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Aldosterone is a mineralocorticoid hormone that controls body fluid 
and electrolyte balance. Excess aldosterone is associated with car-
diovascular and metabolic diseases. Inflammation plays a critical 
role on vascular damage promoted by aldosterone and aggravates 
vascular abnormalities, including endothelial dysfunction, vascular 
remodeling, fibrosis and oxidative stress, and other manifestations of 
end-organ damage that are associated with hypertension, other forms 
of cardiovascular disease, and diabetes mellitus and the metabolic 
syndrome. Over the past few years, many studies have consistently 
shown that aldosterone activates cells of the innate and adaptive im-
mune systems. Macrophages and T cells accumulate in the kidneys, 
heart, and vasculature in response to aldosterone, and infiltration of 
immune cells contributes to end-organ damage in cardiovascular and 
metabolic diseases. Aldosterone activates various subsets of innate 
immune cells such as dendritic cells and monocytes/macrophages, 
as well as adaptive immune cells such as T lymphocytes, and, by ac-
tivation of mineralocorticoid receptors stimulates proinflammatory 
transcription factors and the production of adhesion molecules and 
inflammatory cytokines and chemokines. This review will briefly high-
light some of the studies on the involvement of aldosterone in ac-
tivation of innate and adaptive immune cells and its impact on the 
cardiovascular system. Since aldosterone plays a key role in many 
cardiovascular and metabolic diseases, these data will open up prom-
ising perspectives for the identification of novel biomarkers and ther-
apeutic targets for prevention and treatment of diseases associated 
with increased levels of aldosterone, such as arterial hypertension, 
obesity, the metabolic syndrome, and heart failure.

GRAPHICAL ABSTRACT

Keywords:  adaptive immune response; lymphocytes; blood pressure; 
dendritic cells; hypertension; inflammation; innate immune response; 
mineralocorticoid receptor; monocytes/macrophages

doi:10.1093/ajh/hpaa137

This is an Open Access article distributed under the terms of the 
Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/4.0/), which permits non-
commercial re-use, distribution, and reproduction in any medium, 
provided the original work is properly cited. For commercial re-use, 
please contact journals.permissions@oup.com

Aldosterone is a mineralocorticoid hormone, discovered 
more than 60 years ago, involved in fluid and electrolyte bal-
ance. The effects of aldosterone on the regulation of body 
fluid ion concentration were first described in 1952 by James 
Tait, Sylvia Simpson, and Hilary Grundy.1 The structure of 
aldosterone was identified in 1954 by these same scientists 
with the support of Tadeus Reichestein.2–4 The principal 

site of production and secretion of aldosterone are the zona 
glomerulosa of adrenal cortex and several stimuli contribute 
to the production and release of aldosterone in physiolog-
ical situations, including activation of the renin–angiotensin 
system,5–9 release of adrenocorticotropin,10,11 and increased 
concentration of potassium ion (K+).12,13 Aldosterone syn-
thesis also occurs in extra-adrenal tissues, such as the central 
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nervous system,14,15 the cardiovascular system (myocardium 
and vascular smooth muscle cells [VSMCs])7,16–18 and more 
recently, it has been demonstrated to occur in adipocytes.19 
There is no direct evidence that immune cells produce aldos-
terone, although adrenal mast cells could promote cell pro-
liferation and steroidogenesis in the zona glomerulosa.20,21 
They could also release serotonin to activate mineralocor-
ticoid production in concert with the renin–angiotensin 
system.20–22

The main effects of aldosterone are linked to the regu-
lation of fluid and electrolyte balance. Aldosterone causes 
renal sodium (Na+) and water reabsorption, and K+ and hy-
drogen (H+) excretion at the level of principal cells of the 
distal tubule and collecting duct. Reabsorption of Na+ and 
water is considered the primary mechanism for an associ-
ated rise in blood pressure observed with activation of the 
mineralocorticoid receptor (MR). A  few years after dis-
covery of aldosterone, its excess was associated with elevated 
blood pressure. Jerome Conn23 described in 1955 the first 
case of primary aldosteronism characterized by hypoka-
lemia, low plasma renin activity and high plasma and uri-
nary aldosterone in patients with hypertension, which has 
been since shown to be a frequent cause of resistant hyper-
tension.24 Enhanced concentrations of aldosterone were 
also reported at the very beginning of the aldosterone era in 
patients with primary hypertension, in absence of an adrenal 
tumor, suggesting that hypertension could be a state of mild 
chronic hyperaldosteronism.25

In 1957, Gross et al. demonstrated that high doses of al-
dosterone in rats, associated with unilateral nephrectomy 
and 1% of NaCl in the drinking water, increased blood 
pressure and produced hypertension. A  similar effect was 
observed using an analog of aldosterone, deoxycorticos-
terone acetate (DOCA). Hypertension induced by aldoste-
rone or DOCA produces vascular alterations and end-organ 
lesions such as vascular and interstitial fibrosis in the heart 
and in the kidneys, whereas the effects induced by DOCA 
were more severe.26

The cardiovascular effects of aldosterone are mediated 
by genomic and nongenomic mechanisms via activation 
of MR27 and G-protein-coupled estrogen receptors.28–30 
MR antagonists lower blood pressure and have protective 
effects on cardiovascular disease, decreasing vascular and 
end-organ damage as well as substantially reducing the 
risk of both morbidity and mortality among patients with 
heart failure.31,32 The use of the MR antagonist spirono-
lactone has also been demonstrated to be a very effective 
antihypertensive in a recent trial in patients with resistant 
hypertension, the PATHWAY-2 trial.33

Excess aldosterone is a cardiovascular risk factor not only 
for hypertension but also for stroke, coronary artery disease, 
congestive heart failure, and diabetes mellitus. Aldosterone 
induces vascular dysfunction and remodeling, increases 
generation of reactive oxygen species (ROS) and inflamma-
tion.28,34–38 Inflammation or activation of the immune system 
plays a critical role in the pathophysiology of hypertension 
and vascular damage promoted by aldosterone.39–42 From an 
evolutionary perspective it has been argued that aldosterone 
developed as part of a defense mechanism that through salt 

retention, vasoconstriction and inflammation protects from 
trauma and hemorrhage, leading to blood pressure home-
ostasis and wound healing. MR may have provided a crit-
ical evolutionary survival advantage in presence of trauma 
to control fluid loss following injury. However, modern life-
style and sedentary behavior associated with an unhealthy 
diet rich in salt may have turned the aldosterone/MR de-
fense mechanism into a harmful one that contributes to in-
crease in blood pressure, cardiovascular disease, and events 
in populations with obesity and advanced age.43

From a therapeutic point of view, after the initial descrip-
tion of primary aldosteronism in the 50s, the Randomized 
ALdactone Evaluation Study (RALES) trial in 1999 
demonstrated the therapeutic role for aldosterone antagonists 
in chronic severe (NYHA class III/IV) systolic heart failure. 
In 2003, the Eplerenone Post-myocardial infarction Heart 
failure Efficacy and Survival Study (EPHESUS) showed that 
benefit of aldosterone receptor antagonists in patients with 
an ejection fraction <40% after myocardium infarct, and 
after that TOPCAT showed moderate effects of spironolac-
tone in heart failure with preserved ejection fraction with 
reduction in hospitalization for heart failure.44 More recently 
as already mentioned, the PATHWAY-2 trial showed the effi-
cacy of blocking MR in resistant hypertension.33

This review will now focus on the important and complex 
interactions between aldosterone and the immune system, 
and how this impacts on the cardiovascular system. Some of 
the initial discoveries and the latest findings on aldosterone-
induced activation of the immune system will be discussed 
in more detail.

ALDOSTERONE PRODUCTION OF INFLAMMATORY 
MEDIATORS, FIBROSIS, AND REMODELING

Aldosterone has been associated since its discovery with 
inflammation, fibrosis, vascular damage, and end-organ 
failure. It is important to mention that remodeling and fi-
brosis are a final process of inflammation. The first step to 
inflammation is production of inflammatory mediators that 
recruit immune cells that then contribute to local inflamma-
tion. In situations where the initial injury is not controlled, 
active inflammation occurs with infiltration of cells, tissue 
destruction and an attempt to repair the damage (healing). If 
not controlled, this can lead to remodeling of the organ, pro-
duction of extracellular matrix and deposition of collagen 
resulting in characteristic tissue changes and fibrosis.45

How does aldosterone induce an inflammatory response 
by activating the immune system to affect the cardiovas-
cular system? The first evidence that aldosterone stimulates 
an immune response was provided 1 year after its identifi-
cation, in 1955. Experiments in rats that underwent bilat-
eral adrenalectomy and were subjected to an inflammatory 
challenge, granuloma-pouches, showed that aldosterone 
inhibits the effects of cortisol and increases the exudate, and 
the weight of the spleen and thymus.46 However, the effects 
of aldosterone on inflammatory responses were not explored 
for the next 40 years, until Brilla et al. showed that hyper-
tension induced by aldosterone causes cardiac inflammation 
with remodeling of the right and left ventricles.47 Myocardial 
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interstitial and perivascular fibrosis, the final manifestation 
of an inflammatory process, was observed in aldosterone-
infused rats. These effects were mediated by MR, since 
treatment with spironolactone, a MR antagonist, prevented 
hypertrophy of the left ventricle, and blunted the increase in 
the blood pressure.48

Subsequent studies have shown that aldosterone increased 
expression of inflammatory mediators and not only the 
final process of fibrosis.49 Aldosterone infusion increased 
the expression of adhesion molecules, such as intracellular 
adhesion molecule-1 (ICAM-1) and vascular cell adhesion 
molecule-1 (VCAM-1), as well as infiltration of Cluster 
of Differentiation 68 (CD68)-positive cells (a marker of 
macrophages). Cardiac infiltration of inflammatory cells 
was preceded by increased expression of other inflamma-
tory markers such as cyclooxygenase-2 (COX-2), mono-
cyte chemoattractant protein-1 (MCP-1), and osteopontin 
(OPN). Furthermore, aldosterone infusion promoted severe 
coronary inflammatory lesions, characterized by monocyte/
macrophage infiltration and focal ischemic and necrotic 
changes. The MR antagonist attenuated the expression of 
these proinflammatory markers in the rat heart and reduced 
vascular and myocardial damage.49 The association of al-
dosterone and inflammation with oxidative stress was also 
described in the heart of rats, confirming that aldosterone 
induces inflammation and oxidative stress in the cardiovas-
cular system and in this manner contributes to cardiovas-
cular disease.38

The other important fact that confirmed the involvement 
of aldosterone with inflammation was its association with 
transcription factors that induce expression of a large range 
of genes implicated in inflammation. In addition to triggering 
inflammatory responses in the heart and the vasculature, al-
dosterone stimulates macrophage infiltration and increases 
DNA-binding activity of transcription factors such as nu-
clear factor-κB (NF-κB)50 and activator protein-1 (AP-1) in 
rat kidneys.50,51 These processes were attenuated by a MR an-
tagonist but also by BMS 182874, a selective endothelin (ET) 
type A  receptor antagonist, indicating that renal damage 
in response to aldosterone is associated with inflammatory 
processes that are partially mediated by ET-1.51 The MR an-
tagonist eplerenone also reduced systemic OPN, albumi-
nuria, and the expression of proinflammatory genes such as 
MCP-1, interleukin (IL)-6, IL-1β, and OPN in the kidney.52 
In addition, inflammatory cell infiltration (monocytes/
macrophages), associated with focal ischemic and necrotic 
changes and vascular, myocardial, and renal damage, as well 
as associated inflammatory markers, were decreased by both 
ET type A receptor and MR antagonists.49,51

The treatment of hypertensive patients with eplerenone 
was associated with a reduction of proinflammatory 
mediators, including MCP-1, OPN, basic fibroblast growth 
factor (bFGF), and IL-8, and reduction of collagen/elastin 
ratio of the media and stiffness of small arteries. The anti-in-
flammatory cytokines IL-10 and IL-1Ra were also reduced 
by eplerenone, possibly as a consequence of countervailing 
mechanisms in response to the reduction of inflammatory 
markers.53

The angiotensin (Ang) type 1a receptor (AGTR1a or AT1a) 
has been shown to be required for aldosterone signaling in 

VSMCs for pathways that leads to increase in the expres-
sion of inflammatory markers such as extracellular signal-
regulated kinase (ERK)1/2, c-Jun N-terminal protein kinase 
(JNK), and NF-κB signaling.54 The absence of this receptor 
in Agtr1a null mice protected these mice from aldosterone-
induced dysfunction and vascular remodeling.55 Effects of 
aldosterone do not require elevated levels of plasma aldoste-
rone, perhaps due to these interactions with other receptors 
intracellularly such as the AT1 receptor, or with other systems 
such as the ET system. Indeed, in a rodent model, the stroke 
prone spontaneously hypertensive rat, that has an activated 
renin–angiotensin system and ET system as demonstrated 
by the responses to their blockade, treatment with the se-
lective MR antagonist eplerenone even in the presence of 
normal plasma aldosterone, reduced vascular remodeling 
and cardiac fibrosis.56 Another example of association of 
MR-mediated and AT1 receptor-mediated effects is found 
in a study of mice with VSMC-specific deletion of MR.57 
These mice have lower blood pressure with aging despite ab-
sence of changes in sodium excretion, which excludes a role 
of the kidney in these effects. There is however a reduction 
in myogenic tone and Ang II-induced vascular constriction. 
The mechanism for this is reduced expression and activity 
of L-type Ca2+ channels. This suggests that MR in VSMC 
contributes to Ang II-induced vascular contraction and el-
evated blood pressure.

Aldosterone also induces C-reactive protein (CRP) ex-
pression in VSMCs in vitro and in vivo, which is abolished 
by MR antagonism.58 In addition, aldosterone stimulated 
generation of ROS and activated ERK1/2 phosphoryla-
tion, which leads to activation of intracellular pathways to 
increased expression of inflammatory markers, which was 
inhibited by the MR antagonist spironolactone. Aldosterone 
increased as well the expression of ICAM-1 in endothe-
lial cells from human coronary arteries and the adherence 
of human monocytes.59 Aldosterone stimulation increased 
c-Src phosphorylation and trafficking to lipid rafts/caveolae 
in VSMCs, which contributed to induce the proinflammatory 
markers ICAM-1 and VCAM-1.60 Figure  1 highlights dif-
ferent pathways involved in the inflammatory response to 
aldosterone. The production of inflammatory mediators via 
aldosterone could occur either through activation of MRs or 
as well via G-protein-coupled estrogen receptors that also 
respond to aldosterone.

Chemokine receptors are also associated with vascular 
injury induced by aldosterone. DOCA-salt-induced hyper-
tension increased C–C chemokine receptor type 2 (CCR2) 
expression, the CCR2 ligands chemokine C–C motif ligand 
(CCL) 2 (MCP-1), monocyte chemotactic protein 3 (CCL7), 
monocyte chemoattractant protein 2 (CCL8), and monocyte 
chemotactic protein 5 (CCL12), and macrophage infiltration 
into the vascular wall.61 The treatment with a CCR2 antago-
nist reversed DOCA/salt-induced increases in CCR2 expres-
sion and macrophage accumulation in the vascular wall, and 
reduced as well the blood pressure elevation. C-X3-C motif 
chemokine ligand 1 (CX3CL1 or fractalkine), a unique che-
mokine that is a leukocyte chemoattractant and an adhesion 
molecule, and its receptor, CX3CR1, were associated with 
interstitial fibrosis in the kidney of DOCA/salt mice.62 Mice 
lacking CX3CR1 displayed reduced fibrosis together with 
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reduction in collagen deposition, transforming growth factor 
(TGF)-β1 expression and fewer monocyte/macrophages 
infiltrating the kidneys, interestingly without reduction of 
blood pressure elevation due to DOCA/salt.

In patients with mild to moderate stable chronic heart 
failure, plasma aldosterone is increased and is associ-
ated with enhanced levels of markers of oxidative stress 
(8-iso-PGF2a), inflammation (ICAM-1), and extracel-
lular matrix turnover (TIMP-1), after adjusting for poten-
tial confounding factors (age, sex, race, diabetes, smoking, 
heart rate, left ventricular mass, and body mass index).63 
However, no differences in OPN and CRP, biomarkers 

usually associated with increased aldosterone, were 
observed in these patients.

A recent study has shown that the levels of IL-6 and tumor 
necrosis factor-α (TNF-α) in perirenal adipose tissue are 
higher in patients with primary aldosteronism than in nor-
motensive subjects or patients with essential hypertension.64 
Expression of genes related to fibrosis such as fibronectin, 
collagen I, TGF-β and as well genes related to adipogenesis 
were increased in patients with primary aldosteronism 
compared with the other hypertensive patients. Chou et al. 
showed that patients with primary aldosteronism also dis-
played higher plasma IL-6 levels, left ventricular mass index, 

Figure 1.  Aldosterone and production of inflammatory mediators. Aldosterone induces the production of inflammatory mediators either through 
activation of mineralocorticoid receptors (MRs) or G-protein-coupled estrogen receptors (GPERs). The dashed line arrows indicate mechanisms not 
depicted in the figure. Abbreviations: Aldo, aldosterone; AP-1, activator protein-1; ATP, adenosine triphosphate; Ca2+, calcium; Col I, Collagen type I; COX-
2, cyclooxygenase-2; CRP, C-reactive protein; DAMPs, damage-associated molecular patterns; ERK, extracellular signal-regulated kinase; IFN, interferon; 
IL, interleukin; K+, potassium; κBRE, nuclear factor-κB (NF-κB)  response element; MCP-1, macrophage chemoattractant protein-1; MRE, MR response 
element; NADPH, reduced nicotinamide adenine dinucleotide phosphate; NF-κB, nuclear factor-κB; NGAL, neutrophil gelatinase-associated lipocalin; 
NLRP3, NOD-like receptor pyrin-domain containing protein 3; OPN, osteopontin; P2RX7, P2X purinoceptor 7; PI3K, phosphoinositide 3-kinase; ROS, re-
active oxygen species; TGF, transforming growth factor; TLR, Toll-like receptor; TNF, tumor necrosis factor; TRE, 12-O-tetradecanoylphorbol-13-acetate 
response element (AP-1 response element); VCAM-1, vascular cell adhesion molecule-1.
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degree of myocardial fibrosis, and more impaired diastolic 
function than patients with essential hypertension.65 This 
study showed important correlations of plasma IL-6 levels 
with 24-hour urinary aldosterone and echocardiographic 
parameters. The intracellular pathway to stimulation of ex-
pression of IL-6 in human umbilical vein endothelial cells 
by aldosterone is via the MR/phosphoinositide 3-kinases 
(PI3K)/protein kinase B (Akt)/NF-κB pathway. IL-6 trans-
signaling played a critical role in aldosterone-induced 
fibronectin and type 1 collagen expression. Inhibition of IL-6 
trans-signaling by soluble IL-6 receptor or soluble gp130, 
also prevented myocardial fibrosis and cardiac hypertrophy 
induced by aldosterone infusion by blocking binding of IL-6 
and IL-6 receptor to gp130 to mediate aldosterone effects on 
cardiac fibroblasts.65

VSMCs stimulated by aldosterone and pretreated 
with atorvastatin exhibited reduced ROS production.66 
Atorvastatin inhibited Rac1/2 and p47phox transloca-
tion from the cytosol to the membrane and attenuated 
aldosterone-induced vascular inflammation and macro-
phage adhesion to VSMCs. A Rac1/2 inhibitor and a ROS 
scavenger were able to reduced macrophage adhesion in 
VSMCs, suggesting that in conditions associated with 
aldosterone-induced vascular damage, statins may have 
vasoprotective effects by inhibiting oxidative stress and 
inflammation.

The study of new molecules potentially playing roles as 
biomarkers or targets for therapy such as microRNA have 
been recently the subject of study in the aldosterone field re-
garding cardiovascular deleterious effects of this hormone. 
Syed et al. showed that aldosterone/salt upregulated miR-21 
expression in the left ventricle of mice.67 The genetic ablation 
of miR-21 exacerbated aldosterone/salt-mediated cardiac 
hypertrophy, injury, dysfunction, and production of inflam-
matory markers as plasminogen activator inhibitor type 1 
(PAI-1), MCP-1, OPN, and IL-6 in the left ventricle. These 
cardiac actions could be mediated, at least partially, by an 
upregulation of the miR-21 target gene Sprouty 2, suggesting 
that miR-21 plays a protective role on the cardiac pathology 
triggered by excess aldosterone.

Figure 1. 
Figure 2. 
Figure 3. 

ALDOSTERONE AND THE IMMUNE SYSTEM

The immune system coordinates several protective 
processes in response to pathogens, harmful substances from 
the environment and cell/tissue injury. A coordinated action 
of cells of the innate and adaptive immune systems together 
with inflammatory mediators regulates acute or chronic in-
flammation. Whereas the innate immune system provides 
a rapid, and nonspecific response, mediated by the activa-
tion of phagocytes (neutrophils, monocytes/macrophages, 
and natural killer cells), the adaptive immune system is ac-
tivated later, relying on the coordination and expansion of 
B and T lymphocytes.45 B lymphocytes mediate humoral 
immune responses and produce antibodies. T lymphocytes, 
represented by subsets of T cells (CD8+ or cytotoxic T cells, 

γδ T cells, CD4+ or helper T cells [Th], which polarize into 
Th1, Th2, Th17, and T regulatory cells [Treg]), are involved 
in cell-mediated immune responses. Coordinated actions 
of both the innate and adaptive immune systems provide 
highly specialized responses that lead to long-lasting and 
enhanced reaction to subsequent invasions by pathogens or 
to cell damage.

Many mechanisms have been suggested to explain how 
immune cells may increase blood pressure: by inducing 
generation of ROS and a pro-oxidative environment; via 
the release of cytokines, which directly affects renal, car-
diac, and vascular cell functions; by the activation of 
metalloproteinases and profibrotic factors and, consequently 
inducing tissue remodeling; and by changing adipose tissue 
function, which affects the function of adjacent tissues and 
organs.68 Inflammation in the perivascular adipose tissue 
(PVAT) induces vascular oxidative stress, decreases ni-
tric oxide (NO) bioavailability, reduces adiponectin that 
is anti-inflammatory, and enhances expression of TNF-α, 
contributing to remodeling and endothelial dysfunction.

Over the last few years, many studies have consistently 
shown that aldosterone activates cells of the innate and adap-
tive immune systems. Macrophages and T cells accumulate 
in the kidneys, heart, and vasculature in response to aldoste-
rone and the infiltration of these immune cells contributes to 
end-organ damage in cardiovascular and metabolic diseases. 
In the next topic, we will discuss some of the pioneering 
studies demonstrating involvement of aldosterone in the ac-
tivation of cells of the innate and adaptive immune systems.

ALDOSTERONE AND INNATE IMMUNITY

Aldosterone and macrophages

Monocytes/macrophages, cells belonging to the innate 
immune system, are involved in aldosterone and DOCA/
salt-induced blood pressure elevation and vascular injury. 
Homozygous osteopetrotic mice, deficient in macrophage 
colony-stimulating factor (M-CSF or CSF-1) and accord-
ingly bearing dysfunctional monocytes/macrophages, when 
submitted to DOCA/salt-induced hypertension, exhibited 
reduced blood pressure elevation, blunted inflammation and 
oxidative stress, and less endothelial dysfunction and vas-
cular remodeling, when compared with DOCA/salt-treated 
wild-type and heterozygote mice, suggesting for the first 
time that innate immune cells, monocytes/macrophages, 
contribute to inflammation and end-organ damage as-
sociated with DOCA/salt hypertension.39 Furthermore, 
endothelial dysfunction, collagen deposition, and ROS gen-
eration in aldosterone/salt-treated mice were also blunted in 
heterozygote osteopetrotic mice.69 Macrophage depletion in 
rats using liposome-encapsulated clodronate also reduced 
blood pressure and vascular ROS while restoring sympa-
thetic nerve α 2-adrenergic receptor function in mesenteric 
arteries of DOCA/salt rats.70

Innate immune cells express receptors that recog-
nize specific components associated to pathogens or cel-
lular damage.45,71–73 These receptors are called pattern 
recognition receptors (PRRs) and they are activated (i) by 
pathogen-associated molecular patterns (PAMPs), which 
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are molecules expressed by microbial pathogens, and (ii) 
by damage-associated molecular patterns (DAMPs), i.e., 
cell components that are released during cell damage or 
death. Once PRRs are activated, innate immune cells release 
cytokines and chemokines that recruit additional cells to the 
site of infection or injury. PRRs comprise the large families 
of Toll-like receptors (TLRs), C-type lectin receptors (CLRs), 
RIG-I-like receptors (RLRs), and NOD-like receptors 
(NLRs). The NLRs are cytoplasmic proteins that recognize 
endogenous or microbial molecules. A subfamily of NLRs, 
called NACHT-LRR-PYD-containing protein or NLR pyrin-
domain containing protein (NALP or NLRP), has gained 
increased attention in cardiovascular disease. NALP3 or 
NLRP3 (NACHT, LRR, and PYD domains-containing pro-
tein 3 or NLR pyrin-domain containing protein 3) is one of 
the best characterized members of the NLRs family. NLRP3 
regulates the assembly of the inflammasome and leads to ac-
tivation of caspase-1, which processes pro-interleukin-1β 
(IL-1β) and pro-interleukin-18 (IL-18), increasing IL-1β and 
IL-18 release. NLRP3 is activated by a variety of signals that 
are indicative of damage, including muramyl dipeptide, bac-
terial DNA, adenosine triphosphate (ATP), toxins, double 
stranded RNA, paramyxoviruses, uric acid and cholesterol 
crystals, environmental pollutants, mitochondria-derived 
ROS, low intracellular K+ concentrations, liposomes, urban 
particulate matter, and inorganic particles (titanium dioxide, 
silicon dioxide, and asbestos). The activation is a 2-step pro-
cess where the first signal or priming process, leads to the 
expression of NLRP3 and pro-IL-1β through activation of 
NF-κB. Then, the second signal, indicative of damage, leads 
to NLRP3 activation and stimulates the assembly of the 
inflammasome.

Aldosterone and the NLRP3 inflammasome

In the last few years, the role of aldosterone as an impor-
tant activator of the NLRP3 inflammasome has been ex-
tensively studied. Aldosterone increases the production of 
ROS37,74–77 and may lead to release of mitochondrial DAMPs. 
Doi et al. were one of the first to show that aldosterone- and 
salt-induced blood pressure increases and expression of 
inflammasome components in the kidney.78 Rats infused 
with aldosterone displayed increased macrophage and T 
lymphocyte infiltration in the kidney, as well as increased 
renal inflammatory markers such as MCP-1, TNF-α and 
inflammasome activation markers, IL-1β, caspase-1, and 
the NLRP3. Treatment of these animals with an immu-
nosuppressive drug, mizoribine, attenuated renal damage 
and fibrosis, reduced the expression of inflammasome 
components, and reduced blood pressure in this animal 
model of hypertension.

Mice treated with DOCA/salt also showed increased 
blood pressure and renal expression of the components of 
the inflammasome. Mice deficient in an adapter protein of 
NLRP3, ASC (the adaptor molecule apoptosis-associated 
speck-like protein containing a CARD, also known as 
PYCARD), did not show increased blood pressure and ex-
pression of renal inflammatory mediators, or renal accumu-
lation of macrophages and collagen.79 In addition, treatment 
with a NLRP3 receptor inhibitor, MCC950, reduced blood 

pressure values and inflammatory markers such as TNF-α, 
IL-6, OPN, and IL-17A in kidneys of in DOCA/salt-treated 
animals.

In view of the role of the components of the inflammasome 
in the development of arterial hypertension and kidney in-
jury, the contribution of IL-1β was also assessed using treat-
ment with anakinra, an IL-1 receptor antagonist.80 Anakinra 
is lowered blood pressure in mice treated with DOCA/salt, 
but it did not alter the renal immune cell infiltration, despite 
partially decreasing the expression of some of the renal in-
flammatory markers.

Bruder-Nascimento et  al. showed that aldosterone di-
rectly activates the NLRP3 inflammasome, and highlighted 
the role of immune cells in this process.81 In bone-
marrow-derived macrophages (BMDMs) from wild-type 
mice, aldosterone increased mitochondrial ROS and 
caspase-1 activation. Caspase-1 activation was blunted in 
aldosterone-stimulated BMDM from NLRP3 knockout 
mice. Aldosterone-induced NF-κB activation and increased 
NLRP3 and IL-1β gene expression, thus triggering the first 
signal for inflammasome activation. The use of a NF-κB in-
hibitor prevented aldosterone-induced NLRP3 and IL-1β 
gene expression. Aldosterone infusion in wild-type mice 
activated the NLRP3 inflammasome (it increased NLRP3 
protein expression, caspase-1 activity, and mature IL-1β) in 
macrophages from the peritoneal cavity. Aldosterone also 
increased plasma IL-1β and induced vascular dysfunction 
(abnormal vascular reactivity, remodeling, and increased 
expressed of adhesion molecules). NLRP3 deletion almost 
completely prevented all effects of aldosterone: the changes 
in vascular reactivity, the increased expression of VCAM-1 
and ICAM-1, and the adherence of macrophages to aortic 
segments; the vascular remodeling (increased cross-sec-
tional area and increased wall to lumen ratio) and the 
increase in systolic blood pressure. The vascular and inflam-
matory changes induced by aldosterone were all attenuated 
in wild-type mice that received bone marrow transplantation 
from NLRP3-deficient mice, which suggests that NLRP3 
inflammasome in the immune system has a very important 
role on vascular damage induced by aldosterone. Of impor-
tance, leukocytes from patients with hyperaldosteronism 
exhibit NLRP3 inflammasome activation (increased NLRP3 
protein expression, caspase-1 activation, and mature IL-1β) 
and increased serum IL-1β levels in comparison to healthy 
human volunteers. Polymorphonuclear cells from hyper-
tensive patients that do not exhibit increased aldosterone 
levels also presented increased NLRP3 inflammasome ac-
tivity. These data support the evidence that the NLRP3 
inflammasome plays a key role in aldosterone-induced in-
flammation and vascular remodeling. Some of these effects 
of activation of the inflammasome by aldosterone are also 
highlighted in Figure 1.

The use of a selective inhibitor of the NLRP3 re-
ceptor MCC950,82 reduced blood pressure and decreased 
inflammasome activation and inflammatory markers in 
DOCA/salt hypertension.83 Treatment with MCC950 
reduced expression levels of collagen subunits types I, 
III, IV, and V, TGF-β and vimentin, and also myeloid cell 
(CD45+CD11b+) and macrophage (CD45+CD11b+F4/80+) 
infiltration in the kidney. Renal function, measured by saline 
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intake, urine volume, urine osmolality, urine Na+, and albu-
minuria as well interstitial fibrosis, was improved after treat-
ment with the NLRP3 receptor.

A recent study by Ferreira et  al. has suggested that the 
NLRP3 inflammasome is also activated in other conditions 
in which aldosterone levels are increased, including diabetes 
and obesity.84 The vascular dysfunction and inflammation 
present in db/db mice are associated with MR activation, 
underlining the involvement of aldosterone in vascular 
changes in diabetes. Treatment of db/db mice with a MR 
antagonist and the selective NLRP3 receptor antagonist 
MCC950 prevented vascular dysfunction, inflammasome 
activation in macrophages and rise in plasma IL-1β. The 
effects of MCC950 treatment did not depend on changes in 
blood glucose or aldosterone levels.

ATP is released from intracellular storage pools in re-
sponse to platelet aggregation, activation of neutrophils 
and many cell irritants, such as cell death or apoptosis, or 
inflammation. ATP can stimulate NLRP3 as mentioned 
above. ATP also binds to purinergic receptors such as the 
P2X purinoceptor 7 (P2RX7), which is an ATP-gated cation 
channel expressed in immune cells.85 Stimulation of this 
receptor leads to activation of the inflammasome and re-
lease of IL-1β from macrophages and dendritic cells. P2RX7 
knockout (P2rx7−/−) hypertensive DOCA/salt mice present 
less renal injury and inflammation with attenuated hyper-
tension and renal function compared with wild-type DOCA/
salt mice.86 Immune cell infiltration as well IL-1β release by 
macrophages is also reduced in P2rx7−/− mice compared 
with the wild-type mice. The results discussed above sup-
port the involvement of P2RX7, and potentially of PRRs and 
the inflammasome in hypertension and renal injury induced 
by DOCA/salt.

Aldosterone and neutrophil gelatinase-associated lipocalin

Lipocalin 2 (LCN2, also identified as neutrophil 
gelatinase-associated lipocalin [NGAL]) that is a potent bi-
omarker of renal injury has been shown to be a MR target.87 
Interestingly, NGAL was also associated with aldosterone-
induced vascular fibrosis.88 Lcn2 knockout prevented vas-
cular fibrosis in unilaterally nephrectomized mice treated 
with aldosterone/salt. Furthermore, NGAL produced by im-
mune cells appears to play a pivotal role in cardiac damage 
induced by aldosterone. Unilaterally nephrectomized/al-
dosterone/salt-treated mice experienced recruitment of 
various immune cell populations such as granulocytes, B 
lymphocytes, and activated cytotoxic T lymphocytes to 
lymph nodes, in addition displaying augmentation of ex-
pression of NGAL in macrophages, dendritic cells, and pe-
ripheral blood mononuclear cells. Mice with Lcn2 knockout 
immune cells (achieved through bone marrow transplan-
tation) were protected against aldosterone-induced cardiac 
remodeling and inflammation.89

Araos et al. demonstrated that NGAL can modulate the 
inflammatory response of dendritic cells induced by al-
dosterone.90 Dendritic cells are necessary for the develop-
ment of cardiac hypertrophy and fibrosis. Ablation of these 
cells prevented the development of cardiac hypertrophy, 

perivascular fibrosis and overexpression of NGAL, brain na-
triuretic peptide increased levels, collagen 1A1 and connec-
tive tissue growth factor induced by excess aldosterone. The 
expression of NGAL is higher in macrophages and dendritic 
cells, and aldosterone was able to modulate the expression 
of this glycoprotein and IL-23 expression in dendritic cells. 
NGAL produced by dendritic cells may play a pivotal role 
in the activation of adaptive immunity. This occurs after 
stimulation of IL-23 leading to a lymphocyte Th17-driven 
response, which results in cardiovascular fibrosis as a conse-
quence of aldosterone excess.

ALDOSTERONE AND ADAPTIVE IMMUNITY

T cells play a role in the mechanisms leading to blood 
pressure elevation and vascular injury in hypertension.91 
Many elegant studies have shown that aldosterone activates 
or modulated the action of T lymphocytes (Figure 2). The 
pioneering study of Guzik et al. in 2007 showed that mice 
lacking B and T lymphocytes due to recombinase-activating 
gene (Rag1) knockout, exhibit blunted blood pressure ele-
vation, endothelial dysfunction, vascular remodeling, and 
superoxide production, which was restored by adoptive 
transfer of T but not B cells. Furthermore, they extended 
their observations to DOCA/salt-treated Rag1 null mice that 
presented blunted blood pressure elevation and increased 
vascular superoxide production.

T cells require 2 signals for activation, including inter-
action of the T-cell receptor with an antigen presented 
in the context of a major histocompatibility complex, and 
stimulation by costimulatory molecules on the antigen-
presenting cell.45 Activation of naive T cells requires a 
costimulatory signal such as the binding of B7 ligands on 
the antigen-presenting cell to the CD28 and costimulatory 
receptor expressed in T cells. The use of drugs that block this 
costimulation, such as cytotoxic T lymphocyte-associated 
antigen-4-immunoglobulin (CTLA4-Ig, abatacept) that 
inhibits B7 ligands on antigen-presenting cells, blunts T-cell 
activation, vascular infiltration, and increases in blood pres-
sure in both Ang II-induced and DOCA/salt hypertension.92 
CTLA4-Ig treatment also abolished Ang II-induced pro-
duction of TNF-α and interferon (IFN)-γ by T cells. Similar 
results were observed in B7 (CD80/CD86) knockout mice. 
These observations suggest that T-cell costimulation via B7 
ligands is essential for development of hypertension induced 
by either angiotensin II or mineralocorticoids.

Herrada et al. have shown that aldosterone activates CD8+ 
T cells by mechanisms that rely on dendritic cells.93 Dendritic 
cells stimulated with aldosterone also polarize CD4+ T cells 
to a Th17 phenotype. An MR antagonist prevented activa-
tion or polarization induced by aldosterone. In addition, al-
dosterone blunted polarization and activation of suppressor 
forkhead box P3-positive Treg cells, which negatively 
modulate immune responses.91 Kasal et  al. showed that 
aldosterone-induced augmentation of blood pressure, en-
dothelial dysfunction, vascular remodeling, oxidative stress, 
and enhanced aortic and renal cortex macrophage and T-cell 
infiltration could all be prevented by adoptive transfer of Treg 
cells.41 Adoptive transfer of T cells of Scurfy mice, which are 
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deficient in Treg cells, into Rag1 null mice, worsened Ang 
II-induced endothelial dysfunction and oxidative stress in 
PVAT of mesenteric arteries, as well as cell infiltration and 
proinflammatory polarization in PVAT and the renal cortex, 
and T-cell infiltration in the renal cortex compared with 
Rag1 null mice receiving wild-type T cells.94 Coinjection of 
Treg cells in Rag1 null mice adoptively transfer with Scurfy 
T cells blunted the Ang II detrimental effects. In contrast to 
other studies in which angiotensin II and aldosterone exert 
similar effects on immune cells, these studies have not been 
reproduced with aldosterone or DOCA, but similar results 
could be expected.

Further support to aldosterone-induced changes in 
the ratio of Th17/Treg cells was provided by studies in 
DOCA/salt hypertension. Vessels, heart, and kidneys of 
DOCA/salt-treated rats exhibit activation of Th17 cells and 
downregulation of Treg cells.95 Treatment of DOCA/salt 
rats with spironolactone prevented Th17 cell activation and 
downregulation of Treg cells. Blockade of IL-17 actions with 
anti-IL-17A antibodies reduced arterial hypertension and 

expression of profibrotic and proinflammatory mediators 
and collagen deposition in the heart and kidney in DOCA/
salt rats.

Th17 cells produce IL-17 that is a proinflammatory cy-
tokine secreted by innate and adaptive immune cells.96 
Th17 cells require IL-23 for expansion and survival. IL-23 
is released by activated dendritic cells and macrophages. 
Krebs et  al. evaluated the involvement of IL-17/IL-23 axis 
in a severe hypertensive model with renal injury induced by 
cotreatment with DOCA and Ang II.97 IL-17-deficient mice 
displayed increased albuminuria and more glomerular injury 
and renal infiltration of γδ T cells than wild-type mice after 
14 days of DOCA/Ang II. Similarly, increased albuminuria, 
glomerular injury, and γδ T-cell infiltration were found in 
IL-23p19-deficient mice with DOCA/Ang II-induced hy-
pertension. IL-17/IL-23 deficiency accelerated DOCA/Ang 
II-induced albuminuria and renal damage, suggesting a pro-
tective role for the IL-17/IL-23 axis in this model of arterial 
hypertension.

Figure 2.  Aldosterone and activation of adaptive immune cells. Aldosterone induces activation of dendritic cells and increased polarization of CD4+ 
naive T cells into Th17, Th1, and decreased Treg cells. Aldosterone also increases recruitment of B lymphocytes and activation of CD8+ T cells. Abbreviations: 
IFN, interferon; IL, interleukin; TGF, transforming growth factor; Th, T helper cells; TNF, tumor necrosis factor; Treg, T regulatory cells.
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γδ T cells are a small subset of T cells that behave as 
innate-like T cells and play a role in the initiation of the im-
mune response in hypertension.91 Similar to CD4+ T cells, 
γδ T cells can produce IL-17 in response to IL-23. Ang II 
infusion increased blood pressure, vascular dysfunction, and 
γδ T-cell numbers and activation.98 In the same study, Ang 
II-induced hypertension, endothelial dysfunction, and T-cell 
activation were blunted in T-cell receptor (Tcr) δ knockout 
mice devoid of γδ T cells, and in mice injected with γδ T 
cell-depleting antibodies. The most interesting findings have 
shown an increase in this population in IL-17-deficient mice 
exposed to Ang II and DOCA/salt.97 These cells seem to have 
an important role in the development of injury in hyperten-
sion, but have not been studied in details in relation to effects 
of aldosterone. Furthermore, using a humanized mouse 
model in which the murine immune system is replaced by 
the human immune system, Itani et  al. showed that Ang 
II activates human T cells, which then invade critical end-
organ tissues in hypertension.99 Although these events were 
not directly observed/studied with aldosterone, one needs 
to consider that aldosterone is secreted in response to and 
mediates some of the actions of Ang II, including hyperten-
sion, oxidative stress, and vascular inflammation.100

Channels, transporters, and receptors in immune cells and 
aldosterone

The latest findings on aldosterone-induced activation of 
the immune system relate to intrinsic proteins in the devel-
opment of cardiovascular damage induced by aldosterone. 
Glucocorticoid-regulated kinase 1-dependent (SGK1-
dependent) signaling in T cells promotes hypertension and 
contributes to end-organ damage induced by Ang II and 
DOCA/salt.101 Loss of SGK1 in T cells blunts hypertension, 
abrogates renal and vascular inflammation, and protects 
against hypertensive renal and vascular injury compared 
with control mice. Furthermore, the expression of several 
Na+ channels and sodium transporters was detected on T 
lymphocytes, and Na+-K+-2Cl− cotransporter 1 (NKCC1) 
was upregulated in Th17 cells, and was necessary for the salt-
induced increase in SGK1 and IL-23 receptor.

Liu et al. showed the involvement of Na–Cl cotransporter 
(NCC) and CD8+ T cells in the development of hyperten-
sion in a salt-sensitive model. Kidney cells from the distal 
convoluted tubule cocultured with CD8+ T cells upregulated 
NCC via ROS-induced activation of Src kinase, upregulation 
of the K+ channel, and stimulation of the Cl− channel.102 This 
last event increased Cl− efflux, leading to compensatory 
Cl− influx via NCC activation and Na+ retention. Adaptive 
immunity is involved in the kidney defect in Na+ handling 
and the pathogenesis of salt-sensitive hypertension. These 
studies demonstrate that T cells and this cotransporter may 
be novel therapeutic targets for the treatment of hyperten-
sion associated with excess aldosterone and salt.

Aldosterone appears to require an intact sympathetic 
drive to the spleen for priming of immunity and increases 
in blood pressure. The coupling of the nervous system and 
immune cell activation in the splenic marginal zone is es-
tablished through sympathetic-mediated placental growth 

factor (PIGF) release.103 DOCA/salt hypertensive mice after 
splenectomy or left celiac ganglionectomy were unable to 
exhibit increased blood pressure.104 PIGF expression in the 
spleen was increased in DOCA/salt mice if neurosplenic 
sympathetic drive was intact. Pigf knockout mice were 
protected from the increased blood pressure induced by 
DOCA/salt and from T-cell costimulation and infiltration in 
the kidney. These data support the hypothesis that coupling 
of brain-to-spleen is a neuroimmune pathway that enhances 
the effect of aldosterone on the immune response necessary 
to develop elevated blood pressure.

The absence of MR in T cells decreased both systolic 
and diastolic blood pressure and attenuated renal and vas-
cular damage induced by Ang II.105 T-cell MR knockout 
prevented the accumulation of IFN-γ-producing T cells, 
particularly the CD8+ population, in both kidneys and aorta. 
Similarly, the selective MR antagonist eplerenone attenuated 
Ang II-induced elevation of blood pressure and accumula-
tion of IFN-γ-producing T cells in wild-type mice. In cul-
tured CD8+ T cells, T-cell MR knockout suppressed IFN-γ 
expression whereas T-cell MR overexpression and aldoste-
rone both enhanced IFN-γ expression. In addition, T-cell 
MR overexpressing mice presented higher blood pressure 
compared with control mice after Ang II infusion, which was 
abolished by IFN-γ-neutralizing antibodies. MR may in-
teract with nuclear factor of activated T cells 1 (NFAT-1) and 
AP-1 to regulate IFN-γ production in T cells and modulate 
target organ damage and control blood pressure. Targeting 
MR specifically in T cells may be an effective novel approach 
for treatment of hypertension.

Shao et  al. showed that MR modulates the activation 
of Treg cells in congestive heart failure.106 Advanced 
congestive heart failure activates Treg cell prolifera-
tion via the upregulation of Kv1.3  K+ channel, which 
promotes cardiac fibrosis by stimulating secretion of 
TGF-β. Coincubation of cardiac fibroblasts with Treg 
cells increased proliferation and levels of collagen I, III, 
and matrix metalloproteinase (MMP)-2. Intracellular 
TGF-β was increased in Treg cells, and the Kv1.3 cur-
rent was higher in patients and rats with congestive heart 
failure compared with healthy volunteers and control rats. 
Eplerenone antagonized Kv1.3 channels in Treg cells and 
promoted suppression of Treg cell activation/prolifera-
tion. Eplerenone could play a role alleviating cardiac fi-
brosis in late stages of congestive heart failure.

Future developments

A recent study has revealed that sex could play an im-
portant role in the effects of aldosterone on inflammation. 
Belanger et al. showed that female rats displayed lower blood 
pressure than male rats after 3 weeks of DOCA/salt treat-
ment, although the renal injury was comparable between 
the sexes.107 Female mice treated with DOCA/salt had more 
suppressive Treg cells than male mice. However, the increase 
in proinflammatory T cells in the kidney was similar in both 
sexes. Depletion of Treg cells with anti-CD25 antibodies in 
DOCA/salt-treated mice increased blood pressure only in 
females, therefore abolishing the sex difference in DOCA/
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salt-induced blood pressure elevation. This further supports 
the idea that Treg cells protect against the development of 
hypertension, and could be particularly important for the 
control of blood pressure in females.

CONCLUSION AND PERSPECTIVES

Together all these elegant and complex studies show that 
excess aldosterone modulates many components of the im-
mune system driving inflammation that contributes to vas-
cular, cardiac and renal damage, leading to aggravation of 
end-organ injury in cardiovascular and metabolic diseases, 
as highlighted in Figure 3. The use of MR antagonists, as well 
as selective blockers or antibodies against specific receptors 

or cytokines, provides beneficial effects in the prevention 
and treatment of hypertension. However, the mechanisms 
by which aldosterone interacts with the immune system re-
main unknown, and more studies are needed to provide a 
better understanding of the mechanisms causing hyperten-
sion and vascular injury induced by aldosterone.

Some of the gaps in our knowledge include the role of im-
mune cells in the production of aldosterone, and further in-
vestigation on γδ T cells and Th17 cells in vascular damage 
in hypertension induced by aldosterone. The depletion of MR 
receptors in specific subtypes of inflammatory cells, knockout 
of channels and different proteins involved in mediating 
effects of aldosterone could also be important approaches to 
develop novel therapeutic targets to treat hyperaldosteronism 

Figure 3.  Aldosterone and immune responses in cardiovascular diseases. Excess aldosterone production occurring in diseases such as essential hyper-
tension, primary aldosteronism, diabetes mellitus, and obesity contributes to increase blood pressure (BP). Over time, elevated BP, and/or aldosterone 
cause renal and vascular injury, which activates the innate and adaptive immune systems causing further tissue injury and thereafter exacerbating the 
detrimental effects of the initial disease. Abbreviations: ATP, adenosine triphosphate; DAMPs, damage-associated molecular patterns; DCs, dendritic cells; 
IFN, interferon; IL, interleukin; MΦ, macrophage; Ne, neutrophil; ROS, reactive oxygen species; Tc, cytotoxic T cells; TGF, transforming growth factor; Th, T 
helper cells; TNF, tumor necrosis factor; Treg, T regulatory cells.
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or resistant hypertension. The use of MR antagonists associ-
ated with inhibition of the immune system opens up prom-
ising perspectives to reveal novel biomarkers and therapeutic 
targets for the prevention and treatment of cardiovascular 
disease that could be especially important in conditions as-
sociated with increased levels of aldosterone, such as obesity, 
metabolic syndrome, high blood pressure, and heart failure.
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