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Estimating the population mean 
for a vertical profile of energy 
dissipation rate
Nozomi Sugiura1*, Shinya Kouketsu1, Shuhei Masuda1, Satoshi Osafune1 & Ichiro Yasuda2

Energy dissipation rates are an important characteristic of turbulence; however, their magnitude 
in observational profiles can be incorrectly determined owing to their irregular appearance during 
vertical evolution. By analysing the data obtained from oceanic turbulence measurements, we 
demonstrate that the vertical sequences of energy dissipation rates exhibit a scaling property. 
Utilising this property, we propose a method to estimate the population mean for a profile. For 
scaling in the observed profiles, we demonstrate that our data exhibit a statistical property consistent 
with that exhibited by the universal multifractal model. Meanwhile, the population mean and its 
uncertainty can be estimated by inverting the probability distribution obtained by Monte Carlo 
simulations of a cascade model; to this end, observational constraints from several moments are 
imposed over each vertical sequence. This approach enables us to determine, to some extent, whether 
a profile shows an occasionally large mean or whether the population mean itself is large. Thus, it will 
contribute to the refinement of the regional estimation of the ocean energy budget, where only a 
small amount of turbulence observation data is available.

Numerous existing studies have highlighted the importance of determining energy dissipation rates to investigate 
ocean general  circulation1,2. Therefore, several observational studies have been conducted to obtain the verti-
cal profiles of energy dissipation rates using ocean microstructure  profilers3,4. In addition, to understand the 
statistics of the irregular evolution of observational profiles, studies have been conducted from the perspective 
of statistical fluid mechanics, as summarised below.

In fully developed turbulence, an inertial subrange of length scales exists wherein the advective term domi-
nates the molecular viscosity term in the Navier–Stokes  equation5. In this inertial subrange, a cascade of energies 
can be observed from large to small scales, as intuitively stated by  Richardson6. In the first quantitative theory 
on energy cascades,  Kolmogorov7 established a relationship wherein velocity fluctuations are locally isotropic 
and are determined by the homogeneous energy dissipation rate; here, homogeneous means that the statistical 
property is independent of the position x,

where v denotes the velocity; ε , the energy dissipation rate; ℓ , the distance between the points; and �·� , the 
expected value. Subsequently, the energy dissipation rate was argued to vary, exhibiting considerable random 
 fluctuations8. Thus, a refined  theory9 was proposed to address this issue. This theory stated that (1) log εr , which 
is the logarithm of the spatially averaged energy dissipation rate over scale r, obeys a Gaussian distribution, and 
(2) its variance obeys σ 2

log εr
= A+ µ log (L/r) , where L denotes the outer scale; A, a constant associated with 

the macrostructure of flow; and µ , the intermittency constant.
In addition, several experimental  studies10,11 demonstrated that small-scale dissipation is a random field that 

has a spatial structure with power–law correlations,

Then,  Yaglom12 formulated a quantitative model, which was consistent with the log-normal scaling presented by 
 Kolmogorov9 and the power–law correlations, as a multiplicative cascade, where εr was expressed with a binary 
tree comprising independent and identically distributed (i.i.d) random variables, Wn′ ,k ( ∼ W),

(1)�|v(x + ℓ)− v(x)|� ≈ ε1/3ℓ1/3,

(2)�ε(x)ε(x + ℓ)� ∝ ℓ−µ, ℓ > 0.
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where xj are the positions with equal spacing and ⌊s⌋ is the floor function, which assigns the integer that satisfies 
0 ≤ s − ⌊s⌋ < 1 . If the random variables are set to have the moment exponent K(q) = log2�W

q� = (µ/2)(q2 − q) , 
then the energy conservation in a probabilistic sense, �W� = 1 , and the log-normal scaling in  Kolmogorov9 are 
reproduced. Moreover, correlation (2) is reproduced because we have �ε(x)ε(x + ℓ)� = �W2�n−m�W�2m ∝ ℓ−K(2) , 
where L = 2nr, ℓ = 2mr for small r12,13.

Several alternative multiplicative cascade models have been developed with different generators, includ-
ing the β  model14, random β  model15, α  model16, p  model17, log-stable  model18, and log-Poisson  model19. An 
important observation regarding Yaglom’s cascade is that the property required for the law of random variable 
W can be formulated such that the product of several random variables still obeys the same class of distribu-
tion, 

∏n
n′=1 Wn′ ∼ anW

bn , with an, bn > 020. Consistent with this condition, the universal multifractal  model18 
employs a stable Lévy generator, Ŵ , that is maximally left skewed and satisfies W = eŴ . This results in a simple 
and nonanalytic form of the moment exponent, K(q) = (C1/(α − 1))

(
qα − q

)
, where α is the multifractal index, 

which can be a non-integer, and C1 is the codimension of the mean. The universal multifractal model is the most 
promising model. This model can well reproduce the variability in several phenomena including turbulence, 
other geophysical phenomena, and several fractal-like appearances in natural and man-made objects.

Based on this theory, we discuss a refined statistical treatment of the vertical profiles of the observed energy 
dissipation rates. We first distinguish the ’mean energy dissipation rate’, which refers to the sample (arithmetic) 
mean over a profile, and the ’energy input rate’, which refers to the population mean for a profile.

Thus, we reconsider one of the basic questions in the observational study of ocean turbulence: When a verti-
cal profile of the energy dissipation rate is given, how can one estimate the energy input rate or the population 
mean of the energy dissipation rate for a profile, which has been commonly equated with the arithmetic mean 
over the profile? Our question pertains to whether one can obtain information regarding the energy input rate 
beyond the arithmetic mean. The answer is yes, because we can construct a model for the turbulent cascade 
process and solve the inversion problem to obtain the energy input rate under an observational constraint. In 
this study, we first show that the observed profiles of the depth-averaged energy dissipation rate, ǫr , exhibit a 
scaling property consistent with that of the universal multifractal model. Then, we construct a multiplicative 
cascade simulation model that describes the statistics of the observational data. Finally, we propose a method 
to explain certain statistics of the observed profiles based on the simulation model and develop an inversion 
method to estimate the energy input rate. This result illustrates a systematic method of gaining further quantita-
tive information from profile data.

Methods
Observational data. In this section, we describe the turbulence observational data employed in this study. 
The data were retrieved from the Pacific Ocean (Fig. 1)21. They comprise I = 409 profiles, each of which typically 
extends over a depth of 2000–6000 m below the sea surface, in turn comprising observational bins with width 
of r0 ≃ 10 m . The turbulent energy dissipation rate for each bin, ǫr0 , is derived by averaging the observational 
values in the bin, which are estimated from the observed spectrum of the temperature vertical gradient based on 
the procedure presented in Goto et al.21,22 (see Supplementary Information A for the estimation procedure). We 
restrict our investigation to the intermittency occurring at larger scales, r ≥ r0.

Let r0 be the bin width, �xi the horizontal coordinate of the i-th profile, and zij the vertical coordinate of the 
j-th point in the i-th profile. These positive-valued data exhibit the following characteristics:

(3)∀ 1 ≤ j ≤ 2n, εr(xj) =

n∏

n′=1

Wn′ ,⌊(j−1)/2n−n′ ⌋+1,
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Figure 1.  Horizontal locations of the observed profiles (red) and land–sea boundaries (green). The units of 
longitude and latitude are ◦ E and ◦ N , respectively.
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1. Each profile defines an ordered set, 

 which exhibits an extremely irregular evolution that impedes the recognition of a continuous curve along 
the depth direction (Fig. 2(a)).

2. After taking the logarithm of the values, the sequences appear to be more continuous (Fig. 2(b)).
3. If we normalise each value with the arithmetic mean along the profile to which it belongs as follows: 

 then the histogram of the logarithmic values, 

 appears as an asymmetric distribution, as we will see later in the Results section. Note the distinction between 
the two symbols; ǫr0(�xi , zij ) for the original energy dissipation rates, and εr0(�xi , zij ) for the normalised ones.

Multifractal analysis. We conduct a scaling analysis of the moments to derive the moment scaling expo-
nent within the universal multifractal framework. Although the analysis could be extended to multidimensional 
 objects23, the limited number of samples (409 profiles) prevents us from conducting an extensive analysis in a 
multidimensional framework. Therefore, we treat each profile as an independent sample and analyse the statisti-
cal structure of the 1-dimensional object.

Universal multifractal model. The basic formulation of the universal multifractal model is as  follows23,24: Sup-
pose we have a multifractal field, ε� , at resolution � ( = L/r ), where r is the observational scale and L is the outer 
scale. The field is normalised by the mean, that is �ε�� = �ε� = 1 , which is conserved at all scales.

The probability of exceeding a scale-dependent threshold, �γ , varies according to singularity γ as

where c(γ ) represents the codimension function and ≈ represents equality up to multiplication by a slowly vary-
ing function of γ . Thus, the multifractal model is characterised by the property that the codimension varies with 
the singularity. This relation is equivalently represented as the scaling of the statistical moment of any order, q,

where K(q) is the moment scaling function. The two functions, K(q) and c(γ ) , are actually related by the Legendre 
transformation because the moment generation function can be written in terms of the occurrence probabil-
ity of singular events using the saddle-point approximation, �(ε�)q� =

∫
�
qγ dp(γ ) ≈ �

maxγ {qγ−c(γ )}25, where 
dp(γ )

def
= Pr(�γ ≤ ε� < �

γ+dγ ) . Functions K(q) and c(γ ) determine the variability of the multifractal field ε� 
across the scales, �.

(4)
{
ǫr0(�xi , z

i
j )

∣∣∣∣j = 1, 2, . . . , Ji

}
,

(5)εr0(�xi , z
i
j ) =

ǫr0(�xi , z
i
j )

ǫL(�xi)
, ǫL(�xi)

def
=J−1

i

Ji∑

j=1

ǫr0(�xi , z
i
j ).

(6)
{
log

(
εr0(�xi , z

i
j )

)∣∣∣∣i = 1, 2, . . . , I; j = 1, 2, . . . , Ji

}
,

(7)Pr(ε� ≥ �
γ ) ≈ �

−c(γ ),

(8)�(ε�)
q� = �

K(q),

Figure 2.  Appearances of observed profiles.
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Owing to a generalisation of the central limit theorem, several multiplicative processes comprising differ-
ent generators converge to a universal  multifractal18,26, the moment exponent of which is expressed as follows:

where 0 ≤ α ≤ 2 is the multifractal index and C1 is the codimension of the mean. Note that the case α = 2 
corresponds to the log-normal model advocated by the Russian school (Kolmogorov, Obukhov, Yaglom, etc.). 
This equation satisfies probability normalisation, K(0) = 0 , and energy conservation, K(1) = 0 . Its Legendre 
transformation gives:

where 1/α + 1/α′ = 1.

Estimations based on the cascade model. In this section, we discuss the estimation of the energy 
input rate, ǫ , by utilising the information obtained from an observational profile. While the sample mean of the 
energy dissipation rate along a profile is simply indicated by the arithmetic mean of the vertical data values, the 
information on the energy input rate and its uncertainty still needs to be obtained. Therefore, we will estimate 
the posterior distribution of the energy input rate from observations. In particular, we focus on the median and 
confidence interval (CI). Although the arithmetic mean over a profile is the primary measure for the sample, the 
characteristics of the population can also be evaluated by using the joint probability density of several different 
sample statistics, obtained from the Monte Carlo simulation of the cascade model. The notation used in this 
section is summarised in Table 1.

Multiplicative cascade simulation.  To examine the relationship between various statistical quantities derived 
from observational profiles, we construct a simulation model for the multiplicative cascade by following the 
procedure described in  Schmitt27, as shown in Fig. 3. Each building block, Ŵik , is a generator that obeys a left-
skewed stable distribution, Sα(σh1/α ,−1,−σ̂α

αh) , with h = log 2, σ̂α
αdef=σα/ cos

(
π
2 (2− α)

)
= C1/(α − 1)28.

Consider a fixed horizontal position �x . Let ǫ = exp (γ ) be the energy input rate for a profile at �x , n = log2
L
r  

be the number of steps, 0 ≤ n′ ≤ n be the scale index, and 1 ≤ j ≤ 2n be the spatial index. The cascade simulation 
is performed for variable Xn′ ,j as follows.

1. For each spatial index j = 1, 2, . . . , 2n , set X0,j = γ .
2. For each scale index n′ = 1, . . . , n , repeat the following steps:

• For each spatial block k = 1, 2, . . . , 2n
′ , perform the following steps:

     (a)  Generate a random variable, ξn′k , which obeys Sα(1,−1, 0)29.
    (b)  For each spatial index j = (k − 1) · 2n−n′ + 1, . . . , k · 2n−n′ , downscale X by 

(9)K(q) =
C1

α − 1
(qα − q),

(10)c(γ ) = C1

(
γ

C1α′
+

1

α

)α′

,

(11)Xn′ ,j = Xn′−1,j + Ŵn′ ,k , Ŵn′ ,k
def
= − σ̂α

αh+ σh
1
α ξn′k .

Table 1.  Notation for the estimation study.

Name Notation Definition

Index for vertical position j 1, 2, 3, . . . , 2n

Energy dissipation rate ǫj

Logarithm of energy dissipation rate γj log ǫj

Energy input rate (or population mean) ǫ

Logarithm of energy input rate γ log ǫ

Median of estimated γ γ(0.5) Pr(γ < γ(0.5)) = 0.5

Stable Lévy generators Ŵik ∼ Sα(σh
1/α ,−1,−σ̂α

αh)

Width of Lévy generator – σh1/α

Shift of Lévy generator – −σ̂α
αh = − σα

cos ( π
2 (2−α))

h = − C1
α−1 h

Logarithm of arithmetic mean γ̂ log
(
2−n

∑2n

j=1 e
γj

)

Logarithm of geometric mean γ̃ 2−n
∑2n

j=1 γj

Logarithm of quadratic mean γ ♯
2−1 log

(
2−n

∑2n

j=1 e
2γj

)

Marginal probability density function q1
Probability density of γ − γ̂ ;

q1(·) =
∫ ∫

q3(·, u, v)dudv

Joint probability density function q3 Probability density of (γ − γ̂ , γ̂ − γ̃ , γ̂ − γ ♯)



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20414  | https://doi.org/10.1038/s41598-020-77414-2

www.nature.com/scientificreports/

• For each spatial index j = 1, 2, . . . , 2n , set γj = Xn,j.

The output, γj , represents the logarithm of the energy dissipation rate at the horizontal position, �x , and the verti-
cal position, zj ∈ [(j − 1)rn, jrn] , at the resolution rn = L/2n . By using the floor function, the cascade process 
can be more compactly represented as

An important implication of this formulation is that the arithmetic mean of the vertical data points is not neces-
sarily equal to the the energy input rate because the cascade process has a fluctuating nature. In other words, a 
realisation of the vertical average, ǫL = 2−n

∑2n

j=1 exp
(
γj
)
 , is not always equal to exp (γ ) , whereas the expecta-

tion E [ǫL] is; hence, we can regard the latter as the population mean for a profile. Below, we focus mainly on 
the relationship between the arithmetic mean over a profile and the energy input rate. We perform statistical 
estimations from one to the other of these quantities based on the cascade model.

Estimation of the energy input rate. In this subsection, we first describe the statistical relationship between the 
population mean and various moments over a profile, based on the cascade model. Then, we derive a formula 
for the posterior probability given the observation of the moments. Finally, we use this formula as the basis of a 
concrete procedure for computing the posterior probability.

We assume that each set of γj ’s is generated by an n-step cascade model as in Eq. (12). Here, we want to esti-
mate the energy input rate γ  , which corresponds to the population mean, by using the information from the 
observed data {γj|j = 1, 2, . . . , 2n} . In this regard, in addition to the arithmetic mean γ̂  , which corresponds to 
K(1) in Fig. 5, we can also use other moments over a profile, e.g., the geometric mean γ̃  and quadratic mean γ ♯ , 
which correspond to K ′(0) and K(2), respectively. We can derive the following expressions based on Eq. (12):

where we find that the term γ  is factored out. Therefore, γ − γ̂  , γ̂ − γ̃  , and γ̂ − γ ♯ are independent of γ  , and 
thus dimensionless.

The structure of the cascade model implies that the appearance probability of γ̂  given γ  is determined only 
by their difference: P(γ̂ |γ ) = q1(γ − γ̂ ) . Furthermore, by assuming that we have no prior information about 
γ  , Bayes’ theorem is applied to invert it into the posterior probability for γ  as follows.

(12)γj = γ +

n∑

n′=1

Ŵn′ ,⌊(j−1)/2n−n′ ⌋+1, j = 1, 2, . . . , 2n.

(13)�γ = γ + log



2−n

2n�

j=1

exp

�
n�

n′=1

Ŵn′ ,⌊(j−1)/2n−n′ ⌋+1

�

,

(14)γ̃ = γ + 2−n
2n∑

j=1

n∑

n′=1

Ŵn′ ,⌊(j−1)/2n−n′ ⌋+1,

(15)γ ♯ = γ +
1

2
log



2−n

2n�

j=1

exp

�
2

n�

n′=1

Ŵn′ ,⌊(j−1)/2n−n′ ⌋+1

�

,

(16)P(γ |γ̂ ) =
P(γ̂ |γ )P(γ )∫
P(γ̂ |γ )P(γ )dγ

= q1(γ − γ̂ ).

Figure 3.  Schematic of the multiplicative cascade model. The energy dissipation rate at z11 at resolution 
r4 = L/24 is considered as an example.
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Furthermore, we can extract information from γ̃  and γ ♯ . They are encoded in the joint probability density func-
tion (PDF) q3(γ − γ̂ , γ̂ − γ̃ , γ̂ − γ ♯) computed from Monte Carlo simulation of the cascade model. Then, a 
conditional PDF is derived as

A procedure similar to Eq. (16) can be applied to obtain another posterior probability:

under the constraints γ̂ − γ̃ = u, γ̂ − γ ♯ = v.
On the basis of the above formulation, we perform an identical twin experiment obeying the following 

procedure. 

1. Perform a Monte Carlo experiment to obtain q3(γ − γ̂ , γ̂ − γ̃ , γ̂ − γ ♯) . 

(a) Set the energy input rate to γ = 0.
(b) Create many random samples of the profile using the cascade model in Eq. (12).
(c) Add up the frequency of occurrence to derive the joint PDF q3(γ − γ̂ , γ̂ − γ̃ , γ̂ − γ ♯).

2. Set the energy input rate γ  to a random number.
3. Create a random pseudo-observation sample of the profile using the cascade model in Eq. (12).
4. Calculate the statistics γ̂ , γ̂ − γ̃ , γ̂ − γ ♯ for the profile.
5. Compute the conditional PDF P(γ |γ̂ , γ̂ − γ̃ , γ̂ − γ ♯).
6. Calculate the median and 95% CI for the estimated γ .
7. Compare the estimate of γ  with its true value.

The same procedure is applied to the real data experiment, except that γ  in 2 is unknown, as follows. 

1. Pick an observed profile, and calculate the statistics γ̂ , γ̂ − γ̃ , γ̂ − γ ♯ for the profile.
2. Compute the conditional PDF P(γ |γ̂ , γ̂ − γ̃ , γ̂ − γ ♯) , using the joint PDF q3(γ − γ̂ , γ̂ − γ̃ , γ̂ − γ ♯) 

obtained from the Monte Carlo experiment.
3. Calculate the median and 95% CI for the estimated γ .

Among the indices for the estimated result, the conditional expectation of ǫ = exp (γ ) is not necessarily defined 
as a finite value because the posterior distribution of γ  is neither Gaussian nor left-skewed stable. In contrast, the 
percentiles, including the median and the 95% CI, are always defined for the distribution. They are also preserved, 
Pr(γ < a) = Pr(f (γ ) < f (a)) , under the increasing transformation f : γ �→ exp (γ ) . We therefore employ the 
median and the 95% CI as robust indices.

To confirm that the uncertainty in the estimated values of α and C1 does not diminish the performance of 
the proposed method, we treat these parameters as random variables (specified in the results), when making 
pseudo-observation samples in the identical twin experiments (procedure 3).

We have thus established a procedure for estimating the population mean for a profile based on the joint 
probability distribution of several moments over a profile computed by a Monte Carlo simulation of the cascade 
model.

Results
Analysis of observational data. Suppose we have the observational data of the normalised energy dis-
sipation rate, εr0(�x) , in bin width r0 at the horizontal position �x , as well as their spatial average εr(�x) in width 
r ≥ r0 . In terms of the universal multifractal model (8), the scaling of the statistical moments in the data takes 
the form

where �·� denotes the expected value. This implies that the expectation of the q-th moment at a scale over the one 
at another scale should be equal to the K(q)-th power of the resolution ratio, regardless of the horizontal position 
�x . We approximate the expected value in Eq. (19) with the empirical average

where r = 2nr0 is a resolution larger than or equal to r0 , and εr0(�xi , zij ) is the normalised value defined in Eq. (5). 
The superscript (i, k) runs across all profiles indexed by i, each of which has total Ji(r) segments in resolution r. 
By substituting Eq. (20) into Eq. (19), we can evaluate the values of K(q) according to q.

(17)q3(γ − γ̂ |γ̂ − γ̃ , γ̂ − γ ♯) =
q3(γ − γ̂ , γ̂ − γ̃ , γ̂ − γ ♯)∫
q3(γ − γ̂ , γ̂ − γ̃ , γ̂ − γ ♯)dγ

.

(18)P(γ |γ̂ , γ̂ − γ̃ = u, γ̂ − γ ♯ = v) = q3(γ − γ̂ |u, v),

(19)
�εr0(�x)

q�

�εr(�x)q�
=

(
r

r0

)K(q)

,

(20)�εr(�x)
q� �

∑I
i=1

∑Ji(r)
k=1

(
ε
(i,k)
r

)q

∑I
i=1 Ji(r)

, ε(i,k)r
def
=2−n

2nk∑

j=2n(k−1)+1

εr0(�xi , z
i
j ),
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The scalings for several moments are shown in Fig. 4. Using the various slope values, the observational curve 
of (q, K(q)) in the range of 0 ≤ q ≤ 2 is indicated in Fig. 5 in cyan.

We can estimate the parameters, α and C1 , by fitting the theoretical curve (9) to the observational curve. To 
consider the uncertainty in the observational curve, we used the bootstrap  method30 with 1000 trials, each of 
which has 409 profiles that are randomly sampled with replacements from the original set of 409 profiles. We 
thereby obtained the parameters α = 1.62± 0.03, C1 = 0.352± 0.009 for the multifractal model with stable 
Lévy generators, i.e., the universal multifractal model. By taking into account the dependency on α , we can also 
estimate C1 as C1 = 0.109α + 0.175± 0.008 . By a similar procedure, we obtain the parameter C1 = 0.343± 0.010 
for the multifractal model with Gaussian generators, corresponding to the original Yaglom cascade with µ = 2C1 . 
In Fig. 5, the observational curve (cyan) and the theoretical curve for the multifractal model with stable Lévy 
generators (black) are in good agreement, while the theoretical curve for the multifractal model with Gaussian 
generators, i.e., the log-normal model (red), has a different curvature from the observational curve.

The parameter values for the multifractal model with stable Lévy generators are largely consistent with pre-
vious results for atmospheric dissipation fields ( α = 1.35± 0.07, C1 = 0.3± 0.05 for the horizontal shear of a 
velocity  field31; α = 1.85± 0.05, C1 = 0.59± 0.05 for vertical kinetic energy  flux32).

Figure 4.  Scale dependency of the moments, 
(
log (r/r0),− log �(εr/εr0)

q�
)
, where r0 

is the width of the observational bin. The moment scaling exponents are found to be 
K(0.5) = −0.099± 0.003, K(1.5) = 0.245± 0.007, K(2.0) = 0.606± 0.017.

Figure 5.  Moment scaling exponent K(q) for observational data (cyan). Best-fitting multifractal model with 
stable Lévy generators (black), and with Gaussian generators (red). Each error bar in cyan shows the standard 
deviation for the fitting of K(q). Dotted lines in black and red indicate the ranges of error due to the uncertainty 
of parameters in the corresponding models.
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Figure  6 shows the theoretical curve of extremes for the multifractal model (10) in black and the observa-
tional curve,

in cyan, where � = 29 is used; this is a typical scale ratio in the data. Note that the correction term,

compensates for the prefactor in the asymptotic complementary cumulative distribution function, g(γ )−1e−c(γ )

28, Eq. 1.2.11]. The two curves (10) and (21) appear to be in general agreement, except for a slight discrepancy that 
is possibly due to the ambiguity in the selected scale ratio, � . Moreover, as our data have the sampling  dimension23 
Ds = log

�
Ns ≃ log 409/ log (29) = 0.963 , the upper bound for q is calculated to be qs = 2.89± 0.11 (the slope 

of the navy-blue line in Fig. 6), which justifies the range we set ( 0 ≤ q ≤ 2).

(21)cobs(γ ) = − log
�

[
g(γ )Pr

(
εr0 > �

γ
)]
, � = L/r0,

(22)g(γ ) =
√

2παc(γ ) log �,

Figure 6.  Codimension c(γ ) of singularities γ for the best-fitting multifractal model with stable Lévy generators 
(black). The corresponding curve for the observational data is shown for reference (cyan). Sampling dimension 
Ds and the limitation for the moment exponent (the slope of the navy-blue line) are also shown. Dotted lines in 
black and navy indicate the ranges of error due to the uncertainty in the model parameters.

Figure 7.  Distribution of the logarithm of observational data normalised for each profile (cyan), and 
comparison with the statistics of samples generated from multiplicative cascade with Gaussian/stable Lévy 
generators (red/black).
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To demonstrate the appropriateness of the universal multifractal model, the histogram for the logarithm of 
the bin values in the observational data is shown in Fig. 7 and compared with the samples from multiplicative 
cascade models. Each bin value is normalised by the arithmetic mean along the profile it belongs to: εr0 = ǫr0/ǫL. 
The histogram for the logarithm of bin data, log10 εr0 , appears to be in good agreement with the histogram of 
samples generated by the 8-step cascade model with stable Lévy generators (black; α = 1.62, C1 = 0.352 ) and 
in poor agreement with that generated by the multifractal model with Gaussian generators, i.e., the log-normal 
model (red; α = 2, C1 = 0.343).

Moreover, in the same manner as the correlation in Yaglom’s cascade, the observational profiles have a power-
law autocorrelation,

where ε(z) is the energy dissipation rate at depth z. The negative exponent explains the discontinuous charac-
teristics observed in the profiles (see Fig. 2a).

Simulations of cascade model. Before estimating the energy input rate ǫ that corresponds to each obser-
vational profile, we first performed a Monte Carlo experiment with simulations of 1.024× 1010 particles (pro-
files) using the 8-step cascade model. The constants and parameters used in the simulation and estimation study 
are summarised in Table 2.

For each particle (or profile), we generate random numbers {γj|j = 1, 2, . . . , 256} from ǫ = 1 according to 
the procedure discussed in Methods, and we add up the histograms for all the particles into the joint PDF 
q3(γ − γ̂ , γ̂ − γ̃ , γ̂ − γ ♯) (Fig. 8).

Examples for conditional PDF q3(γ − γ̂ |γ̂ − γ̃ , γ̂ − γ ♯) are shown in Fig. 9.

(23)�ε(z)ε(z + ℓ)� ∝ ℓ−K(2) = ℓ−0.609, ℓ > 0,

Table 2.  Constants and parameters for the estimation study.

Meaning Parameter Value

Number of steps in cascade n 8

Number of vertical points 2n 256

Step size of cascade h log 2

Number of samples in Monte Carlo simulation M 1.024× 1010

Multifractal index α 1.62

Codimension of the mean C1 0.352

Width of bins in histogram of q3 (w1,w2,w3) (0.1, 0.1, 0.05)

Number of bins in histogram of q3 (n1, n2, n3) (500, 200, 200)

Number of profiles in identical twin exp. M ′ 30,000

Number of observed profiles (Obs.) I 409

Obs. with more than 2n vertical points – 353

Figure 8.  Examples of cross section cut of joint probability density function q3(γ − γ̂ , γ̂ − γ̃ , γ̂ − γ ♯) . (a) 
section cut q3(·, ·,−1) with section lines γ̂ − γ̃ = 1.5, 2, 2.5 , and (b) section cut q3(·, 2, ·) with section lines 
γ̂ − γ ♯ = −1.25,−1,−0.75.
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Identical twin experiment. Second, we estimated the posterior probability distribution for the energy 
input rate, ǫ by inverting the probability distribution computed from the simulation of the cascade model. Before 
applying this to real data, we performed an identical twin experiment using pseudo-observational data, whose 
energy input rates were given manually; thus, the estimation result could be checked against them. The inver-
sion was performed using the result of the joint PDF q3 created by the cascade model with the Lévy generator 
(case L3). When generating the pseudo-observational data, the parameters for each profile were set randomly as 
α = 1.62+ 0.03ξ1, C1 = 0.109α + 0.175+ 0.008ξ2, using standard normal random numbers, ξ1 and ξ2.

The result of the identical twin experiment using q3(γ − γ̂ |γ̂ − γ̃ , γ̂ − γ ♯) is shown in Fig. 10a. In 28,497 
trials out of 30,000 (about 95% ), the true value of γ  lies within the CI, which ensures the validity of the estima-
tion method.

Control experiments. To show the superiority of the proposed method (L3), which performs an inversion 
using the result of the joint PDF q3 created by the cascade model with the Lévy generator, the generated samples 
above are also estimated by other methods: an inversion based on the marginal PDF q1 , an inversion based on 
the joint PDF generated by a multiplicative cascade with Gaussian generators, and a simple bootstrap method.

Figure 9.  Examples of conditional probability density function q3(·|u, v) (coloured) and marginal probability 
distribution q1(·) (black), along with median (dashed lines) and 95% confidence intervals (dotted lines). The 
conditional probabilities are for u = 2; v = −1.25,−1,−0.75.

Figure 10.  Result of identical twin experiments. Median (horizontal axis) versus confidence interval (vertical 
axis) of ǫ . (a) Result using probability density function q3(·|u, v) . (b) Result using probability density function 
q1(·) . For given values of the median on the horizontal axis, the points on the vertical axis indicate the values of 
the confidence interval (purple segment), arithmetic mean (orange), geometric mean (blue), and energy input 
rate (black). For readability, 300 points and 60 intervals are drawn out of 30,000 trials.
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Error estimation based on the PDF of the arithmetic mean. Using several different moments for a profile should 
be effective for precise error estimation. To check this, we perform a control experiment using the marginal 
PDF, q1 , of the arithmetic mean (case L1). We take samples created by the cascade model with the stable Lévy 
generators, and then estimate the CI via the marginal PDF q1(γ − γ̂ ) . The results are shown in Fig. 10b, where 
the CI and median show a common positional relation to the arithmetic mean. Comparing the case with q3 to 
the one with q1 , 75% of trials in the former have narrower CIs. This indicates that using information from γ̃  and 
γ ♯ improves the error estimation.

Error estimation based on a cascade model with Gaussian generators. Stable Lévy generators have asymmetry 
in the distribution, which also affects the mean and median. Therefore, it is necessary to use such asymmetric 
generators for the error evaluation. To check this, we also evaluate the samples in the twin experiment using the 
probability distribution generated by a cascade model with Gaussian generators for comparison. We take sam-
ples created by the cascade model with stable Lévy generators (case G3) or Gaussian generators (case G1), and 
then estimate the CI via the joint PDF based on the cascade model with the best-fitted Gaussian generators. The 
results are shown in Fig. 11a, where a significant portion (9891 trials out of 30,000) of the true energy input rate 
(black) protrudes above the CI (purple). This means that the values of the energy input rate are underestimated 
if we assume a Gaussian distribution for the generators, and it also illustrates that it is inappropriate to use the 
statistics from the simulations of a cascade model with Gaussian generators for error evaluation.

Error estimation using the bootstrap method. The simplest method for error evaluation is applying the bootstrap 
method to each profile. However, the errors cannot be properly assessed by such a conventional method. To 
verify this, we estimate the CIs by applying the bootstrapping method to the twin experiment. For each trial, we 
use a 1000-member ensemble for the bootstrapping. Each member is constructed as follows: If a profile at the 
horizontal point �xi has a set of Ji observations of the energy dissipation rate, ǫr0(�x, zij ), j = 1, 2, . . . , Ji , we ran-
domly take Ji samples with replacement from the set. The results of the error evaluation of the mean dissipation 
rate are shown in Fig. 11b. The CIs are evaluated very narrowly, and in many trials (22,164 trials out of 30,000), 
the true energy input rate (black) is outside the CI, which indicates that the error estimate is far too optimistic. 
This illustrates that it is irrelevant to use the conventional bootstrap method for the error evaluation.

Comparison of skill. For a fair comparison of skill in the above control experiments, we examine the errors for 
an estimator of the energy input rate. First, we define the estimator, � , from the median estimate, γ(0.5) , as

where [m] represents the m-th sample, and γ(0.5)[m] is the median of the samples generated from the energy 
input rate ǫ[m] . Here, a is defined to empirically satisfy the unbiasedness:

(24)�[m]
def
= a exp

(
γ(0.5)[m]

)
,

(25)
1

a
=

1

M ′

M′∑

m=1

exp
(
γ(0.5)[m]

)

ǫ[m]
,

Figure 11.  Result of control experiments. Median (horizontal axis) versus confidence interval (vertical axis) 
of ǫ , which are obtained using (a) joint probability density function based on the cascade model with Gaussian 
generators, and (b) the bootstrap method. For given values of the median on the horizontal axis, the points 
on the vertical axis indicate the values of the confidence interval (purple segment), arithmetic mean (orange), 
geometric mean (blue), and energy input rate (black). For readability, 300 points and 60 intervals are drawn out 
of 30,000 trials.
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Then, in terms of � , we define the relative error with sample size M ′ as

Note that the error might not necessarily converge when M ′ → ∞ because the distribution of �[m]/ǫ[m] is 
not Gaussian. Nevertheless, we can still evaluate the error for a finite M ′ and use it for the comparison of skill.

The errors indM′ with M ′ = 30,000 for various conditions are listed in Table 3. The combinations of the 
cascade model with the Lévy generator or Gaussian generator and the use of joint PDF q3 or marginal PDF q1 
are compared; these correspond to cases L3, L1, G3, and G1 above. The error for the arithmetic mean γ̂  is also 
shown for reference. The smallest error among these is for the estimator using the result of joint PDF q3 created 
by the cascade model with a Lévy generator (L3). The errors for cases L1 and G1 are comparable to that for the 
arithmetic mean because these estimators are constructed from the statistics of the arithmetic mean. This result 
clearly shows that the proposed method (L3) can be used to define an estimator that yields superior estimates 
of the energy input rate than the arithmetic mean or other methods (L1, G3, or G1).

Real data experiment. We applied the same procedure as in the identical twin experiment to the real 
observational profiles of the energy dissipation rate. Each profile was characterised by γ̂  , γ̂ − γ̃  , and γ̂ − γ ♯ , 
which were utilised as observational constraints. By means of inversion, we derived the CI of γ  for each profile 
at different horizontal locations. The estimated CIs for real data are shown in Fig. 12b; these CIs exhibit a similar 
appearance to the ones for the identical twin experiment in Fig. 12a.  Figure 13 shows the estimate for CIs on 
the sections along 47◦ N and 137◦ E . Along 47◦ N , the median of ǫ rarely exceeds 10−9 m2 s−3 , except around 
172◦ E , 180◦ E , or 50◦ W . The peak of the arithmetic mean at 172◦ E is approximately 2.5 times larger than the 
median estimate, which can lead to overestimation.

(26)
1

M ′

M ′∑

m=1

�[m]

ǫ[m]
= 1.

(27)indM′
def
=


 1

M ′

M′�

m=1

����
ǫ[m] −�[m]

ǫ[m]

����
2



1/2

.

Table 3.  Comparison of the error, indM′ (M′ = 30,000) , for various estimators in identical twin experiment.  
Lévy/Gaussian indicates the generator used in cascade model simulation. Here, q3/q1 indicates whether joint 
PDF or marginal PDF is used as the density generated by the cascade model simulation; γ̂  indicates the 
arithmetic mean. Each number in parentheses is the prefactor a for the corresponding estimator.

indM′ q3 q1

Lévy L3 0.89 (0.745) L1 0.98 (0.718)

Gauss G3 1.0 (1.61) G1 0.98 (0.689)

γ̂ 0.99 (1.00)

Figure 12.  Results of the real data experiment compared with those of the identical twin experiment. Median 
(horizontal axis) versus confidence interval (vertical axis) of ǫ . (a) Results of identical twin experiment. (b) 
Results of real data experiment. For given values of the median on the horizontal axis, the points on the vertical 
axis indicate the values of the confidence interval (purple segment), arithmetic mean (orange), geometric mean 
(blue), and energy input rate (black). In b, only 70 confidence intervals out of 353 trials are shown for readability.
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Along 137◦ E , the median shows several significant peaks over 10−8 m2 s−3 at around 2◦ N , 16◦ N , and 27 
to 29◦ N . We could have underestimated the peaks at around 2◦ N and 27–29◦ N , but overestimated the one at 
around 16◦ N , if only the arithmetic means were used.

For the analysis of the observations on the section along 165◦ E , we should consider the effects of repeated 
observation. In fact, the observations were performed twice at some horizontal locations. For such cases, we 
simply assume that two independent realisations of a common γ  are observed. In this regard, the inversion 
formula in Eq. (16) is modified as follows:

where two observations are distinguished by the subscripts 1, 2. This distribution is the normalised product 
of the two distributions. When considering γ̃  and γ ♯ , the same procedure as in Eq. (28) is applied to q3(·|u, v) 
instead of q1(·):

Figure 14b shows the estimation of CI along 165◦ E by taking into account the effect of repeated observation. For 
comparison, the result without considering the repeated observation is shown in Fig. 14a, where each observation 

(28)P(γ |γ̂1, γ̂2) =
P(γ̂1, γ̂2|γ )P(γ )∫
P(γ̂1, γ̂2|γ )P(γ )dγ

=
P(γ̂1|γ )P(γ̂2|γ )P(γ )∫
P(γ̂1|γ )P(γ̂2|γ )P(γ )dγ

=
q1(γ − γ̂1)q1(γ − γ̂2)∫
q1(γ − γ̂1)q1(γ − γ̂2)dγ

,

(29)
P(γ |γ̂1, γ̂2, γ̂1 − γ̃1 = u1, γ̂1 − γ

♯
1 = v1, γ̂2 − γ̃2 = u2, γ̂2 − γ

♯
2 = v2)

=
q3(γ − γ̂1|u1, v1)q3(γ − γ̂2|u2, v2)∫
q3(γ − γ̂1|u1, v1)q3(γ − γ̂2|u2, v2)dγ

.

Figure 13.  Geographical distribution of median (purple dots) and confidence interval (purple shade) of ǫ along 
(a) 47◦ N and (b) 137◦ E . The horizontal axis shows the location. Arithmetic mean (orange) and geometric 
mean (blue) are also shown.

Figure 14.  Geographical distribution of median (purple dots) and confidence interval (purple shade) of ǫ along 
165◦ E . The effect of repeated observation is considered in (b), but not in (a). The horizontal axis shows the 
location. Arithmetic mean (orange) and geometric mean (blue) are also shown.
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is assumed to correspond to independent γ  . We can see that the CIs become narrower when considering the 
effect of repeated observation. Furthermore, along 165◦ E , the median shows a significant plateau on the order 
of 10−8 m2 s−3 at around 30◦ N , and a significant peak on the order of 10−8 m2 s−3 at around 2◦ S.

Discussion
We have analysed the observed data obtained from oceanic turbulence measurements and shown that the vertical 
sequences of energy dissipation rates in a profile have an intermittent structure that obeys a scaling law. In this 
study, we have laid greater emphasis on the ’energy input rate’, which refers to the population mean for a profile, 
than on the ’mean energy dissipation rate’, which is the sample (arithmetic) mean over a profile. Based on the 
scaling property, we have proposed a method of estimating the energy input rate, given the sample statistics of 
an observed profile. 

1. For scaling within the observed profiles, the statistical properties of our data are consistent with the uni-
versal multifractal model, which has a moment scaling exponent of K(q) = (C1/(α − 1))

(
qα − q

)
 with a 

multifractal index α = 1.62± 0.03 and codimension of the mean C1 = 0.352± 0.009 . This result elucidates 
the universality that is inherent in the vertical structure of oceanic turbulence data.

2. The energy input rate and its uncertainty can be estimated using the results of Monte Carlo simulation of 
the cascade model with stable Lévy generators. This method computes the conditional probability, given the 
observed values of the arithmetic mean, geometric mean, and quadratic mean over a profile. The estimate 
provides additional information on the uncertainty of the energy input rate.

3. Furthermore, a comparison to control experiments has demonstrated that the proposed method is superior 
to a simple bootstrap method, an inversion based on the PDF generated by a multiplicative cascade with 
Gaussian generators, or an inversion based on the PDF of the arithmetic mean.

4. A real data experiment using the observed profiles has demonstrated a geographical distribution of the 
median estimates and confidence intervals of energy input rate, providing information on the range of values 
in which the turbulent energy can be dissipated per unit depth at each horizontal location.

5. Thus, we have found an answer to the question: ‘How can one estimate energy input rate from the vertical 
profile data of the energy dissipation rate?’ By analysing the intermittency in the observed data, we can con-
struct a multiplicative cascade model based on the universal multifractal formalism that can reproduce the 
statistics of the data. Then, based on the observed data, the energy input rate can be estimated by inverting 
the probability distribution obtained from Monte Carlo simulations of the cascade model.

6. Since the observed sequence of the energy dissipation rate fluctuates greatly due to intermittency, it is difficult 
to extract robust information from an observed profile only by examining the average. Using the proposed 
method, it is possible to estimate the population mean for a profile even when repeated observations cannot 
be made at the same horizontal position. In other words, we can distinguish, to some extent, whether a profile 
shows an occasional large mean or whether the population mean itself is large. Therefore, more information 
can be extracted from a small amount of turbulence observation data, which can be a great advantage in 
regional data analysis.

7. Theoretically, this technique can easily be extended by utilising more statistics over a profile besides the 
arithmetic mean, geometric mean, or quadratic mean. Note however that such an extension may easily suffer 
from the curse of dimensionality, and thus, it can become impractical.

8. Even though we have used a discrete cascade model for simplicity and computational viability, we can extend 
it to a continuous  cascade33, which may improve the estimation accuracy at the cost of increased computa-
tional burden.

9. To investigate the scaling of the velocity spectrum in the horizontal and vertical directions, we should apply 
anisotropic scaling theory (e.g., the Kolmogorov–Bolgiano–Obukhov  model23). However, this study only 
aimed at investigating the scaling of the energy dissipation rate in the vertical direction in a purely statistical 
manner. Nevertheless, because the energy dissipation rate is one of the key quantities in scaling analysis, our 
results will contribute to further studies on how intermittency affects various scaling behaviours of turbulence 
in buoyancy-driven stratified fluids.
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