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MicroRNAs (miRNAs) are endogenously expressed small non-
coding RNAs acting at the post-transcriptional level where they
promote mRNA degradation and block protein translation.
Recent findings suggest that complex transcriptional and post-
transcriptional circuits control miRNAs. STAT3 has emerged as
an important regulator of their expression and biogenesis and,
in turn, STAT3 signaling pathways are controlled by distinct
miRNAs. We summarize the current knowledge on STAT3
mediated processing of individual miRNAs and contrariwise,
the modulation of the STAT3 pathway by miRNAs in develop-
ment and in pathophysiological conditions such as immune
processes, infection, cancer, cardiovascular disease and pulmo-
nary hypertension.

Introduction

A decade ago the discovery of a novel class of evolutionarily
conserved small (18-24 nucleotides) non-coding RNA molecules,
miRNAs, has revolutionized our view of gene regulation in almost
all biological processes.'! MiRNAs emerged as counterparts of
transcription factors acting at the post-transcriptional level where
they target mostly the 3' untranslated region (UTR) of gene
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transcripts (mRNAs), promoting their degradation or suppressing
their translation into proteins, thereby silencing genes.”

MiRNA genes are located either as individual or clustered genes
in intergenic or intronic regions. They are transcribed by RNA
polymerase II as primary transcripts, the so-called pri-miRs. These
pri-miRs are cleaved from a length of hundreds to thousands
of nucleotides to hairpin-shaped precursors, the pre-miRNAs—a
process that is mediated by a ribonuclease III called Drosha and
the double-stranded DNA binding protein DGCR8/Pasha.’

The pre-miRNAs are transported to the cytoplasm via the
nuclear export factor exportin 5 and further processed into ~22
nucleotide miRNA duplexes by the ribonuclease III Dicer and
its cofactors (PACT and TRBP). After dissociation one strand
of the RNA molecule is incorporated into the RNA induced
silencing complex (RISC).*

The RISC-linked miRNA is capable of binding to the target
mRNA leading cither to degradation or to translational repression.
The pairing specificity of the miRNA to the 3' UTR of a target
mRNA is considered to be based on the 5" proximal “seed” region
(nucleotides 2-8) and the secondary structure of the surrounding
region 4-8. Apart from the Watson-Crick base pairing, the
number and configuration of mismatches between the miRNA
and the target mRNA as well as the number of target sequences
on the mRNA determine the efficiency of transcriptional
repression.’

Moreover, the ability of a single miRNA to regulate multiple
functionally related mRNAs potentiates the strength of miRNA-
based regulation. This has been repeatedly demonstrated for the
liver-specific miR-122, which regulates numerous metabolic
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Table 1. Function of miRNAs involved in STAT3-dependent circuits in various fields of development and disease

Field miRNA Function References
Embryonic miR-93, miR-17-5p Germ layer differentiation 18
development miR-17, miR-20a, miR-106b Lung branching morphogenesis 21
miR-124a, miR-9 Neural lineage differentiation 19, 20
Immunity and miR-125b Myeloid cell proliferation 22,23
infection disease miR-17-5p, miR-20a Proliferation of myeloid derived suppressor cells 24
miR-155 Innate antiviral immunity in HBV-infection 27
let-7a Progression of hepatitis B to hepatocellular carcinoma 23
Cancer disease miR-21, miR-19a/b Involvement in multiple myeloma 34,15, 36, 37
miR-21, miR-181b Involvement in colon adenocarcinoma 38
miR-155, miR-20b Involvement in breast cancer 35
miR-9, miR-17, miR-20a Involvement in glioma 32
Cardiovascular miR-199a Sarcomere protein ubiquitination and turnover sarcomere integration 16
=BG Myocardial vascular function 16
miR-21 Regeneration through MSCs 48
Pulmonary miR-17-5p, miR-20a Fibrous matrix production 50
hypertension miR-204 Vascular remodeling 52

genes.® Notably, an inhibitor of miR-122 (miravirsen or
SPC3649) is currently tested in a phase 2A clinical trial to assess
safety and tolerability in treatment-naive patients with chronic
hepatitis C.”

Although remarkable progress has been made in our under-
standing of miRNA biogenesis and function over the past years,
the regulatory mechanisms that orchestrate the complex network
of miRNAs and the mechanisms miRNAs use to regulate gene
expression are not fully understood.® Likewise, information on
upstream regulators of miRNAs that manage their transcrip-
tional and post-transcriptional control is scarce. Genes encoding
miRNAs are transcribed by RNA polymerase II similar to most
of their target mRNAs suggesting that transcription factors such
as STAT3 fine-tune miRNA expression resulting in complex
regulatory circuits involving positive and negative feedback loops.”

STAT3 belongs to the family of STAT proteins, which are
activated in response to extracellular signaling proteins includ-
ing the interleukin (IL)-6 family [IL-5, IL-6, IL-11, leukemia
inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic
factor (CNTF) and cardiotrophin-1 (CT-1)], erythropoietin and
leptin, prolactin and angiotensin II (AnglI).'"*"> Upon activation,
i.e., phosphorylation of tyrosine and serine residues, STAT3
forms homo- or heterodimers with other STAT proteins and
translocates to the nucleus where it activates the transcription of
downstream target genes by binding to specific DNA elements
(gas-motives) in their promoter.'* In addition, and as outlined
in the present review several miRNAs are also transcriptionally
regulated by STAT3.">'¢

The goal of the present review is to highlight regulatory circuits
involving STAT3 and miRNAs in the context of development
and pathophysiological conditions related to inflammation, infec-
tion, cancer, cardiovascular disease and pulmonary hypertension
(Table 1). A better understanding of the complex regulatory
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networks between STAT3 and miRNAs may lead to novel specific

therapeutic approaches in various disease settings.
STAT3-miRNAs Circuits in Mammalian Development

Soon after the recognition of miRNAs as fundamental regulators
of gene expression, it became clear that miRNAs have important
regulatory functions during embryonic development.'” For
example, Foshay et al. provided evidence that miRNA (miR)-17
family members, miR-17-5p, miR-20a, miR-93 and miR-106a,
are differentially expressed in developing mouse embryos and
function to control differentiation of stem cells.'® Particularly,
miR-93 appears to promote the differentiation of primitive
endoderm and trophectoderm in the blastocyst. High expression
of miR-93 and miR-17-5p were also found within the mesoderm
of gastrulating embryos acting to delay or enhance differentia-
tion into the different germ layers. Notably, one major target
gene responsible for the effects of these miRNAs on cellular
differentiation was STAT3 that is known to act as an embryonic
stem (ES) cell regulator.'® Using STAT3-3"UTR-Luciferase con-
structs, a regulatory property was particularly shown for miR-93
and to a lesser extent for miR-20a but not for the other members
of the miR-17 family.

Regulatory circuits of STAT3 and miRNAs play important
roles in the neural lineage differentiation of ES cells. Neural
stem cells differentiate into the three main neural lineages:
neurons, astrocytes and oligodendrocytes.”” In the developing
central nervous system, activation of STAT3 is known to direct
the differentiation of neural stem cells toward astrocytes and to
suppress neurogenesis.”> Two putative brain-specific miRNAs,
miR-124a and miR-9, appear to be essential for this process
since they appear to modulate neuronal differentiation by down-
regulating canonical STAT3 signaling by targeting the gp130, the
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LIFR and the CNTFR. This miRNA-mediated suppression of
STAT3-mediated effects may promote differentiation of neural
stem cells toward neuronal lineage a feature that could be of
therapeutic value for potential stem cell therapy in neurodegen-
erative diseases such as Parkinson or Alzheimer disease.

The branching morphogenesis of the lung is a third example
where regulatory circuits between STAT3 and miRNA may
participate in embryonic development. Here, particularly the
miR-17 family seems essential for maintaining the homeostasis
of epithelial structures in the developing lung since miR-17,
miR-20a, and miR-106b were identified as fine-regulators of both
mitogen-activated protein kinase-14 (MAPK14) and STATS3,
which in turn regulate cadherin-1 (CDH1) expression.*' As a key
adhesion receptor CDHI1 is essential for epithelial cell identifica-
tion and grouping during development and mediates the inter-
action between extracellular matrix, cytoplasmic plaques, and
other adhesion molecules. However, detailed molecular links
between STAT3 and the observed alteration of CDHI expression
remain to be further evaluated.

In summary, regulatory circuits involving STAT3 and miRNAs
play important roles during stem cell differentiation and early
organogenesis. A better understanding of these interactions may
help to improve stem cell based regenerative therapy concepts in
the future.

STAT3-miRNAs Circuits in Differentiation
of Myeloid Cells and Innate Immunity

In the past decade, numerous miRNA-based key regulatory func-
tions in the innate and adaptive immunity have been identified
including immune cell lineage commitment, differentiation,
maturation and maintenance of immune homeostasis.

For example, in primary lineage-negative cells, miR-125b
overexpression enhances colony-formation in vitro and promotes
myelopoiesis in mouse bone marrow chimeras. In this process
miR-125b coordinated the regulation of several signaling path-
ways involving also STAT3 to direct distinct phenotypes in
myeloid cells, i.e., blocking granulocyte colony-stimulating factor
(G-CSF)-dependent differentiation of primary lineage-negative
cells and at the same time enhancing colony formation in the
presence of G-CSF indicating that miR-125b confers a pro-
liferative or survival advantage to myeloid cells.”»*> MiR-125b
overexpression reduced DNA-binding, and transcriptional activity
but not induction of tyrosine-phosphorylation and nuclear trans-
location of STAT3 suggesting that miR125b is not interfering
with canonical STAT3 activation pathways but seems to affect
one or more STAT3 cofactors.”> The activator protein 1 (AP-1)
transcription factors c-Jun and JunD were identified as novel
miR-125b targets, but only gene-specific silencing of JunD and
not c-Jun mimicked to some extend the miR-125b overexpression
phenotype with regard to myelopoiesis and STAT3 silencing.*
Thus, miR-125b, STAT3 and JunD are interconnected in a novel
circuit regulating the differentiation and survival of specific
inflammatory cell types from myeloid precursors.

Additional miRNAs, such as miR-17-5p and miR-20a, exert

also suppressive potential on so-called myeloid-derived suppressor
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cells (MDSCs) by modulating STAT3 expression.”* MDSCs are
considered as important components of the immune suppressive
network that particularly affects T cell function and are critical
factors for tumor-associated immune suppression.”” Importantly,
MDSCs transfected with miR-17-5p or miR-20a display reduced
ability to suppress antigen-specific CD4 and CD8 T cells. Similar
to miR-125b, miR-17-5p and miR-20a are directly regulating
STAT3 via seed sequence binding thereby affecting the activity
of MDSCs.** Interestingly, the expression of both miR-17-5p
and miR-20a in MDSCs was found to be lower in tumor bearing
mice than in disease-free animals, which may trigger the suppres-
sion of T cell mediated immunity under cancerous condition.

It becomes increasingly evident that many miRNAs play
important roles for the innate immune response. In the context
of viral infections, miRNAs are regulators of both viral and host
cell gene expression, and therefore, can benefit either the virus or
the host.”® Consequently, the particular interaction determines
the degree to which hosts are able to restrict viral replication
and infection and finally the viral pathogenesis and outcome.
Notably, viruses may use cellular miRNAs for their replication
machinery, and furthermore, may influence the expression of
cellular miRNAs and thereby the cellular gene expression for the
benefit of their own survival.

Su et al. reported on a protective role of miR-155 for the innate
antiviral immunity through targeting suppressor of cytokine
signaling 1 (SOCS-1), and thus, promoting Janus kinase (JAK)-
STAT signaling pathway in response to current anti-hepatitis B
virus (HBV) treatment with interferon (IFN)-o, which conse-
quently inhibits HBV replication in human hepatoma cells.”” The
contrary situation was shown in a study demonstrating how
miRNA expression in host cells is dysregulated by viral proteins.*
The authors showed that the pleiotropic HBV x protein (HBx),
which is associated with hepatocellular carcinoma (HCC), induces
an alteration of the miRNA expression pattern in hepatoma
cells. Among others, the let-7 family, in particular let-7a, was
downregulated. Further characterization of let-7a in hepatoma
cells implied that it negatively regulates cellular proliferation
through direct targeting of STAT3. Thus, HBx-mediated down-
regulation of let-7a and upregulation of STAT3 would promote
cell proliferation in HBx transfected cells and induce tumor
formation and development of HCC.

Thus, these studies demonstrate a potential miRNA-controlled
STAT3 axis in the regulation of the innate immunity. In this
regard, modulating miR-17-5p and miR-20a may lead to
immunotherapeutic approaches in the treatment of cancer
diseases. In addition, miRNA modulation of the STAT3 pathway
may have the potential to be incorporated into therapeutic
control of inflammation and infectious diseases affecting the
immunity ranging from viral infections to virus-induced cancer
diseases.

STAT3-miRNAs Circuits in Cancer Diseases

Enhanced activation of STAT3 is present in many human cancer
types and numerous tumor cell lines and is therefore considered a

molecular abnormality that supports the tumor phenotype.*®*’
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Recently, the analysis of gene expression data in glioblastoma
in combination with matched miRNA profiles, uncovered a post-
transcriptional regulation layer of surprising magnitude, compris-
ing more than 248,000 miRNA-mediated interactions. These
include about 7,000 genes, whose transcripts act as miRNA
“sponges” and 148 genes that act through alternative, non-sponge
interactions.”® Biochemical analyses in cell lines confirmed that
this network regulates established drivers of tumor initiation
and subtype implementation, including phosphatase and tensin
homolog (PTEN), platelet derived growth factor receptor A
(PDGFRA), retinoblastoma protein 1 (RB1), vascular endothelial
growth factor A (VEGFA), STAT3 and runt-related transcription
factor 1 (RUNXI), suggesting that these interactions mediate
crosstalk between canonical oncogenic pathways.

In line with this observation, it has been reported that STAT3
is constitutively activated in 60% of primary high-grade malignant
gliomas and the extent of activation correlates positively with
the glioma grade.’® Interestingly, several miRNAs such as miR-9,
miR-17 and miR-20a that assumedly target STAT3 were found to
be dysregulated.’* Tt was suggested that these miRNAs serve as
potent modulators of glioma subclass-specific gene expression
networks and may be useful for subclassification of gliomas
such as oligodendrogliomas and glioblastomas.*> This is an
important notion since these disease types have different clinical
outcomes and require distinct treatments.’?

The negative regulation of STAT3 by miR-20a via binding
to the 3'-UTR of STAT3 mRNA was also demonstrated in
pancreatic carcinoma cells, which reveal reduced expression of
miR-20a and in turn enhanced de-repressed STAT3 expression
and activation, boosting proliferation and invasion pathways
in pancreatic carcinomas.” Therefore, applying miRNA-20a is
discussed as a novel approach to treat various carcinomas as
an alternative or additional option to current cancer therapies
targeting STAT3.

MiRNAs also regulate the activity state of STAT3 in tumors.
For example, the upregulation of miR-19a/b in multiple myeloma
negatively regulates SOCS-1, which is a factor that terminates
STAT3 activation.*® Likewise, miR-155 exerts its oncogenic
effects in breast cancer, at least in part, by negatively regulating
SOCS-1. Notably, a point mutation in the miR-155 binding
site. of the SOCS-1 3'-UTR was identified in a breast tumor
that affects miR-155 mediated repression and, thus, promotes
the proliferation of breast cancer cells.”® Conclusively, by de-
suppression of STAT3 miR-19a/b and miR-155 contribute to
oncogenic processes in multiple myeloma.***

In turn, STAT3-induced miRNAs promote the oncogenic
potential of STAT3 by downregulating tumor suppressor genes.
For example, PTEN has been long known as a suppressor of
tumor growth by de-activating Ake signaling. A key feature of
many glioma samples is a loss of PTEN expression. Interestingly,
PTEN expression variability induced by miRNA-mediated
regulators was predictive for tumor cell growth rates.”> MiR-21
has been identified as a negative regulator of PTEN expression
and it has been demonstrated that STAT3 acts as a transcrip-
tion factor for miR-21 expression in various tumor cell lines
(myeloma, prostate cancer cells) in response to IL-6 and
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IFN-y.">3¢ Meanwhile, miR-21 is considered as an oncomir
with numerous anti-apoptotic features in various carcinomas.””
Interestingly, miR-21 initiates the transformation of a non-
neoplastic cell into a cancer cell by inducing a complex epigene-
tic switch.”® This mechanism involves a direct upregulation of
miR-21 and also miR-181b in an IL-6/STAT3-dependent
manner. MiR-21 and miR-181b inhibit PTEN and cylindroma-
tosis (CYLD) tumor suppressors, leading to increase nuclear factor
KB (NF«B) activity that is required to maintain the transformed
state. These STAT3-mediated regulatory circuits appear to be
crucial for the neoplastic transformation in tumor cells such as
in colon adenocarcinomas.*® The role of the STAT3-miR-21 axis
in cancerous cells was further demonstrated by Yang et al. who
suggested a STAT3 and NF«B co-regulation of miR-21 at the
level of the miR-21 promoter in response to IFN, thereby
counteracting as a key feedback regulator of IFN-induced
apoptotic mechanisms.>® Furthermore, evidence exists that the
STAT3-miR-21 circuit also plays a role in tumor metastasis
since miR-21 downregulates beside PTEN and IFN-induced
apoptosis additional tumor suppressors (programmed cell death
protein 4, PCDP4) and anti-proliferative proteins (B cell trans-
location gene 2, BTG2) thereby promoting cell proliferation,
migration and survival in metastatic tumor cells such as B16
melanoma cells.®®

Thus, STAT3 is interconnected with miRNAs at multiple
levels in complex regulatory circuits (Fig. 1) that are involved in
positive feedback loops of oncogenic transformation mechanisms,
proliferation, survival and migration of tumor cells and the
epigenetic switch that links inflammation to cancer.

STAT3-miRNAs Circuits in Cardiovascular Diseases

In recent years, miRNAs have emerged as fundamental regulators
of cardiovascular development, physiology and pathology, such
as myocardial infarction, fibrosis, hypertrophy and vascular
dysfunction. 4

This recognition has emerged from numerous studies with
genetically modified animal models, by systemic administration
of miRNA silencers, the so-called antagomirs, in small animal
models, as well as from studies on circulating extracellular
miRNAs in the serum or plasma of patients with cardiovascular
diseases.

We recently demonstrated a pathophysiological circuit in the
heart between reduced STAT3 protein levels, increased miR-
199a expression and subsequent impairment of the ubiquitin-
proteasome system (UPS) that disrupts the sarcomere structure
of cardiomyocytes and impacts on the cardiomyocyte secretome
impairing endothelial cell function.'"® We found that failure-
prone hearts of mice with a cardiomyocyte-specific deletion of
STAT3 (STAT3-KO) displayed upregulated cardiac expression
of miR-199a before the onset of heart failure. Further analysis
revealed that STAT3 protein acts as a potent suppressor of miR-
199a transcription in postnatal cardiomyocytes. In turn, upregu-
lated mir-199a expression in STAT3-KO resulted in disturbance
of the UPS because miR-199a suppressed the ubiquitin-
conjugating enzymes (Ube) Ube2i and Ube2gl. Suppression of
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Figure 1. Examples of STAT3 involvement in miRNA based regulatory mechanisms in cancer disease. Activated STAT3 acts as a transcription factor
for miR-181b and miR-21 expression in various tumor cells. In turn, miR-21 reduces expression of tumor suppressor genes such as PTEN and CYLD,
which ultimately promote tumor transformation and growth through activation of Akt and NF«B signaling. Note the positive feedback loop of NF«kB
as a co-regulator of miR-21 at the level of the miR-21 promoter in response to IFN. Other tumor suppressors regulated by miR-21 are PCDP4 and anti-
proliferative proteins like BTG2, which, when downregulated, lead to enhanced cell proliferation, migration and survival in metastatic tumor cells.

Ube2i and Ube2gl in cardiomyocytes in vivo and in vitro was
associated with marked downregulation of specific sarcomeric
proteins, ie., o- and B-myosin heavy chain, derangement of
the sarcomeric ultrastructure and an eccentric hypertrophy
phenotype of the cardiomyocytes. In addition, the miR-199a-
mediated impairment of the UPS caused an accumulation of
asymmetric dimethylarginine (ADMA) that was released by
cardiomyocytes in concentrations able to impair endothelial cell
function suggesting that the regulatory circuit between STAT3
and miR-199a impacts on cardiomyocyte and endothelial
function in the heart. The potential clinical importance of
our findings were underscored by observations in the terminal
failing human heart, where low STAT3 protein levels were
associated with increased miR-199a levels and reduced Ube2gl
expression.'®

Another study reported on a potential role of STAT3 for
cardiac stem cell therapy using a rodent model of myocardial
infarction. Here it was demonstrated that ischemic precondition-
ing would improve the survival of bone marrow-derived
mesenchymal stem cells (MSCs) prior to engraftment and
promote their paracrine activity as well as their differentiation
in a way that involves a STAT3-dependent upregulation of
miR-21.%

Thus, regulatory circuits involving STAT3 and miRNAs play
important roles in normal cardiac function by maintaining
sarcomere homeostasis and endothelial function and seem to be
important for protective and regenerative mechanisms during
pathophysiological insults such as myocardial ischemia.
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STAT3-miRNAs Circuits in Pulmonary Hypertension

Pulmonary hypertension (PH) is a severe disease with high
morbidity and mortality that results from an increased pulmonary
arterial pressure. Symptoms include shortness of breath, dizziness,
fainting, markedly decreased exercise tolerance and right ventri-
cular heart failure. Mutations in the bone morphogenetic protein
(BMP) type II receptor (BMPR2) downregulated expression of
BMPR2 in idiopathic PH suggest that dysfunctional BMP
signaling plays a crucial role in the pathophysiology of PH.*
BMPR?2 is known to be crucial for differentiation, proliferation,
and the fibrous matrix production of both endothelial and
smooth muscle cells. Brock et al. identified BMPR2 as a direct
target of miR-17-5p and miR-20a, two miRNAs in the miR-17/
92 cluster.’® Furthermore they demonstrated that IL-6 upregu-
lates the expression of the miR-17/92 cluster in human pulmo-
nary arterial endothelial cells via the gpl130-STAT3 signaling
cascade and showed that a highly conserved STAT3-binding site
is present in the promoter region of the miR-17/92 gene
(C1301f25).”° In particular, they showed that persistent activation
of STAT3 via miR-17-5p and miR-20a reduces the expression of
BMPR2 protein through conserved seed matches within the
3'-UTR of its mRNA.*® Thereby, chronic activation of IL-6-
gp130-STAT3 signaling leads to a downregulation of BMPR2,
which in turn could promote vascular remodeling in the arterial
vessels of patients with PH.”!

The pathophysiology of PH appears to include enhanced
proliferation and reduced apoptosis of pulmonary artery smooth
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muscle cells (PASMCs). STAT3 seems to promote proliferation
and survival of PASMCs by downregulating the expression of
miR-204.”> MiR-204 directly targets the expression of protein-
tyrosine phosphatase SH2 domain-containing cytoplasmic protein
(SHP2), therefore STAT3-dependent downregulation of miR-
204 subsequently leads to SHP2 upregulation that via activation
of the Src kinase and the nuclear factor of activated T cells
promotes PASMCs proliferation and resistance to apoptosis, a
feature that may promote PH progression.”

Taken together, these studies uncover novel regulatory path-
way involving STAT3 as transcriptional activator or repressor of
miRNAs that are critically involved in the etiology of PH and
indicate that targeting miRNAs should be explored as a potential
new therapeutic strategy for this disease.

Conclusion and Outlook

While at the beginning of the miRNA era the main research
focus was put on genomic alterations of miRNA expression
pattern that would affect the respective target gene or a func-
tional group of genes, recent studies have identified upstream
regulators of miRNAs, such as STAT3, and broadened our
understanding of how these upstream regulators are inter-
connected with miRNAs to regulate many physiological and
pathophysiological processes (Fig. 2). MiRNA-mediated targeting
of STAT3 as well as key steps in the STAT3 signaling pathways
illustrate new positive and negative feedback loops that can con-
trol the outcome of STAT3 mediated actions and opens up an
exciting new avenue in STAT3 research (Fig. 2).

4
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Figure 2. Scheme illustrating STAT3 mediated processing of individual miRNAs and contrariwise, the modulation of the STAT3 pathway by miRNAs at
different levels. STAT3 mediates positive and negative regulation of various miRNAs at the transcriptional level. On the other hand, this signaling
pathway is controlled by numerous miRNAs at the receptor level, by modulating its activators and suppressors and by direct regulation of STAT3 mRNA.
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role in development, in adult organ systems and in various
pathophysiologies (Table 1). Consequently, a strict tissue-
specificity for targeting the miRNA-STAT3 interaction has to
be provided since persistent modification of STAT3 in other
organs could evoke off-target effects with severe complica-
tions.”” A miRNA-based approach to modify the STAT3
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