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Abstract: Polydopamine has been widely used as an additive to enhance membrane fouling resistance.
This study reports the effects of two-step dopamine-to-polydopamine modification on the permeation,
antifouling, and potential anti-UV properties of polyethersulfone (PES)-based ultrafiltration membranes.
The modification was performed through a two-step mechanism: adding the dopamine additive
followed by immersion into Tris-HCl solution to allow polymerization of dopamine into polydopamine
(PDA). The results reveal that the step of treatment, the concentration of dopamine in the first step,
and the duration of dipping in the Tris solution in the second step affect the properties of the resulting
membranes. Higher dopamine loadings improve the pure water flux (PWF) by more than threefold
(15 vs. 50 L/m2

·h). The extended dipping period in the Tris alkaline buffer leads to an overgrowth of
the PDA layer that partly covers the surface pores which lowers the PWF. The presence of dopamine
or polydopamine enhances the hydrophilicity due to the enrichment of hydrophilic catechol moieties
which leads to better anti-fouling. Moreover, the polydopamine film also improves the membrane
resistance to UV irradiation by minimizing photodegradation’s occurrence.

Keywords: polydopamine modified membrane; anti-ultraviolet; anti-fouling; polymerization;
polyethersulfone

1. Introduction

Polydopamine (PDA) has been known as an important biocomponent in the medical field, material
coating, and an effective additive for membrane fabrication [1–3]. PDA is bio-inspired material that
can be easily formed under mild conditions (i.e., room temperature) [4] on almost all inorganic and
organic substrates [1,5]. The abundant functional groups from catechol on PDA allow it to be a versatile
platform for further adhesion of other components with the desired function [6].

The introduction of the PDA as a material modifier was inspired by the mussel foot with a
strong adhesive ability [5,7]. PDA is imposed onto a substrate via surface coating thanks to the rapid
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formation of the PDA layer through polymerization, triggered by an autooxidation reaction using a
basic precursor [8]. Such a polymerization mechanism is favored as the other components that can be
functionalized on the PDA-layer adhered strongly to the substrate [8–11].

By its attractive and beneficial characteristics, PDA has been progressively used in many
fields [12,13]. PDA has been used as an additive in membrane fabrication [5,14–16], thanks to
its very high degree of hydrophilicity attributed to the amine and hydroxyl-rich groups. Incorporation
of PDA in a membrane matrix then increases the hydrophilic trait that is beneficial for inhibiting the
membrane fouling [14,17,18].

In membrane fabrication, numerous surface modification techniques such as surface
patterning [19–21], polymer blending [17,22–24], and surface coating [25] have been applied to
enhance the membrane properties in reducing its fouling propensity. The surface coating method is
popular to fabricate membranes used in a photocatalytic reactor, in which PDA can act as a medium
for binding photocatalyst components that otherwise cannot be deposited directly on the membrane
surface [26]. In addition, the presence of a PDA layer on the photocatalytic membrane protects the
membrane against UV radical attacks and minimizes the photodegradation [26–28]. Nonetheless,
PDA’s incorporation also decreases permeation due to blocking the pore surface by the PDA layer [28].
Meanwhile, if the PDA blended with the polymer, the photocatalytic efficacy diminishes because
the photocatalysis occurs only on the surface [27]. Another employed a simple dip-coating in an
aqueous solution of dopamine and utilized dopamine self-polymerization to form thin surface-adherent
polydopamine films onto various materials in which secondary reactions can be used to create a variety
of ad-layer [29]. Recent reviews on surface functionalization’s, including for membrane modifications,
have been reported elsewhere [30,31].

In our previous work [32], we adopted a new technique for modifying PDA on PDVF through a
combination of blending and polymerization that resulted in high permeation, humic acid (HA) rejection,
and antifouling performance. As an additive, dopamine acts as a pore former, which synergistically
promoted the water flux without rejection trade-off. However, direct PDA coating resulted in
membranes with a rather poor permeability. The dopamine blending approach was explored to
utilize its pore forming role that enhances permeability and hydrophilicity. Coating of the membrane
directly with PDA would require additional pore former. Therefore, a combination of the both
methods was expected to simultaneously improve membrane filterability, antifouling, and anti UV
performance. With the intention of further investigating dopamine modification techniques, herein,
the same modification method is attempted on the PES membrane but with more variations in the
concentration of dopamine, and it is aimed at the resistance of the membrane to deeper UV exposure.
Anti-UV studies of PDA-modified membranes through this technique are reported for the first time in
this work. It is expected that the proposed fabrication technique not only resulted in membranes with
outstanding permeability, selectivity, and antifouling performances, but also excellent UV resistance;
as such, it can be further applied as a photocatalytic membrane. The presence of the PDA layer on the
membrane surface can be used to functionalize semiconductor photocatalyst particles such as TiO2 and
so on. This study focuses on the role of PDA additive as an anti-fouling agent and anti UV degradation
agent and high filtration performance. Such properties are important for membrane materials used in
photocatalytic membrane reactors because the presence of the PDA layer can be functionalized with
semiconductor photocatalytic particles.

2. Materials and Methods

2.1. Materials

Polyethersulfone (PES, BASF, Ludwigshafen, Germany) was used as a base polymer for
membrane materials. N-methyl pyrrolidone (NMP, Merck, Hohenbrun, Germany) was used as
a solvent. Dopamine hydrochloride (Sigma Aldrich, MO, USA) and Tris (2-Amino-2-hydroxymethyl-
1,3-propanediol) (Sigma Aldrich, MO, USA) were employed as an additive and buffer solutions,
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respectively. HA (Sigma Aldrich, MO, USA) was used as a foulant model for the filtration experiments.
Distillate water was used as a non-solvent for membranes, solvent for the Tris-buffer preparation,
and as the feed for the pure water filtration experiments.

2.2. Preparation of Membrane

The membrane preparation utilized the phase inversion technique, illustrated in Figure 1.
The dope solutions were prepared by dissolving PES with the dopamine of varied concentrations
(0.5(a); 2(b); and 4(c)%) in the NMP. The mixtures were stirred until homogeneous at room temperature.
Once homogeneous, the solution was cast on top of a glass plate at a wet thickness of 2 mm thick
film by using the knifing stick. The formation of the membrane sheet occurred after the cast film was
immersed in a water container. Some of the membranes that were ready were coded as P-D0 and kept
in DI water until used further. The remaining membranes were dipped into a base Tris-HCl solution
(pH: 8.5) with a varying dipping duration of 5, 24, and 36 h. Pristine PES membrane (P) without the
addition of dopamine and dipping treatment was also prepared as the control. The summary of dope
solution formulations for all membrane samples is given in Table 1.
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Figure 1. Illustration of membrane fabrication method showing the step of membrane fabrication
including dopamine polymerization.

Table 1. Composition of polymer solution for membrane fabrication.

No. Membrane ID
Concentration (%) Polymerization Time

(hour)PES NMP Dopamine

1 P 17.5 82.5 0 0
2 P-D0-a 17.5 82 0.5 0
3 P-D5-a 17.5 82 0.5 5
4 P-D24-a 17.5 82 0.5 24
5 P-D36-a 17.5 82 0.5 36
6 P-D0-b 17.5 80.5 2 0
7 P-D5-b 17.5 80.5 2 5
8 P-D24-b 17.5 80.5 2 24
9 P-D36-b 17.5 80.5 2 36

10 P-D0-c 17.5 78.5 4 0
11 P-D5-c 17.5 78.5 4 5
12 P-D24-c 17.5 78.5 4 24
13 P-D36-c 17.5 78.5 4 36
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2.3. Membrane Characterization

Several characterizations were conducted to study the effect of the modification on the resulting
membranes. The FTIR Spectrophotometer was employed to distinguish the change in chemical groups
of the membranes (Thermo Scientific iD5 ATR-Nicolet iS5, Tokyo, Japan). A field-emission scanning
electron microscope (FE-SEM, JSF-7500F, Jeol Co. Ltd., Tokyo, Japan) was employed to observe the
structural morphologies after modification and after UV irradiation. The membranes’ mechanical
strength was measured by pulling the membrane sample in a dumbbell shape with dimensions of
4 mm width × 40 mm long using Autograph AGS-J (Shimadzu Co., Kyoto, Japan). The hydrophilicity
degree of the membranes was investigated by measuring the surface water contact-angle measurement
using Drop Master 300 (Kyowa Interface Science Co., Niiza-City, Japan). The thickness and porosity of
the membrane samples were measured using a micrometer and dry/wet method, respectively. Due to
the dense nature of the resulting membranes, the pore size was estimated based on the molecular size
of the HA applied in this study as reported elsewhere [33].

2.4. UV Irradiation Test

A membrane piece was put on flat glass and irradiated by a UV lamp (22 W, 254 nm SUV-16,
AS ONE, Nishi-ku, Japan) with a membrane-to-lamp gap of 5 cm. The irradiation experiment was
conducted in a tightly closed box for a total of 7 days.

2.5. Filtration Test

The filtration tests were conducted using a UF cell at a pressure of 1.5 bar. This experiment was
done using two feeds (DI water and 50 ppm HA solution) to evaluate the performance of membranes
in terms of pure water flux (PWF), HA solution flux, and rejection of HA solution. This experiment’s
procedure was carried out in one set by changing feed from DI water to HA solution followed by
membrane cleaning. It continued with replacing the feed with DI water again to obtain the data for
antifouling assessment. The detailed information on this experimental procedure has been described
in our earlier works [28].

3. Results and Discussion

3.1. Residual Dopamine or Polydopamine

The FTIR results in Figure 2 confirm that the residual dopamine presented in the membrane matrix.
The analysis shown here is only for pristine PES (P), the membrane with low dopamine concentration
and short polymerization time (P-D5-a), high dopamine concentration and short polymerization time
(P-D5-c), and high concentration and long polymerization time (P-D36-c). It is distinguished by the
catechol-amine moiety, specific to dopamine, appearing at the spectrum range of 3300–3600 cm−1.
They arise due to the stretching effect of the NH bond as well as from the hydroxyl group of alcohol [34].
Though weaker in intensity, another peak transmission is also detected in the spectra of modified
membranes, a wavenumber of 1640 cm−1 [28,32,34]. The emergence of this peak is the sign of NH
vibration from dopamine/polydopamine.
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Figure 2. The changes in chemical functional groups of PES membranes before and after modification.

3.2. Hydrophilicity

Water contact angle data in Figure 3 demonstrate that the addition of dopamine at higher
concentrations and longer dipping times improves the hydrophilicity of the resulting membranes,
as can be seen from the decrement of the water contact angle. The hydrophilic membrane has an
excellent wetting characteristic indicated by the better spreading of the water droplet on the membrane
surface and forming a low water contact angle [35]. The improved hydrophilicity of these membranes
was greatly influenced by the presence of catecholamine groups (N-H and O-H) in the PDA layer,
which helped weaken the interaction between the surface and the foulants to impose anti-fouling
properties [8,36]. Moreover, the addition of hydrophilic dopamine particles could have improved the
pore characteristics of the modified membranes, as demonstrated in our earlier report [29].

Polymers 2020, 12, x FOR PEER REVIEW 5 of 15 

 

 

Figure 2. The changes in chemical functional groups of PES membranes before and after 

modification. 

3.2. Hydrophilicity 

Water contact angle data in Figure 3 demonstrate that the addition of dopamine at higher 

concentrations and longer dipping times improves the hydrophilicity of the resulting membranes, as 

can be seen from the decrement of the water contact angle. The hydrophilic membrane has an 

excellent wetting characteristic indicated by the better spreading of the water droplet on the 

membrane surface and forming a low water contact angle [35]. The improved hydrophilicity of these 

membranes was greatly influenced by the presence of catecholamine groups (N-H and O-H) in the 

PDA layer, which helped weaken the interaction between the surface and the foulants to impose anti-

fouling properties [8,36]. Moreover, the addition of hydrophilic dopamine particles could have 

improved the pore characteristics of the modified membranes, as demonstrated in our earlier report 

[29]. 

 

Figure 3. Water contact angle of the prepared membranes. The data are presented as 

average±standard deviation from n = 10. 

Figure 3. Water contact angle of the prepared membranes. The data are presented as average ± standard
deviation from n = 10.



Polymers 2020, 12, 2051 6 of 15

3.3. Hydraulic Performance

The PWF data of the prepared membranes are shown in Figure 4. It shows that the non-modified
PES membrane (P) poses a low PWF of 15 L/m2.h because of the membrane’s non-porous and
hydrophobic nature. For P-D5-a, P-D5-b, and P-D5-c membranes, the PWF improves by threefold,
presumably attributable to the enhancement of membrane characteristics in terms of porosity.
However, if the membrane polymerized for more than 24 h, the overgrowing of the PDA film via
auto-oxidation triggered by the alkaline Tris-HCl solution leads to a decrease in PWF. Although beneficial
in terms of hydrophilicity, the PDA film blocks the membrane pores, especially those on the surface,
which adds hydraulic resistance that lowers water flux [37].
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Figure 4. PES membrane pure water flux performance before and after modification with dopamine at
various concentrations and dipping times.

Figure 5 shows that an increase in the flux of HA solution is observed in almost all modified
membranes. The influences of dopamine addition at various concentrations and dipping times to the
water flux and rejection of HA solution were monitored through the ultrafiltration test. This increase is
generally caused by an increase in membrane porosity, as detailed in our earlier report [29]. In contrast,
a very slim decrease in water flux is detected in the HA water flux of the P-D36-a membrane as the
dopamine concentration is relatively low (0.5%), resulting in almost no effect on the pore formation.
Moreover, 36 h of dipping in the Tris solution allowed the thicker PDA layer growth on the membrane,
which mostly covered the surface of the P-D36-a membrane.

The pore size of the membrane samples could not be detected by the capillary flow porometer
because, for a pressure limit of maximum 200 bar, correspond ing to minimum pore size of about
0.05 µm. By considering the HA rejection, we concluded that all of the membarnes samples were
tight UF. The conclusion was made by estimating the minimum size of the HA, which could be very
well rejected by all membrane samples (with humic acid rejection of >60%). The applied HA had a
molecular weight of 226 Da, corresponding to a minimum diameter of 0.8 nm. From a relatively small
variation of HA rejection, all membranes seem to have a similar pore size, suggesting that dopamine
concentration and polymerization time did not significantly affect the pore size.
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Figure 5. Humic acid solution water flux and rejection performances of the PES membrane without
and with dopamine modification at various concentrations and dipping times.

For HA rejection, generally, it is seen that the dopamine-blended membranes generate a permeate
with a slightly lower rejection than that of the pristine PES membrane. The pristine PES membrane
poses the highest HA rejection of 87% due to its dense structure. The decrease in HA rejection value is
attributed to the increase of surface porosity and pore size of the membrane, which is discussed later.
Allegedly, some HA particles whose size is in the nanometer scale escape through the membrane pores.
However, the polymerized P-D24 and P-D36 membranes at dopamine concentrations of 0.5%, 2%,
and 4% experience a slight increase in rejection because the membrane surface is coated by PDA film
due to polymerization that partly retained the HA particles.

3.4. Fouling Resistance

Figure 6 demonstrates that dopamine-modified membranes exhibit better antifouling properties
than the pure PES membrane in terms of total flux loss due to fouling (Rt), recoverable flux (Rr),
and non-recoverable flux (Rir). The pure PES membrane has denser pore characteristics as confirmed
by the surface SEM images and high HA rejection results. The dense surface of the membrane causes
the HA particle to easily accumulate on the membrane surface, resulting in a total flux loss (Rt) of 50.3%.
Membrane cleaning could only recover 5.3% of those flux-loss due to the strong interactions between
the hydrophobic HA particles and the surface of the PES membrane [28,32]. The modified membranes,
especially those polymerized at shorter duration, suffer higher total flux loss than those with higher
dopamine concentration and more extended dipping periods. This is because the presence of dopamine
and PDA layer increases the membrane hydrophilicity (Figure 3), which improves the membrane
cleaning effectivity as observed from the Rr and Rir data in Figure 6.



Polymers 2020, 12, 2051 8 of 15
Polymers 2020, 12, x FOR PEER REVIEW 8 of 15 

 

 

 

Figure 6. Effect of modification on membrane antifouling performance in terms of (top) Rr, Rt, Rir, 

and (bottom) the FRR. 

3.5. UV Resistance Performance 

The SEM images in Figure 7 indicate a degree of the protective effect of polymerization on the 

resistivity of the membrane upon exposure to UV-irradiation. The dopamine concentration and 

polymerization time have a positive impact on protecting the membrane from UV radiation. This can 

be observed through changes in membrane surface morphology obtained from analysis using SEM. 

To investigate the influences of modifications and their variables on the membrane resistance to UV 

irradiation, the UV irradiation test was carried out following the previously reported method [28]. 

SEM analysis was carried out on membranes P, P-D5-a, P-D5-c, and P-D36-c without UV exposure 

and after seven days of radiation to UV. 
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and (bottom) the FRR.

3.5. UV Resistance Performance

The SEM images in Figure 7 indicate a degree of the protective effect of polymerization on the
resistivity of the membrane upon exposure to UV-irradiation. The dopamine concentration and
polymerization time have a positive impact on protecting the membrane from UV radiation. This can
be observed through changes in membrane surface morphology obtained from analysis using SEM.
To investigate the influences of modifications and their variables on the membrane resistance to UV
irradiation, the UV irradiation test was carried out following the previously reported method [28].
SEM analysis was carried out on membranes P, P-D5-a, P-D5-c, and P-D36-c without UV exposure and
after seven days of radiation to UV.
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1 
 

 

Figure 7. Morphological change of original and modified PES membranes before (top row) and after
(bottom row) seven days of UV exposure.

Figure 7 shows that, after seven days of UV exposure, the pure PES membrane was severely
damaged due to radical-induced photodegradation. Almost no part of the surface retained the dense
top layer of the membrane. After modification using dopamine at low concentrations and short
polymerization times, the damage is still visibly bad but slightly better if compared to that of the
radiated pristine PES membrane. By increasing dopamine and polymerization time, damage to the
membrane surface is seen to be reduced. This is because, at high dopamine concentrations and long
polymerization times, the PDA layer formed on the membrane due to the polymerization triggered
by the Tris-HCl solution is also getting thicker. The PDA layer formed on the membrane surface
reduces the morphological damage caused by UV radiation, as reported in our previous research [28],
even though the results are not as excellent as the membrane modified with a surface coating. It is
worth noting the test was done under extreme exposure to accelerate the degradation process. In the
real application, the UV intensity and duration may be less and the damage would not be as severe
as demonstrated in Figure 7. It is worth noting that SEM images pose inherent limitations because
of the small area of the imaging. However, the findings in Figure 7 are representative of images
from homogeneous surface properties over a few samples. Nontheless, we include the mechanical
properties results which confirm the SEM findings regarding the membrane stability after treatment
(Figures 8 and 9). We believe that the prolonged duration or too-high intensity of the UV exposure led
to less demonstrative findings from the SEM image.

3.6. Effects on Mechanical Strength

The mechanical properties of the membrane were evaluated in terms of tensile strength as shown
in Figure 8. In general, there is a decrease in tensile strength in all dopamine-modified membranes,
most likely due to a more porous structure rich with macro-void as detailed elsewhere [38,39].
However, immersing the blended membrane in the alkaline solution brings back the tensile strength of
the membrane. This is attributed to the adhesive property of the PDA film, which strengthens the
membrane structure altogether [32,40].

The tensile strength measurements were taken before and after UV radiation to investigate the
effect of UV irradiation on the mechanical strength of all membranes. UV radiation was carried out for
a week where the data of tensile strength were taken on the first day (24 h of radiation), the third day
(72 h of radiation), and the seventh day (120 h of radiation). The measurement results are presented in
Figure 9.

The tensile strength is also affected by the membrane thickness and porosity. Increasing dopamine
concentration in the dope solution resulted in an increase in membrane porosity and a decrease in
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thickness, in which P, P-D0-a, P-D0-b, and P-D0-c had porosity of 2.42 ± 0.24, 8.87 ± 0.33, 10.02 ± 0.17,
and 18.63 ± 0.29%, while the thicknesses of 1.2, 0.7, 0.6, and 0.5 mm.
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Figure 9. Tensile strength of original and modified membranes before and after UV exposure: (a) pristine
PSF, (b) 0.5% dopamine loading at different polymerization times, (c) 2.0% dopamine loading at different
polymerization times, and (d) 4.0% dopamine loading at different polymerization times. The data are
presented as average±standard deviation from n = 5.
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After exposure to UV radiation from the pristine membrane and after modification, the mechanical
strength was compared with the nonradiated membranes in the form of retention. In Figure 10,
the vertical axis shows the retention of the tensile strength (%), which is the tensile strength after UV
exposure divided by tensile strength before UV exposure. Data in Figure 10 demonstrate that pristine
PES membranes experienced a significant decrease after UV radiation, losing up to 65% of the initial
tensile strength after seven days of exposure. A similar occurrence is also seen in dopamine-blended
membranes without polymerization (P-D0-a; P-D0-b; P-D0-c). On these membranes, the decrease in
tensile strength is even more significant than that of the original PES membrane, especially for the ones
with the addition of high concentrations of dopamine. This significant decrease is due to the porous
morphological influence of the membrane, which makes the membrane matrix weaker and more
easily degraded due to radiation [41]. The mechanical degradation of the membrane is caused by the
morphological damage of the membrane by free radicals from UV radiation. Through several stages,
it degrades the polymer structure of the membrane through abstraction of the H atom to the cutting of
the main polymer chain [41,42]. Significant mechanical strength is maintained by membranes after
polymerization, even for the most prolonged UV exposure (90%), demonstrating the effectiveness of
the polydopamine in providing UV resistant property on the membrane.
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3.7. Free Radical Scavenging Mechanism of Polydopamine

By adapting the schematic diagram of the stabilization mechanism using a phosphite antioxidant
reported by Voigt and Todesco [43], Figure 11 presents the proposed mechanism of UV protection
by PDA. In more detail, the mechanism of free radical scavenging by PDA is as follows: a polymer
(RH), when exposed to radiation (UV light), will form radicals (R•). These radicals then react with
O2 (existing in the environment) to generate peroxy radicals (ROO•). This peroxy radical is unstable
and subtracts hydrogen atoms from the polymer chains (RH) to form hydroperoxides (ROOH) and
more polymer radicals (R•). This is the stage where the photodegradation starts occurring and causes
the scission of polymer chains, which yield to the change in chemical membrane components and
morphological structure [44].
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Figure 11. Proposed scavenging mechanism of a UV-induced radical by PDA: (left) photodegradation
mechanism of the polymer and (right) proposed mechanism of free-radical scavenging by polydopamine.

Polydopamine consists of a long chain of catecholamine rich in hydroxyl (-OH) and amine (-NH)
groups. Both functional groups are electron-donating. Immersing the dopamine-blended membrane
into Tris-solution triggered a thin polydopamine layer on the membrane surface. The layer then protects
the polymer matrix from being photo-degraded by quenching/deactivating the UV-induced polymer
free radicals through the electron donor process. During the propagation stage of photo-degradation
(abstraction of a hydrogen atom from polymer chains by radicals to form ROOH), the radicals obtain
hydrogen by reacting with the phenolic rings from the polydopamine instead of snatching the hydrogen
from the polymer chain (RH). The formed ROOH reacts further with the scavenger groups from
polydopamine and breaks down as inactive compounds such as ROH and H2O. These scavenging
activities stop the radicals from abstracting the hydrogen from the polymer chain leading to stabilization,
which eventually restricts photodegradation of the polymer [45].

4. Conclusions

The two-step dopamine-to-polydopamine modification on the PES-based ultrafiltration
membranes has proven to increase the fouling and UV-irradiation resistance of the resulting membranes.
The treatment step, concentration of dopamine, and duration of dipping in Tris solution affect the
properties of the resulting membranes. Blending dopamine at a higher concentration improves PWF by
more than threefold that of the original PES membrane (15 vs. 50 L/m2.h). However, extended dipping
in Tris alkaline buffer solution triggers an overgrowth of the polydopamine layer on the membrane
surface that covers surface pores, leading to the decline of CWF. The presence of polydopamine
enhances the hydrophilicity due to the enrichment of hydrophilic catechol moieties, which leads to
better anti-fouling performance, as seen from the resulting FRR of 96%. Moreover, the polydopamine
film simultaneously improves the membrane resistance to UV by minimizing the occurrence of
photodegradation, as proven by the retention of tensile strength.
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