs was conducted. The correlation
coefficients of Chla+b related vegetation indexes in TOC with CIgreen and NDVIgreen were 0.9996 and
0.9917, respectively. CIgreen had a slight advantage over NDVIgreen. The correlation coefficient between
chlorophyll fluorescence index and Chla+b was 0.7662. Finally, the response of vegetation index to
water change was analysed. Results of Cw related vegetation indexes were calculated as follows: WI
was 0.9999; NDWI was 0.9931; the combination between the two bands of 1600 nm and 820 nm with
RVI was 0.9918, and that between the two bands of 1450 nm and 1940 nm was 0.9659. WI had the
best correlation in the water-related vegetation index. The above analysis results were satisfactory
and indicate that vegetation indexes of selected bands had relatively good correlations with the
corresponding vegetation parameters. The empirical relationship model was established to calculate
the vegetation index from the simulated reflectance spectrum and to establish a statistical relationship
with the measured parameters. This method can provide a convenient and efficient reference value for
estimating vegetation parameters from the vegetation index extracted for hyperspectral images.

Table 9. Values of vegetation indexes (VIs), correlation fitting equations between agronomic parameters,
and corresponding VIs and the determination coefficient.

Agronomic
Parameters Vegetation Index Linear Equation Nonlinear Equation R2

LAI
NDVI / y = 0.2222ln(x) + 0.6852 0.9241
RVI / y = 4.259ln(x) + 5.8525 0.9850
RVIf / y = −0.006ln(x) + 0.0525 0.9707

Chla+b

CIgreen y = 0.1556x − 0.2441 / 0.9996
NDVIgreen / y = 0.2167ln(x) − 0.0691 0.9917

RVIf / y = −0.02ln(x) + 0.1267 0.7662

Cw

WI y = 3.5046x + 0.9908 / 0.9999
NDWI y = 3.5376x − 0.0082 / 0.9931

WRVI(1600nm, 820nm) y = 8.5485x + 0.1658 / 0.9918
WRVI(1450nm, 1940nm) / y = −0.146ln(x) − 0.1849 0.9659

RVIf / y = −0.005ln(x) + 0.0304 0.9884

3.2. Verification of mSCOPE Performance for Winter Wheat Vegetation Index Inversion

First of all, the real parameters were inputted into the mSCOPE model to obtain the simulated
spectrum and the simulated value of VIs. The measured values of VIs were calculated using the
measured spectrum, and deviations were calculated together with the simulated value of VIs. We ran
21 sets of real data and calculated the RMSE for each VIs and its maximum and minimum values
(Table 10).

Table 10. Three-tier model-simulated values of VIs, their RMSE, and maximum and minimum values
in different experimental groups.

VIs NDVI CIgreen NDVIgreen WI WRVI1 WRVI2 NDWI
RMSE 0.064 1.28 0.05 0.15 0.48 0.29 0.15
min 0.0013 0.0361 0.0018 0.0113 0.0193 0.0150 0.0180
max 0.255 0.505 0.184 0.193 1.040 0.339 0.191

The results showed that RMSE of NDVIgreen was the smallest, with a value of 0.05. The RMSE of
CIgreen was relatively large, reaching 1.28, mainly because it was largely influenced by chlorophyll and
LAI. It can be seen from Figure 3 that in some cases, LAI selected in the experiment was very small,
which will lead to a larger result error. The minimum error values for each VIs in Table 9 also showed
small simulation errors and good results under nonextreme experimental conditions. Figure 10 is a
schematic drawing of the maximum and minimum values of RMSE and error square, which more
intuitively reflects the above conclusions. WRVI1 and WRVI2 represent WRVI(1600nm, 820nm) and
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WRVI(1450nm, 1940nm), respectively. Because the water conditions in these twelve scenes were all at a
reasonable level (equivalent water thickness was between 0.007 and 0.009cm), the error of vegetation
index related to water was very small. The decrease of chlorophyll and LAI in winter wheat would
cause great fluctuations in CIgreen, with poor accuracy. The new vegetation index proposed in this
paper was named NDVIgreen (combination of 810 nm and 560 nm), which is characterized by simple
calculation and good robustness. Compared with other vegetation indexes, NDVIgreen has a good
effect in this experiment. The maximum deviation is kept at a relatively low level and it is not sensitive
to the change of physicochemical content in the growth stage of winter wheat. Verification of its
universality will be attempted through more experiments in subsequent studies.
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Figure 10. The maximum and minimum values of RMSE, when using the three-tier model to
verify accuracy.

3.3. SA Results Obtained through FAST

Due to the limited manpower and material resources, it is difficult to obtain and calibrate all the
parameters involved in the model. To reduce the number of parameters, SA should be carried out
according to local crop varieties and its growth conditions. On the one hand, SA should be performed
before a model is used because the extraction of major parameters improves the accuracy and efficiency
of simulation work; On the other hand, because the physiological characteristics of different crops
(such as LAI and plant height) are generally different, the sensitivity of corresponding parameters
should be analysed again to judge if the parameters need to be localized and regionalized.

As can be seen in Figure 11, the difference between the bottom chlorophyll content and other
parameters in the first-order SA was very small, resulting in their values clustered together, which
cannot be distinguished. However, this problem can be solved easily in global sensitivity analysis,
because global SA highlighted subtle differences which can well highlight the variance ratios of weaker
parameters. Qualitative analysis from Figure 1 shows that: LAI1, Cw1, and Cab3 all showed higher
variance interpretation ability in green light bands; the variance interpretation ability of LAI1 and Cab3
in the red spectral band was optimal, while the influence of other parameters was not obvious; in the
near-infrared band, the variance proportion of LAI1, Cw1, and Cab3 gradually decreases. Results
of SA showed that the overall trend of first-order and global sensitivities were only locally different,
and the overall trend was not different (Figure 12). Nevertheless, the overall sensitivity was more
prominent than the first-order sensitivity for the specific expression of parameters. Both the first-order
and global sensitivities of the upper-layer LAI were superior in the upper layer of the green light band
and the sensitivity indexes reached 0.3507 (one order) and 0.7418 (total order). Specific results were
listed in Tables 11 and 12. The sensitivity index of equivalent water thickness was 0.1964 (one order)
and 0.3074 (total order). The global sensitivity index (0.0234) was more sensitive than the single
variable-related first-order sensitivity (0.190) of Chla+b. Global sensitivity analysis can extract the
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relatively important factors and prevent imperceptible avoidance of factors that are not sensitive to a
single variable analysis, such as chlorophyll content in the bottom layer in this study. In the sensitivity
analysis of red spectral band, the contribution of variance and mean of LAI of the upper layer far
exceeded that of the other factors. The sensitivity index was 0.5794 (one order) and 0.8846 (total order).
In the first-order sensitivity analysis, the sensitivity index of LAI of the middle layer (0.0593) ranked
second. However, in the global sensitivity analysis, the sensitivity of the other parameters showed
subtle differences. The sensitivity of the bottom layer Chla+b (0.1619) was slightly higher than that
of the middle layer LAI (0.0961). In the near-infrared band, the water content in the upper layer
achieved the dominant position. The sensitivity index of water content was 0.6692 (one order) and
0.9058 (total order), which far exceeded that of the other parameters. The near-infrared band is mainly
affected by blade structure. In this band, water is the most important factor.

Sensors 2020, 20, x FOR PEER REVIEW 18 of 23 

 

mean of LAI of the upper layer far exceeded that of the other factors. The sensitivity index was 0.5794 
(one order) and 0.8846 (total order). In the first-order sensitivity analysis, the sensitivity index of LAI 
of the middle layer (0.0593) ranked second. However, in the global sensitivity analysis, the sensitivity 
of the other parameters showed subtle differences. The sensitivity of the bottom layer 𝐶ℎ𝑙௔ା௕ (0.1619) 
was slightly higher than that of the middle layer LAI (0.0961). In the near-infrared band, the water 
content in the upper layer achieved the dominant position. The sensitivity index of water content was 
0.6692 (one order) and 0.9058 (total order), which far exceeded that of the other parameters. The near-
infrared band is mainly affected by blade structure. In this band, water is the most important factor. 

 
Figure 11. Diagram of first-order and global SA. 

  
(a) (b) 

Figure 12. (a) Global SA and (b) first-order SA of stratified physical and chemical parameters of green 
(560 nm), red (685 nm), and near-infrared (810 nm) wavelengths. 

  

Figure 11. Diagram of first-order and global SA.

Sensors 2020, 20, x FOR PEER REVIEW 18 of 23 

 

mean of LAI of the upper layer far exceeded that of the other factors. The sensitivity index was 0.5794 
(one order) and 0.8846 (total order). In the first-order sensitivity analysis, the sensitivity index of LAI 
of the middle layer (0.0593) ranked second. However, in the global sensitivity analysis, the sensitivity 
of the other parameters showed subtle differences. The sensitivity of the bottom layer 𝐶ℎ𝑙௔ା௕ (0.1619) 
was slightly higher than that of the middle layer LAI (0.0961). In the near-infrared band, the water 
content in the upper layer achieved the dominant position. The sensitivity index of water content was 
0.6692 (one order) and 0.9058 (total order), which far exceeded that of the other parameters. The near-
infrared band is mainly affected by blade structure. In this band, water is the most important factor. 

 
Figure 11. Diagram of first-order and global SA. 

  
(a) (b) 

Figure 12. (a) Global SA and (b) first-order SA of stratified physical and chemical parameters of green 
(560 nm), red (685 nm), and near-infrared (810 nm) wavelengths. 

  

Figure 12. (a) Global SA and (b) first-order SA of stratified physical and chemical parameters of green
(560 nm), red (685 nm), and near-infrared (810 nm) wavelengths.



Sensors 2020, 20, 4570 19 of 23

Table 11. First-order sensitivity analysis generated by the Fourier amplitude sensitivity test
(FAST) algorithm.

Parameters Green560 Red685 NRI810
LAI1 0.3507 0.5794 0.0211
LAI2 0.0288 0.0593 0.0058
LAI3 0.0284 0.0213 0.0047

Chla+b1 0.0016 0.0015 0.0028
Chla+b2 0.0012 0.0014 0.0010
Chla+b3 0.0234 0.0212 0.0155

Cw1 0.1964 0.0298 0.6692
Cw2 0.0107 0.0042 0.0141
Cw3 0.0018 0.0031 0.0010

Table 12. Total order sensitivity analysis generated by the FAST algorithm.

Parameters Green560 Red685 NRI810
LAI1 0.7418 0.8846 0.2037
LAI2 0.0567 0.0961 0.0331
LAI3 0.1117 0.0893 0.0425

Chla+b1 0.0277 0.0257 0.0388
Chla+b2 0.0346 0.0490 0.0275
Chla+b3 0.1900 0.1619 0.1480

Cw1 0.3074 0.0730 0.9058
Cw2 0.0626 0.0397 0.0821
Cw3 0.0357 0.0546 0.0238

Note: The number i of LAIi, Chla+bi and Cwi in Figures 11 and 12, Tables 11 and 12 represent the upper, middle, and
lower layers of the canopy respectively consistent with the naming conventions in Table 7.

4. Discussion

4.1. Canopy Reflectance Modeling of Winter Wheat by Using the mSCOPE Model

Differences in the optical properties of crop canopies were rarely considered. The relationship
between vegetation biochemical contents stratified within the canopy and spectral reflectance
characteristics could be easily investigated by changing several parameters in the model. However,
this step was difficult to realize in actual field experiments. Results indicated that the spectral
characteristics changed, and the correlation between the spectrum and chlorophyll content was
demonstrated well. The input data of the mSCOPE model could be improved by simplifying its
complexity; some model parameters were complicated and difficult to obtain. The initialization values
that come with the model may lead to inevitable system errors. Moreover, the inversion process
involving inputting different vertical layer parameters was uncertain. The same spectrum may be
obtained by adjusting the input variables, and the underdetermined results in practical applications
must be judged on the basis of experience to a certain extent. Nevertheless, the mechanism and
principle of the mSCOPE model were easy to understand, and its implementation is clear. It had good
explanatory ability in simulating photosynthesis and light transmission within the canopy. Moreover,
it extended the longitudinal scale of the canopy, and the simulation results it obtains are reasonable,
efficient, and accurate. The way the model works can be extended and applied to other homogeneous
canopy models. Nitrogen and chlorophyll are closely related. We simply verified that winter wheat
with different nitrogen content had a good performance, indicating that this model had a broad
application prospect. This conclusion can also be extended to other fields where practical scenarios
are combined. For example, diseases and insect pests may cause yellower leaves in the middle layer.
Common spectral observation method generally focuses on the top of the canopy. However, this way
may cause trouble. When the top layer of leaves can detect spectral changes deterioration, the disease
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has intensified. Using mSCOPE model to invert physiological indexes such as VIs of canopy interior
stratification is undoubtedly a good way to solve the difficulty of internal spectral measurement.

4.2. Suitability of the mSCOPE Model in Inversing Vegetation Indexes

The mSCOPE model was used to simulate the spectrum by inputting easily obtained vegetation
parameters. The indexes that could not be readily measured were obtained via simple calculation
and inversion. In terms of deviations, the simulation effects of the model on NDVI were considerably
better than those of RVI. However, the difference in RMSE between the two was not significant.
This conclusion requires further verification with more experimental data. Unlike the unstratified
inversion accuracy, the measured values of the top layers were used as input parameters of the
single-layer canopy. Results showed that its RMSE was greater than 10%, which was substantially
higher than stratification accuracy. In the subsequent data collection, as many data as possible required
by the model should be collected to eliminate systematic errors and maintain simulation conditions as
close as possible to measurement conditions. For parameters that are difficult to obtain, the inversion
accuracy and efficiency can be improved by setting a reasonable value range combined with prior
knowledge. In general, the fitness of inversion was relatively good, and the simulated value had
certain reference value. The best solution to avoid systematic errors is to obtain actual field data.
In doing so, model accuracy can be clearly debugged and make adequate preparation for practical
applications. The function of this model, which can simultaneously output reflectance and fluorescence
spectra, is very powerful. However, this model has many features that must be improved. For example,
outputs and inputs are manually performed. A visual interface can be added to save time in running
the model and improve its efficiency.

4.3. Sensitivity Analysis of Canopy Reflectance to Vertical Profiles of Crop Parameters

The influence of a single-layered variable on the reflectivity of different bands was analysed via the
FAST algorithm. Global sensitivity was also obtained. The coupling effects of input parameters were
also considered. Given that the physiological characteristics of winter wheat are systematic responses
to physicochemical contents, a single aspect is insufficient to explain its biological characteristics.
The results also demonstrated that the FAST method can simultaneously analyses the direct and
indirect effects and the local and global coupling effects of each parameter. However, the present
study provided a simple verification only. Owing to space limitation, we did not compare this method
with other sensitivity analysis methods. A follow-up study may be conducted to include this aspect.
Nevertheless, the present study has a certain reference value. This method has broad application
prospects and may be applicable not only to the mSCOPE model developed herein but also to any
other model.

5. Conclusions

We outputted the layered reflectance spectra and discussed the advantages and generalization
ability of the improved mSCOPE model based on the SCOPE model. Sensitivity indexes of the main
parameters were calculated via sensitivity analyses of 585 experiments. Results confirmed that weight
ratio was directly related to the advantages and disadvantages of the sensitive factors in spectral
reflectance. The effects of vertical distribution of leaf physiological characteristics on reflectance
spectra were considered. Scenario simulation analysis revealed that the model was optimal in the
case of three layers. Moreover, the vertical distribution patterns of LAI, Chla+b, and Cw had an impact
on almost all layers of canopy reflectance. LAI had a negative correlation with the reflectance of
visible light band and a substantial positive correlation with the reflectance of near-infrared band.
Among these bands, 810 nm had the best correlation. Chlorophyll mainly affected visible light bands,
and a green peak appeared at about 550 nm in the green light band of which the first derivative was 0.
The equivalent water thickness of the blade had almost no effect on visible light but mainly affected the
near-infrared bands. In general, incident light radiation is transmitted and reflected by canopy leaves.
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As light further penetrates down to the canopy, the attenuation degree becomes greater. Therefore,
the reflectance spectrum of the upper leaves was more sensitive to changes in the content of vegetation
components than that of the lower leaves. The vegetation indexes selected, such as NDVI, RVI, CIgreen,
and WI, were highly sensitive to changes in the corresponding LAI, Chla+b, and Cw. RVI had a better
correlation with LAI than NDVI. CIgreen was highly correlated with Chla+b because this index has a
strong reflection attribute to green light. Vertical variations in Cw mainly affected Vis related to water
attribute estimates, such as WI and NDWI. The simulation results showed that: the operating efficiency
of winter wheat canopy stratification was higher than other stratification when it was divided into
three layers; LAI vertical profile had an influence on canopy reflectance in almost all bands; the vertical
profile of Chla+b mainly affected the reflectivity of visible region; The vertical profile of Cw only affected
the near-infrared reflectance. The results showed that there was a strong correlation between the
selection of vegetation indexes at different bands and canopy parameters. LAI, Chla+b and Cw affect
vegetation index estimation related to LAI Chla+b and Cw respectively, and the RMSE of the proposed
new vegetation index NDVIgreen was the smallest, which was 0.042. SA showed that the reflectance
spectrum was more sensitive to the upper layer parameters. The above experimental results showed
that the model had good interpretability and broad application prospects. In the future, we will collect
additional experimental data to test the practical applications of the model. We will also apply these
data to other models, such as the PROSPECT model, for improvement.
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