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Numerous studies have found evidence that GWAS loci experience negative selection,
which increases in intensity with the effect size of identified variants. However, there is also
accumulating evidence that this selection is not entirely mediated by the focal trait and
contains a substantial pleiotropic component. Understanding how selective constraint
shapes phenotypic variation requires advancing models capable of balancing these and
other components of selection, as well as empirical analyses capable of inferring this
balance and how it is generated by the underlying biology.We first review the classic theory
connecting phenotypic selection to selection at individual loci as well as approaches and
findings from recent analyses of negative selection in GWAS data. We then discuss
geometric theories of pleiotropic selection with the potential to guide future modeling
efforts. Recent findings revealing the nature of pleiotropic genetic variation provide clues to
which genetic relationships are important and should be incorporated into analyses of
selection, while findings that effect sizes vary between populations indicate that GWAS
measurements could be misleading if effect sizes have also changed throughout human
history.
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1 INTRODUCTION

Attempts to understand genetic architecture preceded the discovery of DNA as the model of heredity
(Fisher, 1918), and much theoretical work on selection, the maintenance of variation, and the
adaptation of complex traits began before the ability to record genotypes on a scale sufficient to
meaningfully contribute to these questions (Walsh and Lynch, 2018). The modern genetic era has
provided an opportunity to test classic theories and to expand models—both long-standing and
relatively recent—based on new understandings of genetic architecture and mechanisms. Genome-
wide association studies (GWAS) and other data-driven tools have raised additional questions,
including how so much heritability for many traits is contributed by relatively common alleles when
natural selection is often expected to remove deleterious variation from the population. The flood of
methods and data has sharpened and revised our understanding of many components that fashion
the structure of the genome—polygenicity, selection, the distribution of mutational effects,
pleiotropy—but has left us wanting for models capable of reconciling these elements (Sella and
Barton, 2019).

The analysis of GWAS data revealed an extraordinary degree of polygenicity, and showed that
most heritability is explained by relatively common, mostly noncoding alleles of small effect. At first
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glance, this observation is surprising. Natural selection is
expected to maintain the population near an optimum value
for quantitative traits and to reduce the prevalence of potentially
maladaptive phenotypes such as diseases. Such optimums and
maladaptive phenotypes are defined within a given
environmental context (Harpak and Przeworski, 2021).
Selection generally acts by reducing the frequency of
phenotypically relevant alleles, though it may drive allele
frequency increases when shifts in the optimum phenotype
occur. This basic logic led to the question whether the effect
of natural selection is evident from GWAS data at all. Recent
studies have reached a strong consensus that phenotypic effect
sizes are negatively correlated with allele frequency (Gazal et al.,
2018; Zeng et al., 2018; Schoech et al., 2019; Speed et al., 2020;
Zeng et al., 2021). These findings are inconsistent with purely
neutral models, but various models of natural selection
influencing trait variation remain plausible (Walsh and Lynch,
2018). Uncertainty largely surrounds whether the focal trait is
causally important for fitness compared to pleiotropically related
ones, and whether selection is primarily stabilizing or has
important directional components. In spite of many
unresolved details, the emerging picture is that a vast supply
of mutations with weak effects, coupled with generally inefficient
selection against such alleles, is the basis of phenotypic variation.

Empirical results from GWAS on the distribution of effect
sizes and allele frequencies still pose the challenge of which classic
and emerging models from theoretical population genetics are
able to best explain the emerging observations. Existing theories
range frommodels of selection acting directly on the focal trait to
models where selection on genetic variation is driven by
simultaneous effects on other traits (pleiotropy), to even fully
“apparent” selection, which assumes the focal trait is not subject
to any selective constraint. In this review, we discuss a relevant
subset of these models and how their predictions look in light of
recent studies of selection in GWAS. We identify pleiotropy and
variable effect sizes of genetic variants across time and space as
important factors that have yet to be satisfactorily included into
statistical methods and theoretical models.

2 THEORETICAL MODELS OF
MAINTENANCE OF COMPLEX TRAITS AND
PREDICTIONS THEY GENERATE
Evolutionary quantitative genetics has subsisted for most of its
existence on a limited set of possible measurements. Estimates of
the genetic and mutational variance, as well as selection gradients,
are informative, especially with respect to contemporary patterns
of selection. However, most progress in explaining maintenance
of genetic variation in phenotypic traits was theoretical. Now that
GWAS have generated an abundance of matched phenotypic and
genetic measurements we live in a much more data-rich world. If
we turn our attention to a single, focal trait, what sort of data
would we ideally wish for?We would probably include the impact
of genetic variants (estimated as their effect size) on the trait in a
range of environments, the fitness effects of these alleles, as well as
their frequencies and linkage patterns (Johnson and Barton,

2005). These would yield a satisfying and useful description of
the genetic architecture and the process of its development, but
there are fundamental details not immediately obvious from this
description. We would like to know whether fitness effects arise
primarily through selection on the focal trait, and if so what form
it takes. If there are substantial fitness effects unrelated to the focal
trait, what other traits are involved and how does selection act on
them? Is the population in equilibrium? Has the genetic
architecture changed in the past and will it do so in the
future? Questions like these can be addressed by modeling
how selection acts on traits, the mutational distributions
underlying them, and how these generate the genetic
architectures we observe.

Textbook introductions to population genetics begin by
assigning fitnesses to genotypes and examine the consequences
for allele frequencies and overall patterns of genetic variation.
Connecting trait values, such as those measured in GWAS, to
selection on individual causative alleles requires the additional
step of specifying how selection on phenotypes leads to fitness
differences among genotypes. While slightly less familiar than
other selection results, this task was also taken up by many of the
authors of classical population genetics and has grown into a large
branch of evolutionary theory.

The simplest andmost obvious model predicts the selection on
individual causative loci arising from stabilizing selection on a
single polygenic trait with purely additive genetic variance
(Wright, 1935; Robertson, 1956; Bulmer, 1972) (Figure 1A).
In this model an individual’s trait value (z) is determined by
the sum of effects from L independent loci:
z � ∑L

l�1(βlgm + βlgp) + e, where βl is the effect size of the
allele at locus l, gl,m and gl,p are the maternal and paternal
genotypes at each locus, and e is a normally distributed
environmental effect centered at zero. If an individual’s fitness
is a Gaussian function centered at the population mean M and
with width VS (w(z) � exp (−(M − z)2/2VS)), then selection will
change the average frequency of a causative allele at locus l with
effect size βl � β as follows:

E[Δx] ≈ − β2

2VS
x(1 − x)(1

2
− x). (1)

Stabilizing selection tends to remove genetic variation in this
trait from the population. A balance between mutation, selection,
and drift generates the trait’s genetic variance in the population
(Bulmer, 1972; Keightley and Hill, 1988). Such direct stabilizing
selection leads to a negative correlation between minor allele
frequencies and the effect size magnitude.

We can write the selection coefficient for this model as
sud � − β2

2VS
to acknowledge that stabilizing selection takes

the underdominant form shown in Eq. 1
(E[Δx] � sx(1 − x)(12 − x)) rather than the more familiar
additive one (E[Δx] � sx (1 − x)). The (12 − x) term appearing
in the underdominant formula means that selection against the
derived allele actually decreases as it approaches 50% frequency
and actually switches signs after that point. The minor allele is
therefore always disfavored. However, when selection is strong or
the allele frequency is low, the differences are minor as x is small
compared to 1/2.We generally omit the subscript in sud for ease of
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FIGURE 1 |Models of selection on the genetic variation influencing complex traits. Panels on the left show how different genotypes affect trait values (in purple) and
fitness (in orange). Panels on the right illustrate how squared trait values change with frequency in each model of selection. Simulated values are shown in grey, the mean
E[β2|x] is represented by the solid green line, and the standard deviation of β2|x is represented by the size of the green circles. The median and 97.5% quantile are shown
as dashed lines to give a better sense of the full leptokurtic distribution of effect sizes. The DFE used in all plots (shape � 0.25, scale � 40) was chosen to be within
the range fit by Schoech et al. (2019). Effect sizes were simulated uniformly on log frequency, and both axes are on a log scale. (A) Classic stabilizing selection as
described by Eq. 1. Genotypes containing more trait-increasing alleles than decreasing, and vice versa, have lower fitness as a result of selection on the focal trait. Large
effect alleles are prevented from reaching high frequencies due to the variance-reducing property of stabilizing selection. (B) In the neutral model no genotype is more fit
than any other and the distribution of effect sizes at any frequency reflects only the distribution of mutational effects. (C) In pleiotropic stabilizing selection as studied
by Simons et al. (2018), there is variation in fitness for each genotypic values depending on the effects mutations have on pleiotropic traits. This leads to the same average
E[β2|x] but a greater variance and therefore different genetic architecture. (D) Models of apparent stabilizing selection first specify the deleterious fitness effects of
mutations, represented here by the size of the brown circles. Genotypes with more and stronger deleterious mutations have a greater variance in phenotypic outcomes.
This too leads to a negative relationship between β2 and x. Here we use the Eyre-Walker (2010) model with τ � 0.4 as fit by Schoech et al. (2019), and σ2 � 1. Altering
thesewould change themean and variance of the (β2, x) relationship. (E)Directional selection is shown here for a scenario where trait-decreasingmutations are unlikely or
impossible. Selection therefore acts to reduce the frequency of trait-increasing alleles. All new mutations are disfavored with s ∝ β. E[β2|x] again decreases with x.
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reading, but it is important to note that the interpretation of
selection coefficients differs depending on whether stabilizing
selection is explicitly modeled or not.

The variance-reducing property of stabilizing selection
motivated the development of other models with variance-
promoting features like overdominant side-effects of
causative alleles (Robertson, 1956; Gillespie, 1984) and strong
mutational pressure (Lande, 1976b). As always in evolution, we
must also at least consider the possibility that a trait of interest
has a negligible impact on organismal fitness. The population
mean value of a trait controlled by strictly neutral mutation will
drift in Brownian motion and have a genetic variance that
depends on the mutation rate, the second moment of the
distribution of mutation effect sizes, and the average pairwise
coalescent time between randomly sampled loci (Lande, 1976a;
Lynch and Hill, 1986; Koch, 2019). Var[z] � E[T2]θμ2, where T2

is the average number of generations it takes for a pair of sites to
coalesce, θ is the mutation rate per generation, and μ2 is the
second moment of the distribution of mutational effects.
Crucially, there would be no relationship between the effect
size and frequency of alleles (Figure 1B).

Of course, both intuitively and empirically, traits in natural
and contemporary human populations at least appear to be under
some selection (Kingsolver et al., 2001; Corbett et al., 2018; Sanjak
et al., 2018), and involve some level of pleiotropy (Stearns, 2010).
Models of apparent selection begin with the assumption that the
focal trait is not itself under any selection but add pleiotropic
fitness effects of the causative alleles. Individuals in the tails of a
phenotypic distribution will carry more mutations overall, and if
trait-affecting mutations have deleterious pleiotropic effects those
individuals will also have lover fitness on average (Barton, 1990;
Kondrashov and Turelli, 1992). Fitness that decreases away from
the mean is reminiscent of stabilizing selection, but the strict
deleterious model of apparent selection does not induce the
negative correlation between allele frequencies and effect size
magnitudes expected when the focal trait itself is actively
selected. The negative correlation between β2 and x may yet
be rescued if the deleterious pleiotropic effects of variants
affecting the focal trait arise from genetic covariance (Lande
and Arnold, 1983) or correlated effect size magnitudes
(Keightley and Hill, 1990). In this scenario, alleles with larger
effects (or absolute magnitudes) on the focal, neutral trait are
more likely to have larger effects on a second, selected trait.
Allele frequencies are suppressed through selection on the
second. In the extreme where the focal and selected trait are
so closely biologically related that the effect sizes of mutations
are deterministically linked, it is indistinguishable which trait
causally impacts fitness, although a strong genetic covariance
would be measurable. One can also imagine a model where each
mutation has such a relationship with a unique pleiotropic trait,
for instance, molecular effects in different pathways. Assuming
that large-effect alleles for the focal trait induce stronger
molecular effects, there may be strong selection without
measurable genetic covariance between the focal trait and
any individual pleiotropic trait.

The differences between models come down to how the
statistical relationship between selection coefficients and effect

sizes is specified: how s scales on average with β and what the
random variation around this looks like. In multivariate
stabilizing selection, s scales with β2 as in direct stabilizing
selection, but apparent selection models don’t have this
restriction. Apparent selection models were extended, as
described above, to include increasing selection with greater β
in addition to the negative pleiotropic consequences (Keightley
and Hill, 1990; Zhang and Hill, 2002; Eyre-Walker, 2010)
(Figure 1D). Models of multivariate stabilizing selection paint
a similar picture, but the focal and pleiotropic traits are explicitly
under stabilizing selection (Zhang and Hill, 2003; Simons et al.,
2018) (Figure 1C). All lead to a negative (β2, x) relationship, so
differences between models come down to the shape and variance
of that relationship, along with impacts on the genetic
architecture.

Directional selection on complex disease susceptibility is also a
viable hypothesis. In this view, the disease phenotype is itself
deleterious and alleles that increase susceptibility will be selected
against (Charlesworth, 2001; Wright et al., 2003) (Figure 1E).
This also implies a mutational bias towards susceptibility-
increasing alleles. It is plausible that there is a fitness cost
associated with carrying such alleles, even for late-onset
diseases (Pavard and Coste, 2021). All of the pleiotropy
arguments made for stabilizing selection would apply equally
well here.

There is an emerging consensus that models of mutation-
selection-drift balance are likely to explain the genetic
architecture of many, if not most, complex traits (Sella and
Barton, 2019). The models of apparent, stabilizing, and
directional selection described above, with varying possible
degrees of pleiotropic selection, all remain possibilities within
this consensus and are not mutually exclusive. Progress in
statistical genetics methodology and increasing GWAS sample
sizes are starting to clarify these details.

3 DETECTING NEGATIVE SELECTION IN
GENOME-WIDE ASSOCIATION STUDIES
DATA
As sample sizes increased and GWAS became sufficiently
powered to detect larger numbers of loci for different traits,
attention started shifting from the speculative question of how
study design should be informed by selection and its effect on
genetic architecture (Pritchard, 2001; Reich and Lander, 2001), to
what the genetic architecture, as revealed through these studies,
might say about selection. A transitional form was contributed by
(Agarwala et al., 2013), who investigated how selection may have
shaped the genetic architecture of Type 2 Diabetes, which had
recently gone from 2 to 39 genome-wide significant loci. Using
primarily the number of associations, conditional on the
heritability and prevalence of the disease, they ruled out both
neutrality of the focal trait and a model where selection is
proportional to effect size: β ∝ |s|.

Following this, methods were developed that do not explicitly
model natural selection on causative variants, but ask whether
lower frequency variants contribute disproportionately to
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heritability. This heritability bias should only occur if rare
variants have larger effect sizes on average, the most plausible
explanation being negative selection correlated with the
magnitude of effect sizes. A simple approach is to divide
variants into MAF bins and estimate the heritability
contribution of each in a mixed model framework (Yang et al.,
2015). applied this approach to height and body mass index
(BMI) and (Mancuso et al., 2016) to prostate cancer risk. Both
found increased heritability in rare variants compared to
common, and Mancuso et al. (2016) performed simulations to
demonstrate that, conditional on disease heritability and
prevalence, they could also rule out focal trait neutrality and
directly proportional selection.

More sophisticated analyses using the same general idea as
partitioning heritability by allele frequency have been developed
and applied to a wide variety of human traits. Extensions of LD
score regression (LDSC), a useful tool for partitioning heritability
among large numbers of annotations (Finucane et al., 2015), were
developed for features of negative selection. These analyses found
that younger genetic variants contribute more heritability than
older genetic variants at the same frequency (Gazal et al., 2017), a
key feature of negative selection (Maruyama, 1974; Kiezun et al.,
2013). They also confirmed earlier findings that rare variants have
greater effect sizes than common ones for a larger number of
traits (Gazal et al., 2018). Another popular and tractable
approach, termed the alpha model, explicitly sets the MAF
dependence of heritability contributions through a single
parameter α: E[β2|x] ∝ (x(1 − x))α (Zeng et al., 2018; Schoech
et al., 2019; Speed et al., 2020; Zeng et al., 2021). An α < 0 indicates
a heritability bias towards rare variants and some amount of
negative selection. Applications of this model have been
remarkable in their consistently negative α estimates across all
analyzed traits. While some differences between traits are
inferred, e.g. height has a smaller α than BMI, estimates are
consistently within the range [− 0.5, −0.2].

The negative relationships between effect size magnitude and
minor allele frequency inferred for so many traits are informative
about the model of selection. In particular, they allow us to rule
out neutral models where the focal trait and all underlying
variation are unaffected by selection, as well as strict models
of apparent selection where the causative variants are deleterious,
but the strength of this selection is uncorrelated with effect sizes.
However, many other models of selection may still be compatible
with these findings (Figure 1, Figure 2). The model of direct
stabilizing selection on a single trait first proposed by Wright and
others (Equation 1) is plausible for some traits. On the other
hand, a genetic correlation between the focal trait and another (or
many) under stabilizing selection could produce the observed
negative correlations even if the focal traits were completely
neutral. There is also a lot of space in between with varying
contributions to selection from the focal and pleiotropic traits.
While seemingly semantic, the question is really about the extent
to which variation in the underlying biology of the focal trait
causes variation in fitness. This can apply even when the focal
trait is something seemingly benign, an arbitrary bone for
instance, whose size is governed chiefly by the biology of
overall body size.

While the alpha model does not explicitly incorporate a
population genetics model in any statistical analysis, it is
possible to further interpret results using simulations and
theory (Figure 2). In simulations, the idea is to use a model of
choice to generate allele frequencies and effect sizes and then use
the inference procedure to estimate what α corresponds to those
model parameters. For theory, one derives E[β2|x] under the
selection model and compare this to the approximate alpha
model expectation of E[β2|x] ∝ xα. Using this approach,
Schoech et al. (2019) showed that the inferred α depends both
on the distribution of fitness effects of new alleles affecting the
trait (DFE), and on the average scaling of effect sizes and selection
E[β2|s] ∝ s2τ, where the parameter τ determines the scaling
through the relationship E[β] ∝ sτ (Eyre-Walker, 2010). The
DFE dependence enters primarily through a frequency-threshold
effect: alleles below the threshold have effect sizes roughly
uncorrelated with frequency because, while above the
dependence scales approximately like E[β2|x] ∝ x−2τ. The
threshold is the frequency below which most new mutations
from the DFE are still mostly affected by drift rather than
selection, and is therefore lower for a heavy-tailed DFE with
a high average s. Zeng et al. (2021) used population genetic
simulations to fit the DFE for various traits by conditioning on
the values they had estimated for α, polygenicity, and SNP
heritability. They found greater variation in the DFE among
trait categories than variation in α estimates. α estimates that
are relatively insensitive to the DFE are consistent with
the predictions of Schoech et al. (2019) if most SNPs
included in the analysis are above the frequency threshold
where selection is detectable. These simulations therefore
also demonstrate that polygenicity and heritability are informative
about the DFE.

Simons et al. (2018) developed a model for the relationship
between effect sizes and selection coefficients based on isotropic
stabilizing selection and Fisher’s geometric model (the specifics of
the model is discussed in a subsequent section). The number of
trait dimensions in this model corresponds to the effective
number of independent axes of genetic variation, a value that
can be interpreted as the degree of pleiotropy. With a single
dimension the selection coefficient is the same as in the classical
model of one dimensional stabilizing selection: |β| � �����

2 sVS
√

.
When the number of traits becomes large the relationship
becomes β ∼ N (0,(VS/ne)s), where ne is the effective number
of traits, and expressions for moderate pleiotropy interpolate
between these extremes. Rather than fit this model to the
heritability explained by different minor allele frequencies,
Simons et al. (2018) analyzed the distribution of variance
contributions, v � 2β2x(1 − x), among genome-wide significant
SNPs. For a given mean among discovered loci, the variance of
v is higher with greater pleiotropy (ne), with a parametric
likelihood derived by the authors. The high-pleiotropy
model was found to fit the distribution of GWAS hits for
standing height and BMI better than the no- and low-
pleiotropy alternatives.

Zeng et al. (2021) also simulated varying degrees of pleiotropy
using the Simons et al. (2018) model and found that α estimates
were insensitive to changes in the degree of pleiotropy (ne). This
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FIGURE 2 | Examples of what alpha models may infer under different models of selection and different distributions of fitness effects (DFE). Effect sizes were
simulated by sampling from p(s|x) and then from p(β|s) under the different models described in the text. Derived allele frequencies are uniform between 0.01 and 0.5.
Estimates of α were obtained by fitting log β2 � α log x (1 − x) + c to the average β2|x values calculated from simulations. The DFE was varied by decreasing the shape
parameter from 1 to 0.25 to 0.125 while keeping the mean constant. It is important to recognize that α̂ values reported here would not necessarily correspond to
those obtained by real statistical genetics methods (Zeng et al., 2018; Schoech et al., 2019; Speed et al., 2020; Zeng et al., 2021). Those methods employ particular
likelihoods and are applied to real genetic data where frequencies are not uniform and effect sizes are estimated with error. The frequencies of analyzed variants may be
particularly important since the slope of the (β2, x) relationship (local α) varies with frequency (Schoech et al., 2019). Estimated α values increase with increasing DFE
kurtosis, reflecting the proportion of variants that are strongly selected. For high kurtosis, estimates approach the theoretical expectation of α � − 2τ for the Eyre-Walker
(2010) model as derived by Schoech et al. (2019). As expected, in a model of stabilizing selection (Simons et al., 2018), the degree of pleiotropy does not affect the α

estimate. Directional selection is associated with higher α estimates than stabilizing selection.
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makes sense, given that the alpha model only attempts to fit the
average effect size - frequency relationship and suggests that new
approaches will be needed to investigate the nature of pleiotropy
and the relative importance of the focal trait.

4 MODEL BUILDING USING GEOMETRY
AND PLEIOTROPY

Using the distribution of causative allele frequencies and their
effects solely on the focal trait, what could be done to further
interpret the results of GWAS studies? One advance would be to
explicitly include selection in the next generation of models that
build upon LDSC or α models (Sella and Barton, 2019). We may
start by imagining what class of models could fit the joint
distribution of (x, β). Assume a set of parameters Θ that
describes the selection model. An analysis would use
the likelihood p(x, β|Θ), which decomposes into p(x, β|Θ) �
p(x|β, Θ)p(β|Θ). Since the distribution of effect sizes is not a
major concern for selection, inference would focus on p(x|β, Θ).
The distribution of frequencies for a given effect size is
determined by integrating over the possible fitness effects of a
mutation with effect size β: p(x|β, Θ) � ∫p(x|s, Θ)p(s|β, Θ)ds. The
effect of selection, s, could be either additive or underdominant
(stabilizing selection), but could also represent other models
beyond these two such as overdominant or fluctuating
selection. x can be replaced by the age or historical frequency
path of the allele (Stern et al., 2021). p(x|s) can be tackled with
standard population genetics, so the trickier problem is to provide
p(s|β, Θ) in cases of pleiotropic selection.

In an early attempt to do this explicitly, Keightley and Hill
(1990) proposed p(s|β,Θ) as the conditional distribution of a two-
dimensional Wishart distribution. In this formulation both the
mean and variance of s, conditional on β, are proportional to |β|
plus a constant, and a correlation parameter determines how the
variance scales with the mean. This contrasts with the model of
direct stabilizing selection where s is proportional to β2. Another
approach decomposes this distribution as p(s|β, Θ) ∝ p(β|s, Θ)
p(s|Θ). This has the appealing property of separating the link
between fitness and trait effects from the distribution of fitness
effects (DFE). Eyre-Walker (2010) proposed a form for p(β|s, Θ)
where E[β]∝ sτ with multiplicative noise. Both of these models try
to capture a space of potential relationships between effect size and
selection without being over-parameterized. However, it is not
actually clear how one should interpret results from either. A weak
correlation parameter from the Keightley and Hill (1990) model
would perhaps indicate the importance of pleiotropy, but the linear
scaling between |β| and s would not make sense with direct
stabilizing selection. Eyre-Walker’s τ doesn’t necessarily mean
stronger or weaker selection. Would it mean anything for the
relative importance of directional or stabilizing selection?
Moreover, these two models make divergent predictions for the
contribution of rare versus common alleles to the genetic variance
(Eyre-Walker, 2010; Caballero et al., 2015; Sella and Barton, 2019).

Simons et al. (2018) made a strong argument for
interpretability when deriving their distribution for p(β|s, Θ).
The framework they used was multivariate stabilizing selection in

a geometric model (Fisher, 1930). Models within this framework
generally posit a multidimensional phenotypic space with a
selection function that describes the fitness of each possible
phenotypic combination. Typically, the fitness function is
Gaussian and centered at some optimum phenotype. A
mutation is a vector that moves an individual to a different
point in phenotype space, thereby altering fitness. Assuming a
population centered at its optimum value, with each phenotypic
direction under equal stabilizing selection and mutational
pressure, p(β|s, Θ) takes a simple parametric form depending
only on the number of dimensions ne and the strength of
selection Vs.

Previous work using Fisher’s geometric model had used it to
derive the DFE of new mutations (Martin and Lenormand, 2006;
Lourenço et al., 2011) or the expected genetic variance and
correlation of the focal trait with fitness (Zhang and Hill,
2003) rather than p(β|s). A major assumption of these studies
was that the phenotypic effects of new mutations were drawn
from a multivariate normal distribution with different
dimensions representing different phenotypes. While a
seemingly natural starting place, the assumption of normally
distributed mutations is far from realistic and mathematically
troublesome. There is accumulating evidence that the mutational
effect distribution is substantially leptokurtic for many traits
(Zhang et al., 2018; O’Connor et al., 2019; O’Connor, 2021). It
is has also been shown that, for a single normal distribution of
mutations, the DFE concentrates around a point value of s as the
number of traits becomes large, an obviously unrealistic scenario
(Waxman and Peck, 1998; Wingreen et al., 2003; Zhang and Hill,
2003). Thankfully, one may still rescue the utility of geometric
models by using a mixture of normals.

For example, the Simons et al. (2018) likelihood can be derived
from the geometric model with normal mutation proposed by
Martin and Lenormand (2006) by integrating out a variance

parameter: p(s|β) � ∫ p(β|s,σ2)p(s|σ2)
p(β|σ2) p(σ2)dσ2. If mutations are

uncorrelated, equally affected by stabilizing selection, and
drawn from a mixture of normal distributions, then the
distribution of variances, p(σ2), fully describes the mutational
distribution. It is straightforward using Bayes’ theorem to
show that p(s|β) ∝ p(β|s)∫p(s|σ2)p(σ2)dσ2 and contains two
components. The first component, p(β|s), has the form derived
by Simons et al. (2018), a normal distribution with variance
proportional to s when the number of traits is large. This part is
independent of σ2. The second component, ∫p(s|σ2)p(σ2)dσ2, is
the DFE itself. In this example, the DFE is generated by the
distribution of mutational effects. The variance of what normal
distribution in the mixture a mutation comes from determines
how strongly selected it is.

The above approach suggests that a fruitful way to propose
future models would be to propose that there exist different
mutational modes. Modes might represent different biological
pathways and could be parameterized by which traits are
involved, the correlation of mutational effects among these,
and the distribution of mutational effect sizes. If summarized
in ΘM, we might then integrate over the distribution of modes. If
β is conditionally independent of s givenΘM, then the form of the
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DFE will be separable from the link between selection and effect
sizes, though it is not always clear that this will be the case.
Directional selection as well as antagonistic pleiotropy may be
possible to model this way, at least for a population at equilibrium
in its fitness landscape. To more directly analyze selection and the
pleiotropic relationships among traits, a vector of effect sizes
could replace the effect β on a single, focal trait.

5 EMPIRICAL DEMONSTRATIONS OF THE
EXISTENCEANDNATUREOFPLEIOTROPY

Since models of the evolution and maintenance of complex trait
variation strongly depend on assumptions regarding the degree of
pleiotropy. Modeling andmeasurement of pleiotropy is key to the
empirical questions of whether the focal trait is under meaningful
direct selection and how selection coefficients depend on the
phenotypic effects of individual variants.

Current estimates of polygenicity indirectly but strongly suggest
highly pleiotropic genetic architecture for most complex traits
(Zeng et al., 2018; O’Connor et al., 2019; Zeng et al., 2021).
Indeed, it was estimated that 2% of genetic variation is involved
in height and a similar proportion (1%) is involved in risk of Type 2
Diabetes (Zeng et al., 2021). It is clear that a model where every
quantitative trait locus (QTL) affects just a single trait is, due to the
finite nature of the human genome, inconsistent with high
polygenicity (defined here as the probability that a variant has a
non-zero effect on the focal trait). We do not know exactly what
fraction of the genome plays any functional role; comparative and
functional genomics produce a range of estimates generally on the
order of 0.1 (Rands et al., 2014; Gulko et al., 2015). If 10% of the
genome is of any functional importance, and trait-affecting
mutations originate from this functional fraction, it clearly
cannot harbor independent QTLs for a vast number of complex
traits each with a polygenicity of 2% (Jordan et al., 2019).

With the abundance of GWAS data, many aspects of
pleiotropy can be empirically estimated using corresponding
well-developed statistical approaches. The specific relationships
between causative QTL effect sizes on different traits that these
approaches investigate are illustrated in Figure 3. The
relationship between two phenotypes is most commonly
expressed as global genetic covariance, which reflects the
overall degree of pleiotropy in the form of correlation of QTL
effects across all loci (Cov[β1, β2], where β1 and β2 are allelic effect
sizes for phenotypes 1 and 2), scaled by the heterozygosity at each
causative locus. A significant genetic covariance below one would
indicate that individual QTL effects are correlated but not
identical. Global genetic covariance is estimated using
statistical approaches related to those used to estimate
heritability including random effect models implemented into
the GCTA software or LD-score regression (Lee et al., 2012;
Bulik-Sullivan et al., 2015). Estimates of genetic covariance come
with the same caveats as must apply to heritability estimates
(Visscher et al., 2008). Measurements apply to the particular
environment in which the different traits are measured and offer
no guarantee of a fundamental relationship between traits. Under
different conditions, gene-by-environment interactions can

change which genetic variants contribute to heritability and
different pleiotropic traits may associate with the new regime.

Using these and related statistical techniques, highly
significant genetic covariances were estimated among various
autoimmune diseases and among various psychiatric diseases and
related phenotypes (Cotsapas et al., 2011; Lee et al., 2013;
Watanabe et al., 2019; Lincoln et al., 2021). The analysis of
genetic covariances between two traits has some limitations.
The genetic covariance alone is not informative about
biological mechanisms and per locus patterns. For example,
the same genetic covariance may indicate either pleiotropy
limited to just a few loci with very similar effects on both
traits on the background of other non-pleiotropic loci or the
broad pleiotropy of all loci but with non-identical effects (Figures
3A vs 3B). For autoimmune traits, it is possible that some loci
impact immune function while others determine tissue or organ
specificity.

The question of contribution of individual loci into global
genetic correlation must be, therefore, addressed at the local
level by studying individual loci. When studying individual loci,
one of the challenges is that linkage disequilibrium confounds
the analysis. Genetic covariance may imply real pleiotropy,
meaning that the same genetic variants causally affect both
traits. Alternatively, some variants may exclusively impact the
first trait and other variants exclusively impact the second trait,
but local genetic correlation can still be induced by linkage
disequilibrium between the two sets. Consequently, the field has
developed two different classes of methods to address this issue.
Methods that estimate local genetic covariance (Shi et al., 2017)
do not distinguish between functional pleiotropy versus non-
independence induced by linkage disequilibrium. A different
class of methods called “colocalization” (Giambartolomei et al.,
2014; Hormozdiari et al., 2016; Chun et al., 2017) relies on
linkage disequilibrium patterns to specifically test the
hypothesis that the same causative variant (or variants) in
the locus impacts both traits (Figure 3B). Multiple examples
of local genetic correlations and individually colocalized loci
have been described (van Rheenen et al., 2019; Aguet et al., 2020;
Vuckovic et al., 2020). However, some QTLs involved in
genetically correlated traits do not show obvious signals of
colocalization, suggesting that genetic correlation does not
necessarily imply pleiotropic effects of all variants (Lincoln
et al., 2021).

A separate aspect of pleiotropy that statistical genetics
addresses is the causal relationship between phenotypes (van
Rheenen et al., 2019). There is an important distinction between
“horizontal” pleiotropy with genetic variants exerting
independent effects on both traits and a causal path or
“vertical” pleiotropy, where one trait directly contributes to the
other (Jordan et al., 2019). Examples of the latter include LDL
cholesterol being a causative risk factor of heart disease (Zhu
et al., 2018), the genetic component of smoking being a causative
risk of lung cancer (McKay et al., 2017), and all molecular effects
(considered as “molecular” phenotypes) leading to changes in a
phenotype of the organism. If one trait is a cause of the other trait,
every variant inducing an effect on the first trait also affects the
second trait (Figure 3C). Moreover, these effect sizes are
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proportional and correspond to the causal effect of the first trait
on the second trait. Because the first trait is usually just one of
many causes, most variants affecting the second trait would not
be expected to have any effect on the first trait. These
considerations are a foundation of Mendelian Randomization
methods that attempt to infer causal relationships even if genetic
associations for the two phenotypes are measured separately in
independent datasets (Pingault et al., 2018). This approach relies
on a large number of QTLs and does not translate to
individual loci.

Many recent studies of pleiotropy, colocalization and causality
have focused on molecular phenotypes such as gene expression,
chromatin accessibility or DNA methylation (Umans et al., 2020;
Vuckovic et al., 2020; Ye et al., 2020; Morabito et al., 2021).
Numerous QTLs for various molecular phenotypes have been
identified for these classes of traits (most prominently expression
QTLs or eQTLs). The main motivation of these studies is to
identify the primary molecular events underlying genetic

associations with human traits and diseases. However, it is not
guaranteed that genetic covariance or colocalization of a
molecular trait with a focal trait is indicative of an underlying
causal impact of variation in the molecular trait on the focal trait.
One example is that changes in BMI actually induce changes in
DNA methylation rather than DNA methylation acting as a
molecular mechanism mediating genetic effects on BMI (Wahl
et al., 2017). The direction of causality was demonstrated by
showing that SNPs which predict methylation levels at individual
loci did not predict BMI levels, while a genetic risk score for BMI
levels did predict methylation levels.

Even in the absence of genetic covariance, molecular effects
may induce pleiotropic relationships between two traits. Imagine
a scenario where the two traits are both mediated by a large
number of molecular phenotypes (activities of many individual
genes or other latent factors), but these molecular phenotypes do
not exhibit correlated effects on the two traits (Figure 3D). In this
case, genetic covariance might not exist or be very weak on

FIGURE 3 | Various potential pleiotropic relationships at individual loci underlie genetic correlations between traits. (A)Mutations affecting trait 1 have a tendency to
impact trait 2 in a particular direction, although a variety of outcomes are possible through the functional particulars of that change. (B)Mutations fall either into a shared
or unshared functional pathway between the two traits. Colocalization analysis aims to test which distribution a given QTL comes from. Even though not every mutation is
pleiotropic, the two traits are genetically correlated. The proportion of mutations falling into either pathway determines the strength of genetic correlation. (C) Trait 1
has a causal impact on trait 2 such that every mutation with a non-zero effect on trait one has a strongly correlated effect on trait 2, but not vice-versa. Mendelian
randomization aims to test for the existence and direction of this effect. This also manifests as a genetic correlation at the phenotypic level. (D) Individual variants may be
pleiotropic, but can result in low or zero genetic correlation if different pathways have opposing effects.
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aggregate but covariance between absolute (or squared) genetic
effects Cov[β21, β22] may be substantial. The popular “omnigenic”
model offers one version of such a scenario (Boyle et al., 2017).
Genetic covariance may also be close to zero if the pleiotropic
effect is limited to one or a small number of loci (in other words,
with a substantial local genetic covariance and even colocalization
in individual loci) (Liu et al., 2019).

These methodological developments and empirical results
related to pleiotropy are important in light of the main subject
of this review. They motivate consideration of evolutionary
models that take into account groups of correlated traits. For
causally related traits, selection effects would probably differ
depending on whether selection primarily acts on the
upstream or downstream trait along the causal chain. An
interesting perspective is also brought by the consideration of
molecular phenotype. If each molecular phenotype is
pleiotropically involved with many downstream organismal
phenotypes, and the focal trait is merely one of these, selection
coefficients can depend on effect sizes even if the focal trait is
neutral. Variants with larger effect sizes on molecular function
would be under stronger selection because this molecular
function impacts multiple other selected downstream traits in
addition to the neutral focal trait.

Few studies have analyzed the effects of pleiotropy on selection
by actually incorporating the measured effects of variants on
multiple traits. Some mutation accumulation studies have tried to
demonstrate whether pleiotropic mutations are under stronger
selection. McGuigan et al. (2014) provide some evidence that
mutations underlying combinations of correlated gene expression
traits in Drosophila serrata are under stronger selection than the
average mutation affecting a given trait. In humans, Sanjak et al.
(2018) regressed lifetime reproductive success on genetic scores
for multiple traits simultaneously in United Kingdom Biobank
participants. Compared to the univariate, this full analysis lacked
power, but quadratic and linear selection terms did change in
both magnitude and sign for some traits, indicating the
importance of accounting for pleiotropy. Stern et al. (2021)
took a similar approach, but used the shape of genealogies at
GWAS loci to look at historical rather than contemporary
patterns of directional selection. Again, the authors found that
many estimates of selection changed substantially, and were
largely attenuated, when accounting for the correlated
response in other traits. At the time of writing, no attempt has
been made to account for pleiotropy in the alpha model
approaches discussed above that have demonstrated negative
selection on many human traits.

6 CONSTANCY OF EFFECT SIZES ACROSS
TIME AND SPACE

Everything discussed so far has assumed that genetic variants have
well-defined additive effects on traits of interest, and that these
effects are measurable in contemporary human populations.
Although convenient, and the correct starting place for most
analyses, recent research has demonstrated that causative
variants for many traits and diseases have population-specific

effect sizes. Such studies are possible when GWAS for the same
traits have been performed in different populations (De Candia
et al., 2013; Mancuso et al., 2016). One approach has been to
estimate the cross-population genetic correlation, the correlation in
causal effect sizes between the different samples, and these
estimates are often less than one (Brown et al., 2016; Galinsky
et al., 2019). This is most likely due to gene-by-environment (GxE)
and gene-by-gene (GxG) interactions, with some effect driven by
different measurement practices and diagnosis criteria.

Shi et al. (2021) estimated the impact of different functional
annotations on the degree of cross-population effect size
correlation of variants within those genomic regions. They
found that the squared genetic correlation was depleted most
strongly in regions under strong background selection as well as
in and around functional elements such as exons, promoters, and
enhancers. These regions are also enriched for heritability and,
as previous research reviewed here has shown, variants residing
there are likely under stronger selection. If a variant has
different effect sizes in different contemporary populations,
we should be more uncertain about its effect size in the
ancestral population where the majority of its existence may
have taken place. Cross-population genetic correlation could
therefore be used as a measure of the temporal stability of allelic
effects. Alternatively, the aggregate pleiotropic effects of an
allele may stay roughly constant even as the effects on
individual traits vary due to GxE or other factors.

7 CONCLUSION

Direct data on genotype-phenotype associations for numerous
human traits have provided an opportunity to investigate which,
if any, of the current theoretical models for the maintenance of
complex trait variation fit observed genetic architectures.
Depending on the degree and nature of pleiotropy, as well as
the importance of the focal trait for selection, these models
predict the relationship between β and s (Johnson and Barton,
2005). Selection analyses of human GWAS data have consistently
demonstrated a negative relationship between effect size
magnitudes and allele frequencies, implying that larger effect
sizes are associated with stronger selection on average (Zeng et al.,
2018; Schoech et al., 2019; Speed et al., 2020; Zeng et al., 2021).
Models where the focal trait is neutral, or largely biologically
unrelated to any aspect of fitness, are therefore ruled out. Within
the class of alpha models, the scaling between β2 and frequency
varies across traits, likely reflecting differences in the DFE and the
scaling between β and s. These estimates are difficult to interpret
in terms of classical stabilizing selection models, and work is
needed to reconcile tractable statistical models of how effect sizes
change with frequency with realistic models of selection at the
phenotypic level. Studies have also largely been limited to
analyzing the average relationship of effect size to frequency.
This limits the ability to capture the importance of pleiotropy
which should create variance around that average. By directly
modeling the variation in genome-wide significant variance
contributions, Simons et al. (2018) were able to infer a high
degree of pleiotropy for height and BMI.
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All the approaches reviewed here infer the nature of
selection on GWAS loci by analyzing the distribution of
allele frequencies and effect sizes (x, β), with the overall
trait heritability sometimes included. Future work along
these lines may utilize fine-mapping (Weissbrod et al.,
2020) or other techniques to better capture this
distribution (O’Connor, 2021). An interesting approach
was developed by O’Connor et al. (2019) who estimated
the kurtosis of heritability contributions using the LDSC
framework to measure trait polygenicity at different allele
frequencies and functional genomic annotations. The
kurtosis depends on the fourth moment of the distribution
of effect sizes, and therefore contains additional information
beyond that contained in the alpha model. A low kurtosis, and
therefore high polygenicity, of common variants indicated a
“flattening” due to selection strongly preventing any large-
effect variants from reaching high frequencies. This indicates
a high importance of the focal trait for selection, but more
thought is needed to tell what degree of pleiotropy is
consistent with these results.

The greatest advances in our ability to make sense of the
maintenance of complex trait variation will likely come from
analyses that utilize variant-level pleiotropy and account for effect
sizes that vary across time and space. Methods to investigate
pleiotropy in statistical genetics are already well-developed (van
Rheenen et al., 2019) but have yet to intersect with analyses of
stabilizing or negative selection. Effect size differences between
populations are also well-documented (Brown et al., 2016; Shi
et al., 2021), but have received less attention, likely in part due to

the lack of large GWAS from diverse populations and the
difficulty of standardizing measurement for some phenotypes.
The portability of polygenic scores is also potentially more
strongly impacted by differences in allele frequencies and
linkage disequilibrium than effect size variation (Wang et al.,
2020), and allele frequencies will differentiate more rapidly under
stabilizing or negative selection (Yair and Coop, 2021). However,
understanding effect size variation in space and time may
ultimately end up being more important for modeling the
maintenance of variation in complex traits as well as detecting
selection on them (Mathieson, 2021).
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GLOSSARY

Causative Allele The allele which causally affects the focal trait. Due to
linkage disequilibrium, many alleles at a GWAS-identified locus are highly
correlated. The causative allele refers only to the one which causally affects the
trait.

Distribution of Mutational Effects The distribution fromwhich the
phenotypic effects of newmutations are drawn. This can include the focal trait
as well as related pleiotropic ones.

Effect Size Magnitude The absolute value of the effect size of an allele. It
is often useful to ignore the direction of effect that an allele has on the trait.

Focal Trait All studies in quantitative genetics must choose some
measurable aspects of biology to focus on. This can be something of obvious
importance like diabetic status, or could be simply something easily queried in
a biobank. Analyzed one at a time, we call the current trait the focal trait.

Genetic Architecture The joint distribution of allele frequencies and
effect sizes in a population or sample. This determines how much different
frequency and effect size ranges contribute to heritability, and answers
questions surrounding the importance of rare versus common variants;

genetic covariance, The covariance between the effects different genotypes
have on two traits. This measures the propensity for an individual with a high
genetic value for one trait to also have a high (or low) genetic value for the
second. It averages over all alleles and their effects on both traits, scaled by
their contributions to the genetic variance.

Genetic Risk Score A phenotypic prediction calculated for an individual
using a weighted sum of the estimated effect sizes of variants found in that
individuals genome.

Molecular Phenotype Phenotypes such as gene expression, methylation
levels, or metabolite concentration that are measured at the molecular level.
These are hoped to represent “low-level” traits that mediate the effects of
genetic variants on other phenotypes.

Overdominant Selection where the heterozygous genotype has higher
average fitness than either of the two homozygotes.

Pairwise Coalescent Time The amount of time it takes two sampled
loci to find a common ancestor going backwards in time. The longer this time,
the more likely it is that mutations occur to differentiate the two loci.

QTL Quantitative trait locus. A region in the genome that has been
statistically associated with a quantitative trait.
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