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Abstract
Recent advances in single-cell genomics are opening up unprecedented opportunities to transform cancer genomics. While
bulk tissue genomic analysis across large populations of tumour cells has provided key insights into cancer biology, this
approach does not provide the resolution that is critical for understanding the interaction between different genetic events
within the cellular hierarchy of the tumour during disease initiation, evolution, relapse and metastasis. Single-cell genomic
approaches are uniquely placed to definitively unravel complex clonal structures and tissue hierarchies, account for
spatiotemporal cell interactions and discover rare cells that drive metastatic disease, drug resistance and disease progression.
Herewe present five challenges that need to bemet for single-cell genomics to fulfil its potential as a routine tool alongside bulk
sequencing. These might be thought of as being challenges related to samples (processing and scale for analysis), sensitivity
and specificity of mutation detection, sources of heterogeneity (biological and technical), synergies (from data integration) and
systems modelling. We discuss these in the context of recent advances in technologies and data modelling, concluding with
implications for moving cancer research into the clinic.

Introduction
Massive parallel sequencing of cancer genomes has delivered
major advances for our understanding of the somatic driver mu-
tations underlying the pathogenesis of neoplastic disease (1).
This knowledge has already translated through to clinical benefit
in many different tumour types for diagnosis, prognostic risk
stratification, targeted therapy and minimal residual disease
(MRD) monitoring. It has also long been recognized that tumours
evolve through serial acquisitionof these somatic drivermutations
through an often highly complex process of genetic diversification
and clonal selection (2,3). Moreover, definitive characterization of
the resulting intratumoural clonal heterogeneity is widely recog-
nized to be a central requirement for precision medicine in
haematology and oncology (2). Although cancer genome studies

typically analyse genomic DNA derived from millions of cells,
thereby generating data representing the average across a tu-
mour population, computational approaches can nevertheless
be used to derive clonal architecture and infer phylogenetic
trees for each tumour (4,5). This approach has provided funda-
mental insights into how tumours clonally evolve during disease
progression and under the selective pressure of therapy (4,6).

While bulk analysis is undoubtedly informative for the under-
standing of clonal heterogeneity of tumours, such studies are
also associated with important limitations that are difficult to
overcome through refined technical or computational ap-
proaches. In essence, these limitations are founded in the failure
of cell population-based analysis to fully reconstruct all aspects
of clonally complex tumour specimens containing highly
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heterogeneous populations of cells. This becomes particularly
important when considering low-level subclones that might
propagate subsequent disease relapse/progression. As an ex-
ample,∼1000X sequencing data are required to detect 99% ofmu-
tations carried by a 1% tumour-mass subclone analysed at the
bulk level (5). Although such depth of sequencing is certainly
possible, it is way beyond the depth obtained in most studies,
and alternative approaches are also required. Recent advances
in single-cell genomics are opening up unprecedented opportun-
ities to definitively unravel such cellular heterogeneity in clonally
complex tumours. Specific methods for single-cell genomic ana-
lysis have been recently reviewed in detail elsewhere (7), some of
which are summarized in Table 1. In this review, we outline how
these technical advancesmight be applied to address fundamen-
tal questions in cancer biology, and the key challenges that must
be overcome for this pioneering technology to reach its full po-
tential in the cancer field.

The Promise of Single-Cell Genomics in Cancer
The most obvious application of single-cell genomics in cancer
research is to define clonal architecture of tumours. For example,
single-cell analysis can theoretically facilitate the detection of
very low-level tumour clones with only ∼200 cells required to re-
liably detect 1% tumour-mass clones (34). However, the potential
advantage of single-cell analysis goes far beyond this improved
resolution for the detection of low-level subclones. For example,
the independent acquisition of the same combination of muta-
tion(s) in separate subclones during disease pathogenesis can
occur, resulting in ‘convergent’ pathways of evolution within a
tumour (11,35). The order of acquisition of mutations can also
be contingent on the presence of other mutations through epi-
static interactions (2). Moreover, the order of acquisition of the
same combination of collaborating mutations can also influence
the resulting disease phenotype (36). At the bulk population level,
it might not be possible to reconstruct the tumour phylogenetic

tree with this degree of resolution as cells that are informative
for ancestral clones might be extremely rare within the bulk
tumour (Fig. 1A). Such definitive reconstruction of phylogenetic
trees is becoming increasingly important, particularly in the light
of the failure of many targeted therapies to offer anything other
than a minor overall survival benefit (37), which might relate to
the requirement for targeting of driver mutations that are present
in all the malignant cells in order to maximize efficacy (2).

Despite the promise of single-cell genomic DNA analysis in
cancer, proof-of-principle studies are only just beginning to
emerge in small patient numbers, and the technology has yet
to enter routine translational cancer research or clinical practice.
Using a variety of whole genome amplification approaches com-
bined with sequencing or array-based copy number analysis
(Table 1) (7), a number of studies have recently illustrated how
single-cell genomic analysis can be applied to provide novel
insights into clonal architecture, phylogenetic trees and the
dynamics of mutation acquisition in breast cancer (38–41), mye-
loproliferative neoplasms (42), renal cell carcinoma (43), bladder
cancer (44), colon cancer (45,46) and acute myeloid leukaemia
(47). For the most part, these studies have illustrated how single-
cell genotyping validates the major mutation clusters identified
through population-based analysis while also providing addi-
tional insights into ancestral lineage and clonal complexity of
tumours. Single-cell genomic analysis of circulating tumour cells
(CTCs) have also documented sharedmutational profiles between
CTCs, primary and metastatic disease, though with insufficient
power to rule out pervasive false positives for CTC-specific muta-
tions (46,48–50). Together, these studies nicely illustrate the prom-
ise of single-cell mutation analysis in cancer to provide
information about clonal heterogeneity in tumours above and be-
yond that provided by bulk analysis, an important step towards
precision medicine.

The advantages of single-cell analysis become particularly
important when considering functional genomic studies beyond
mutation detection alone, e.g. gene expression or epigenetic

Table 1. Current single-cell genomics techniques

Spatial
resolution

Temporal (of the
same cell)

Number of molecular
features measured

Scale
(number of
cells)

Sensitivity for
mutation detection

False
positives

References

DNA
MDA No No ++++ ++ ++ ++ (8,9)
MALBAC No No ++++ ++ +++ +++ (10)
DNA-FISH Yes No + ++ ++++ +/− (11)
MIDAS No No ++++ ++ +++ ++ (12)

RNA
Plate-based
RNA-seq

No No +++ ++ ? (if whole
transcript)

? (13–18)

Microfluidics
RNA-seq

No No +++ +++ ? (if whole
transcript)

? (19)

Droplet-based
RNA-seq

No No +++ ++++ ? ? (20–22)

In-situ
sequencing

Yes No ++ +++ ? ? (23–25)

RNA-FISH Yes No + +++ ++ +/− (26)
Epigenetic
Methylation No No +++ ++ N/A N/A (27,28)
ATAC-seq No No ++ +++ N/A N/A (29)
Hi-C No No ++ ++ N/A N/A (30)

Mass cytometry Yes No + +++ N/A N/A (31,32)
Live cell imaging Yes Yes + + N/A N/A (33)
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analysis (7,51–54). The vast majority of gene-expression studies in
cancer have analysed tumourcells at the population level. Amajor
confounding factor for such analyses is that changes in the com-
position of heterogeneous cell populations might be falsely inter-
preted as a direct impact of a mutation on gene expression, a
problem that can be overcome using single-cell approaches
(Fig. 1B). Importantly, single-cell analysis also provides informa-
tion about aberrant co-expression of genes that is lost at the
bulk level (Fig. 1B). Such an approach can also, in parallel, provide
information about other non-malignant stromal, immune and tis-
sue-specific cells (43) contained within the tumour specimen
(Fig. 1C). Interactions between malignant cells and multiple
other components of a tumourarewidely recognized to be import-
ant for cancer biology (55). Thus, a single-cell approach can help to
definitively reconstruct the cellular compositionof tumours ashas
been effectively carried out for multiple normal tissues using sin-
gle-cell transcriptomics techniques (20,56–61). However, to date,
only a few studies have applied whole transcriptome methodolo-
gies in the cancer field. These have primarily been proof of

principle studies to assess intra-patient transcriptional diversity
in primary tumours and CTCs (13,62–64), and the emergence of
drug-resistance phenotypes (65). Single-cell epigenetic analysis
is also emerging as an exciting new technology (27–30,66), but as
yet these approaches have not been widely used in cancer.

With recent advances in therapeutic approaches formany can-
cers, including the advent of targeted therapy, the challenge for
many tumours is often not to achieve a remission in the patient
but rather to understand which cells are selectively resistant to
the treatment and remain after the treatment is completed, as
these are the cells that ultimately propagate disease relapse. In re-
lation to this, it has long been recognized that some tumours are
organized hierarchically and only certain populations of cells are
capable of propagating a tumour, so called ‘cancer stem cells’
(Fig. 1D) (67). However, gene-expression changes in tumour initiat-
ing/propagating cancer stemcells,whichcanbe rare in the tumour
hierarchy, will be lost when a tumour is analysed at the bulk level.
There is now definitive evidence supporting the existence of rare
and distinct cancer stem cells in certain malignancies (67,68),

Figure 1. Advantages of single-cell analysis. (A) Diagrammatic illustration of different consequences of mutation order on disease phenotype. Cells informative for

mutation order may be very rare within tumours (1% in this example) and bulk sequencing is unlikely to have sufficient resolution to determine mutation order as

reads for each mutation (A and B) will be almost identical for mutations with a very similar allelic level. (B) Comparison of single cell versus bulk gene expression

analysis. Different coloured cells (orange and blue) represent different cell types. Different coloured spots within cells represent expression level of different genes.

Acquisition of a somatic mutation in the blue gene causes an expansion of orange cells. The table shows the distinct gene-expression differences detected by single

cell and bulk analysis. (C) Heterogeneity of cellular composition of tumours that would be lost through bulk analysis. (D) Diagrammatic illustration of hierarchical

organization within tumours throughout the disease course. Yellow indicates tumour cells, green non-tumour cells and different shapes represent different subclones

of cells. This hierarchical and clonal complexity would be lost through bulk analysis. ND indicates no difference.
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and that these cells can be both rare and selectively resistant to
treatment (67,69). Single-cell analysis has the unique potential
to selectively analyse these rare cancer stem cells both at diagno-
sis and, importantly, to dissect residual cancer stem cells from
normal tissue counterparts when the patient is in remission
(Fig. 1D). Single-cell approaches can also be used to detect ances-
tral ‘pre-malignant’ stem cells, as has recently been demonstrated
in AML (70). It is also apparent that cancer-associated mutations
are gradually accumulatedwith age, as described primarily in pio-
neering studies inhaematopoiesis (71–73). Once again, single-cell-
based detectionof these pre-malignant clonesmight be important
for predicting cancer risk before the development of overt disease.

While the above studies provide proof of principle for the ap-
plication of single-cell genomics approaches in the cancer field,
the broader application of this pioneering technology requires a
number of key challenges to be overcome. These might be sum-
marized as those related to samples, sensitivity and specificity of
mutation detection, sources of heterogeneity, synergies (from
data integration) and systems modelling. Careful attention to
all these challenges is required in order for single genomics to
become a driving technology in cancer systems biology.

Samples
The first step in any single-cell analysis is to develop a robust and
unbiased method for the isolation of single tumour cells while
minimizing loss/degradation of their genomic content. Leukae-
mias and other liquid tumours have obvious advantages in this
regard as single cells can be isolated into individual reaction
chambers using well-validated fluorescence activated cell-sorting
(FACS)-based purification. However, even when using FACS-
based approaches, the potential impact of sample handling on
the tumour cells should not be underestimated. In solid tumours,
the tissue processing required for isolation of single cells is more
challenging. Some of the recent single-cell genomics studies in
cancer have analysed nuclei that were sorted by flow cytometry
(38,74). This process involves macrodissection of tumour from
distinct anatomical locations followed by finemincing of each tu-
mour section in a lysis buffer (38), with FACS-based purification
of single nuclei. This approach has the limitation that micronu-
clei (75) and cytoplasmic mRNA are lost, thereby significantly
limiting the broader applicability of this technique. This can be
overcome by generating suspensions of enzymatically dispersed
whole single cells which can then be isolatedmanually (10), or by
FACS ormicrofluidic approaches (43,63,76–78). All thesemethods
introduce assumptions and biases that might result in selective
loss of certain populations of cells based on cell size, surface anti-
gen expression or biophysical properties. This is particularly
important as cells contained within a tumour are highly hetero-
geneous for size, shape and phenotype (Fig. 1C) and exclusion of
any cells based on any of these parametersmight result in loss of
cells of interest, a consideration that becomes most prominent
when dealing with extremely rare cells within a tissue such as
CTCs within the blood. Furthermore, the most fundamental re-
quirement for single-cell analysis is to be able to reliably isolate
a contamination-free ‘single’ cell for downstreamanalysis. Doub-
lets can frequently occur with FACS and microfluidic-based
single-cell isolation, as suggested through speciesmixing experi-
ments (20), highlighting the need to carefully validate true single-
cell capture before subsequent analysis. To avoid contamination,
which can easily be introduced with the high-level amplification
required for most protocols, special care is required with re-
stricted clean rooms for single-cell analysis with regular decon-
tamination (10).

Tumour clones evolve dynamically in both space and time;
however, the above approaches are all limited by loss of this
key information (Table 1). For example, a single sample from an
individual tumour might reveal mutations which appear to be
clonally dominant, but are then shown to be absent from other
regions of the tumour (79–81). While multiple anatomically dis-
tinct biopsies of the same tumour can help with spatial informa-
tion, this remains a major limitation where most single-cell
approaches offer little benefit above cell population-based gen-
omic studies. Furthermore, analysis of single cells in suspension
results in loss of information with regards to direct cell-to-cell
contact made by tumours, which is likely to be critical for the un-
derstanding of niche-related tumour cell interactions (82). Laser-
capture microdissection can partially overcome this, but this
approach is low throughput and it is also difficult to capture all
of the cytoplasmor nucleus of a cell using this technique for tran-
scriptome or DNA analysis, respectively (83). Advances in in situ
sequencing and imaging techniques perhaps offer the best op-
portunity to conduct genomic analysis of tumourswith definitive
spatial resolution (23–25). Using a highly innovative approach,
Lee et al. (23) were able to sequence RNA directly in situ in several
fixed tissues. More recently, Achim et al. (24) and Satija et al. (25)
presented approaches to map single-cell RNA-seq data to binar-
ized RNA in situ hybridization images of marker genes. While
these approaches offer the potential for spatial resolution of sin-
gle-cell genomic analysis of tumours, they are all currently too
early in development for broad application. Serial sampling of
the same patient can provide information about evolution of tu-
mour in time.While this is possible for liquid tumours (84,85), it is
more problematic for solid tumours where sequential analysis is
likely to be at the time of repeat biopsy following disease relapse/
progression. Furthermore, to track ‘the same cell’ in time requires
live cell-imaging approaches (33) which have not, yet as, been
widely applied in the cancer field.

A further challengewith sample preparation relates to scale of
analysis. Cancer stem cells and subclonesmight be relatively rare
within the total tumour population and, unless the cells analysed
are enriched on the basis of assumptions about their phenotype,
large numbers of cells might be required in order to reliably de-
tect these cells. This is particularly an issue when considering
MRD detection, or isolation of CTCs (86). Many current single-
cell genomics approaches are relatively low throughput, but in-
novative new approaches using bead-based barcoding combined
with cell isolation in microfluidic droplets looks set to transform
the scale for genomic analysis of single cells in cancer (Table 1)
(20–22).

Sensitivity and Specificity for Mutation
Detection
While the scale of analysis of tumour cells is certainly important,
it is also critical to maximize the information that is retrieved
from each cell. In relation to genome-wide DNA analysis for
mutation and copy number profiling, two whole-genome ampli-
fication (WGA) approaches have proved popular for single-cell
DNA-seq: multiple displacement amplification (MDA) (9) and
themultiple-annealing, looping-based amplification-based cycle
method (MALBAC) (10). Technical details of these methods have
been reviewed elsewhere (7,87,88). Choice of method depends
largelyon thequestionof interest. Eachmethod isassociatedwith
artefacts introduced due to allelic drop out (ADO), preferential
amplification of certain genomic sites and false discovery of mu-
tations due to amplification or sequencing errors (7). In general,
MDA exhibits higher fidelity in comparison with MALBAC (10).
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Conversely, MDA false-negative rates are greater due to lower
genome coverage and low uniformity of coverage. Rates of ADO
vary greatly, with rates as low as 1% reported for MALBAC and
as high as 65% for MDA (10), although ∼10% ADO can probably
be expected on average for most samples (42,89). In view of
this, MALBAChas been themethod of choice for copy number ab-
erration, but it is important to note that reproducibility of results
for smaller copy number abnormalities remains low (10,74).

In addition to false negatives in single-cell analysis due to
ADO, false discovery ofmutations is also amajor concern. Distin-
guishing true somatic mutations from WGA artefacts and germ-
line variants is clearly a fundamental requirement for single-cell
mutation detection in cancer. Each WGA method has imperfec-
tions in relation to this (7) and a number of questions remain.
For example, the false discovery rate was 2.5 × 10−5 in a study
usingMDA (42) as opposed to 4 × 10−5withMALBAC (10), although
larger differences have been reported when the twomethods are
compared side by side (90).Whether there is any bias for false dis-
covery in relation to genomic region or base type remains incom-
pletely characterized (7,42). Ultimately, it is likely that integration
with data derived from single-cell mutation detection with bulk
analysis (42) and validation using targeted single-cell mutation
detection will help to resolve some of these issues. In summary,
even with low mutation rate cancers, the high error rates with
current chemistries are important factors to overcome in order
to maximise the power of these methods to detect rare clones
and reconstruct tumour phylogenetic trees.

Microfluidics offer the potential advantage of capturing cells
within nanofluidic chambers that might improve sensitivity for
mutation detection byminimizing ADO (12,91–94). An alternative
approach that has been used is to amplify clones of cells, derived
from a single cell, to increase the sensitivity for mutation detec-
tion by increasing the amount of starting material (36,68). This
method, however, introduces an important bias that only cells
which are capable of generating colonies in the selected culture
conditions can be analysed. Targeted single-cell mutation detec-
tion is also likely to reduce error rates, but this methodology ne-
cessitates knowledge of the specific mutations carried by a
particular tumour. For example, fluorescence in situhybridization
(FISH) techniques have a high sensitivity for the detection of copy
number abnormalities and translocations allowing single-cell
analysis in a relatively high-throughput manner. The false posi-
tive rates for this technique are of the order of 1–2%, or even less
for fusion gene detection (11). Such FISH analysis has been used
to reveal the clonal architecture and facilitate the assemblyof an-
cestral trees in childhood acute lymphoblastic leukaemia (11).
Similarly, PCR-based approaches can also be adapted for targeted
single-cell mutation detection when the important driver muta-
tions are known (95).

In summary, while impressive progress has been made with
single-cell DNA sequencing, major efforts to minimize ADO (false
negative results) and sequencing errors (false positive results) as
well as comprehensive cross-comparisons of available platforms
will be necessary (90) to achieve maximum benefit. How bulk
and single-cell sequencing could be combined to best inform
each other is also an important question and the need for these
types of data integration is further discussed in what follows.

Sources of Heterogeneity
One of themajor challenges for the application of single-cell tran-
scriptomics in cancer is the degree of ‘noise’ in the data that is gen-
erated. This results from multiple layers of heterogeneity which
can broadly be classified as ‘real’ biological variation and technical

noise generated during the sampling and analysis pipeline. As
shown in Figures 1C, D and 2, biological heterogeneity can derive
from multiple genetic, epigenetic, demographic, environmental
and cellular factors together with stochastic gene expression at
the single-cell level, which together introduce extensive hetero-
geneity in single-cell data sets. Technical noise is introduced at
all stages in the processing pipeline from sample handling, cell-
isolation, reverse transcription, cDNA amplification, sequencing
and analytical stages. Therefore, it is important tominimize tech-
nical sources of variation with rigorous attention to detail in the
standardization of processing pipelines, including automation
and consideration of the use of microfluidics approaches which
have the additional advantage of reduced reaction volumes (19).
It is also important to appreciate that the degree of technical
noise is not independent of biological variation in the cells ana-
lysed. On the contrary, the two are closely related, e.g. in relation
to the impact of cell-cycle status, cell size and RNA content of the
cell. Quality control pipelines are also of considerable importance,
and there is an urgent need to define appropriate quality control
steps for single-cell analysis to ensure the integrity of data sets.
Bulk controls are important to show that ensembles of single
cells correlate with cell analysis at the population level (19),
while ‘no cell’ negative controls are essential to identify back-
ground contributions to amplified product.

Analytical techniques can also be used to help distinguish
biologically meaningful heterogeneous gene-expression differ-
ences from those arising from technical noise. The use of unique
molecular identifiers to barcode individual transcripts (14,15)
togetherwith inclusion of RNA-standards (96) are important con-
siderations. A major source of functional heterogeneity is cell-
cycle status, which can be accounted for using computational
approaches. However, in our and others’ experience, relying only
on transcriptomic markers with rapidly cycling cells can prove
challenging (97). This again stresses the need for more integrated
data modelling strategies for the reliable identification of chal-
lenging cell populations such as stem cells, which are often char-
acterized by quiescence (98).

Synergies: the Integration of Data
While cancer single-cell sequencing promises greater resolution,
this does not guarantee improved mechanistic understanding or
prediction of therapeutic response. With the diverse array of dif-
ferent single-cell approaches available, efforts are nowunderway
to integrate methods, i.e. to allow combined modality analysis,
ideally from the same single cell. The particular technical chal-
lenge when extracting multiple ‘omic’ data sets from individual
cells will be ensuring that the benefits from integrating diverse
modalities not only outweigh the individual methods, but also
the potential data quality compromises facedwhen harmonizing
protocols. It is these necessary compromises, scalability and cost
effectiveness that will drive the interplay between different tech-
niques. Interesting questions in experimental design may, e.g. be
how best to screen with bulk sequencing to inform more focused
single-cell sequencing strategies, or how to use ‘non-omic’ ap-
proaches such as high-content imaging and spectroscopy to link
modalities that are mutually exclusive in the same sample (99).

A natural early step has been the integration of DNA and RNA
sequencing. RNA-sequencing has the key limitation that muta-
tion detection requires relatively high-level expression of the
particular mutation in all of the cells that are analysed. Current
RNA-sequencing approaches require at least 10–20 copies of a
transcript for reliable detection (7). Furthermore, 3′ and 5′ biases
can also limit mutation detection using RNA sequencing. Thus,
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mutation detection exploiting DNA and RNA-sequencing from
the same cell could greatly enhance transcriptome analysis in
cancer. In an early study, Klein et al. (100) used a combination
of comparative genomic hybridization and PCR-based transcrip-
tome analysis to analyse DNA and RNA from the same tumour
cell. Using embryonic stem cell and breast cancer cell lines, Dey
et al. (101) demonstrated comparable performance of their com-
bined genomic DNA and reverse transcribed mRNA quasilinear
amplification and sequencing (‘DR-seq’) with MALBAC and CEL-
seq. Their work was one of the earliest to suggest that copy-
number variation affects gene-expression variability between
cells. Choosing rather to separate mRNA from genomic DNA
with biotinylated oligo-dT nucleic acids and streptavidin beads,
Li et al. (102) showed increased allelic exclusion when exposing
mouse embryonic fibroblasts to a chemical mutagen. In a similar
strategy, Macaulay et al. (103) employed biotinylated SMARTer
primers in lymphoblastoid and breast cancer cell lines, demon-
strating correlation between aneuploidy and gene expression.
Technical studies directly comparing the respective strengths
of published approaches are still lacking, but this combined ap-
proach looks set to lead to important advances in the application
of transcriptome analysis in cancer.

Various other single-cell functional genomic modalities have
also been reported, primarily as proof-of-principle studies in cell
lines. By successfully scaling bisulphite chemistry to individual
cells, Smallwood et al. (27) and Farlik et al. (28) have reported
pre-amplification and amplification-free bisulphite sequencing
strategies that potentially allow for improved deep-sequencing

coverage and less-biased low-depth coverage, respectively. Using
single-cell ATAC-seq (assay for transposase-accessible chromatin
with sequencing) to identify open chromatin, Cusanovich et al. (29)
were able to cluster cell lines with a remarkably low median of
1685 reads per cell. Single-cell Hi-C (chromosome conformation
capture with sequencing) has also been demonstrated in recent
work by Nagano et al. (30), where active chromatin domains in
mouse splenic cell nuclei localized to the surface of their spatial
chromosome territories. ChiP (chromatin immunoprecipitation)
and histone modification assays have proved more problematic
(66). Integrating these functional genomic approaches withmuta-
tion and transcriptome analysis is now the challenge.

Validation of single-cell gene-expression data requires inte-
gration with different single-cell genomic approaches and also
the use of single-cell protein expression analysis and functional
assays. A commonly used approach is to validate RNA-sequen-
cing data using targeted gene-expression analysis (56). Validation
of gene expression at the protein level is also possible using
‘index-sorting’ of cell-surface markers and correlating this with
gene expression in the same single cell (104). Other single-cell
protein-analysis techniques such as mass-cytometry (31,32) do
not currently allow direct integration with genomic analysis,
but provide an important platform for the validation for single-
cell genomic analysis including the possibility to retain spatial
information (32). Finally, validation of single-cell genomic ana-
lysis in functional cellular assays is also important, e.g. in vitro
or in vivo stem-cell assays, as recently employed for the normal
haematopoietic system (104). As most of the techniques for

Figure 2.Cancer systems genomics.Modelling cancer intra- and inter-patient heterogeneity requires four levels of information, thefirst beinghigh-resolution estimates of

(A) genetic, (B) epigenetic and (C) structural variation both in germline and cancer cells. This is complemented by integrationwith high-resolution estimates of functional

variation, such as the example gene-expression heatmaps in samples (D–F). Cells in sample D form two clusters, based on low-level gene expression (shown as red and

blue squares) and undetectable expression (shownaswhite squares). The genes in sample E showdifferent patterns of altered expression.While there is an increase in the

proportion of cells expressing gene 1 at a low level, gene 2 suggests a new sub-population of cells in which it is highly expressed (shown as dark blue squares). Cells in

sample F cluster into the same four groups as the cells in sample E. However, this is due to differential co-expression rather than altered expression level or expression

prevalence. Bulk sequencing would not be able to differentiate sample D from sample F. Spatiotemporal information during treatment is required to understand the

influence of genomic variation, intervention and cell population dynamics on emergent behaviours such as drug resistance. Cell microenvironment (such as cells in

colour in G) is thought to play a major role in most cancers, as is the plasticity of cell phenotype over time to allow distant metastases (H). Translating models of

intra-patient heterogeneous processes into models of heterogeneous patient response, as shown by the Kaplan–Meier curves in (I) versus (J), is the goal of precision

and stratified cancer pharmacogenomics.
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genomic analysis require destruction of the cell, it is difficult to
combine this approach with functional cellular assays of the
same cell unless using paired daughter cell techniques where
the immediate progeny of a single cell are separated for differen-
tial analysis, with the obvious caveat that the daughter cells may
differ significantly between each other and the mother cell (105).

Systems Modelling
As with other systems biologies, cancer systems biology remains
largely divided between data-driven and model-driven strategies.
High-throughput dataapproacheshavepredominantlyworked to-
wards associating variation in gene sequence and expressionwith
pathology and treatment response. These ‘big data’ strategies
traditionally limit themselves to integrating the types of data
already discussed, with the aim of developing bottom-up multi-
scale descriptions of cancer molecular biology. Conversely, math-
ematical modelling has more typically focused on higher-level
tumour cell dynamics such as invasion, angiogenesis and metas-
tasis. Single-cell genomics arguably provides the first scalable op-
portunity to begin unifying these strategies under the common
goal of modelling complex system behaviours. As depicted in
Figure 2, for cancer, this means models of the spatiotemporal
changes in cell populations while predicting the influence of gen-
etic drivers and therapies on these model parameters.

Such cancer ‘systems genomics’ modelling has yet to be fully
realized. Single-cell studies have predominantly focused on
gene- and protein-expression methods in attempts to robustly
and reproducibly describe cell sub-populations, while also ac-
counting for technical contributions to population structure.
These approaches can be broadly catagorized as algorithms that
project linear and nonlinear covariance structures (97,106), hier-
archical and partitioning clustering algorithms (107,108) and net-
work trajectory algorithms (109). Two important contributions to
cancer cell state that have been considered in early studies are
cell cycle andmicroenvironment. The use of transcriptional mar-
kers alone to determine individual cell-cycle states has proved
challenging in rapid cycling cells, with Patel et al. (64) resorting to
a cell-cycle signature score in glioblastoma cells to study gene co-
expression and Buettner et al. (97) suggesting the removal of cell
cycle as a latent variable based on known periodic genes.

The modelling of regulatory networks, coexpressionmodules
and gene ‘noise’ remains currently under-explored in single-cell
genomics. It is thought that—for reasons such as transcriptional
bursting—most genes will demonstrate highly variable expres-
sion even in similar cells, and that this expression variability
may enable the study of regulation dysfunction not possible
with bulk approaches. Understanding this type of functional sto-
chasticitymayalso prove as important tomodelling the drivers of
cancer behaviour and drug response as has been the traditional
focus on DNA stability/‘noise’ (110,111). Based on our experience
associating genetic variability with gene-expression phenotypes
(112), current single-cell costs and scalability likely limit the
power to broadly study gene-network parameters such as robust-
ness, redundancy and degeneracy in most cancers. However, at
the very least, it now seems possible to begin testing of hypoth-
eses such as the ‘mutator phenotype’ and its relationship to func-
tional variability, cell phenotypes and drug response (10).

Conclusions
The field of single-cell genomics is advancing at a truly remark-
able speed, and looks set to transform cancer-biology research
over the coming years. The deep characterization of the clonal

and functional architecture of tumours that might be delivered
through single-cell analysis is of obvious relevance for the man-
agement of cancer patients through refined risk-stratification,
targeted therapy selection and MRD detection. The scale of sin-
gle-cell analysis is likely to increase dramatically both in terms
of the numbers of cells and patients that can be handled. How-
ever, for these new technologies to fulfil their potential for preci-
sion medicine, a number of not inconsiderable hurdles remain.
The next steps in the field are to address the key challenges out-
lined in this review and to comprehensively compare and stand-
ardize the resulting methodologies. With the speed of technical
advance in this field over the last few years, we anticipate that
these challenges will be overcome and we will soon enter an
era where single-cell cancer genomics becomes routine.
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