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Obesity is nowadays a public health problem both in the industrialized world and developing countries. The different treatments
to fight against obesity are not very successful with the exception of gastric surgery. The mechanism behind the achievement of
this procedure remains unclear although the modifications in the pattern of gastrointestinal hormones production appear to be
responsible for the beneficial effect. The gastrointestinal tract has emerged in the last time as an endocrine organ in charge of
response to the different stimulus related to nutritional status by the modulation of more than 30 signals acting at central level to
modulate food intake and body weight. The production of some of these gastric derived signals has been proved to be altered in
obesity (ghrelin, CCK, and GLP-1). In fact, bariatric surgery modifies the production of both gastrointestinal and adipose tissue
peripheral signals beyond the gut microbiota composition. Through this paper the main peripheral signals altered in obesity will
be reviewed together with their modifications after bariatric surgery.

1. Introduction

Overweight and obesity are serious public health problems
in the developed and developing world. It has been estimated
that at least 3.4 million people die each year as a result of both
disorders [1]. In fact, obesity is considered as an epidemic of
the 21st century by the World Health Organization (WHO)
due to continued increase over the past decades in the preva-
lence of this disorder. In the European Union, obesity affects
10–30% of adults [2] whereas in the USA between 30 and
35% of the general population are obese [3]. Child and youth
obesity are particular concern since the National Institutes
of WHO has reported that more than 40 million children

under the age of 5 years were overweight or obese in 2012
[4]. Children with overweight typically progress to become
obese adolescents and adults [5]. According to WHO, more
than 700million adults and children will be obese in 2015 [6].

Obesity is defined as abnormal and excessive fat accu-
mulation caused by an imbalance between energy intake and
caloric expenditure. This disorder results from the increase
of high caloric food intake and reducing physical activity.
Moreover, in developing countries malnutrition and nutrient
deficiencies coexist with an industrialized profile of lifestyle,
characterized by the high energy food ingestion and low
physical activity [7, 8].
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Both overweight and obesity are associated with a very
high prevalence of comorbidities, emphasizing metabolic
syndrome, hypertension, type 2 diabetes (TD2), dyslipi-
demia, coronary heart disease, and certain cancers (colon,
endometrial, prostate, and breast). Moreover, obesity is also
associated with sleep apnea [9], psychological disorders, and
pregnancy complications [10]. It was estimated that 1 kg of
weight gain increases the diabetes risk by 4.5–9% and cardio-
vascular risk by 3.1% [11].

2. Energy Balance Regulation

Over millions of years human ancestors lived under selective
pressure characterized by hostile environment and intense
physical activity. It was postulated that to ensure survival
under these situations it was necessary to develop a thirty
genotype which enable individuals to efficiently select genes
responsible for storage fat reserves during periods of food
abundance to be used as a source of energy during periods
of food shortage [12].The body weight and appetite control is
a complex and interactive mechanism regulated by nervous,
hormonal, and metabolic pathways.

2.1. Central Regulation of Energy Balance. The regulation of
food intake and energy expenditure at the central nervous
system (CNS) involves the action of neurotransmitters and
neuromodulators. The hypothalamus, specially the hypotha-
lamic arcuate nucleus (ARC), is the central brain structure
responsible for food intake regulation. At this level, neurons
coexist expressing anorexigenic peptides such as proopiome-
lanocortin (POMC) and cocaine and amphetamine-regulated
transcript (CART), with an adjacent set of neurons coex-
pressing orexigenic peptides such as agouti-related peptides
(AgRP) and neuropeptide Y (NPY) [13]. Hypothalamic neu-
rons respond to peripheral signals (as leptin, ghrelin, glucose,
and insulin) and the main neurotransmitters by modifying
the orexigenic/anorexigenic neuropeptides production to
finally regulate food intake. In addition, recent researches in
central regulation of energy homeostasis field have reported
that hypothalamic lipid metabolism is a key mechanism reg-
ulating energy homeostasis [13]. In fact, the peripheral signals
involved in energy balance regulation (leptin, ghrelin, and
cannabinoids) modulate the main lipid metabolism enzymes
such as MAP-activated protein kinase (AMPK) and acetil-
CoA carboxylase (ACC) [14].

It has been proposed that the endocannabinoid (EC) sys-
tem is another central target for energy balance regulation. It
has been reported that cannabinoid receptor type 1 (CB1) ago-
nism ensures palatable food consumption, while the antago-
nism for CB1 induces weight loss in obesity status possibly
improving leptin sensitivity at central level [15].

2.2. Peripheral Regulation of Energy Balance. In the last time,
the classical idea of an only central regulation of energy bal-
ance has changed to a novel point of view that considers the
regulation of energy balance as the result of a complex inter-
action between brain and peripheral organs. In this sense, the
stomach-brain communication, regulated under neural and

hormonal control, allows stomach to play a role in the homeo-
static mechanism participating in body weight maintenance.
The neural stomach-brain mechanism, associated with cen-
tral functions such as appetite and reward [16], is exerted by
the autonomic nervous system (ANS) innervating the stom-
ach with a leading role of the vagus nerve [17]. The afferent
fibers of the vagus reach the dorsal brainstem and from here
to different brain centers, as the hypothalamus, to modulate
both orexigenic and anorexigenic signals in charge of regulat-
ing energy balance [16]. In addition, the enteric nervous sys-
tem comprises a set of neurons localized in gastric myenteric
and submucous plexus required for different gastrointestinal
functions as secretion [18] but also primarily involved in
responding to nutrient signalling [19].

2.2.1. Gastrointestinal Tract Derived Signals Involved in Food
Intake Regulation. The gastrointestinal tract is the largest
endocrine organ in the body and gastrointestinal-derived sig-
nals are crucial for energy balance regulation. It has described
that there exist more than thirty peptides secreted from
enteroendocrine cells of the gastrointestinal tract in response
to food intake. These peptides participate in hunger/satiety
perception by interacting with hormones involved in body
weight regulation to maintain energy homeostasis [20]. The
majority of satiation-inducing peptides mediate their effects
in CNS via vagal afferent fibers, although some exert their
effects directly reaching the hypothalamus from the circula-
tion [21].

The EC System. The EC System is not only present at central
level. The major peripheral organs involved in metabolism
regulation are targets for cannabinoid actions. In fact, the
EC system participates in lipogenesis, glucose homeostasis,
and insulin sensitivity [22]. Recently, it was showed that CB1
receptors are expressed in the stomach, in the same neuroen-
docrine cells producing ghrelin [23].

Ghrelin. Ghrelin, an endogenous ligand for the growth hor-
mone secretagogue (GHS) receptor, is expressed mainly in
the neuroendocrine cells from the gastric fundus [24, 25].
Ghrelin isolation from the stomach highlighted the emerging
role of the stomach as an endocrine organ. In addition, it is
also expressed in the entire gastrointestinal tract and other
tissues such as hypothalamus, pituitary, testis, ovary, placenta,
and heart [26]. The fact that ghrelin-circulating concentra-
tions decreased by 65% after gastrectomy, both in humans
and rodents, suggests that the stomach is the main source
of this hormone in the organism [27]. The primary function
of ghrelin is to regulate appetite acting as an orexigenic signal,
being the first gastric derived peptide with appetite stimulat-
ing proprieties [24, 28, 29]. Additional ghrelin effects include
gastric acid secretion and gastric motility [30]. Ghrelin con-
stitutes a crucial link between the stomach and brain to regu-
late energy homeostasis by acting at the NPY/AgRP pathway
in the hypothalamus [21, 28]. Nutritional status regulates
ghrelin production from the stomach and circulating levels.
Elevated plasma levels in fasting condition were described as
a consequence of an increase in ghrelin secretion from the
stomach as demonstrated by the use of a novel gastric tissue
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explants model [31]. In addition, it has been reported that the
exposure to sensory stimuli related with the food (without
true feeding)modifies gastric ghrelin secretion and its plasma
levels in the same way as real intake [31]. Therefore, relevant
factors involved in this process are the CNS sensorial stimuli
and they emphasize the relevance of brain-stomach connec-
tion in energy balance regulation.

Ghrelin-circulating levels in obesity are low and are neg-
atively correlated with body mass index (BMI), percent body
fat, and leptin levels [32]. It is thought that this correlation
is due to a physiological adaptation to long-term positive
energy balance [33].

Cholecystokinin (CCK). CCK is released into circulation from
type I endocrine cells present in the duodenum and jejunum
mucosa immediately after nutrients intake, and especially to
lipids and proteins ingestion. CCK acts as an anorexigenic
hormone as showed by its food intake inhibitory effects [34].
Once released in response to food intake, it exerts the anorex-
igenic effect through the activation of the CCK1 receptor in
the afferent vagal nerves on the gastrointestinal tract [35].
Moreover, CCK interacts with other metabolic signals such
as leptin, ghrelin, and peptide YY in order to regulate energy
balance [36].

In obese individuals a dysfunction in both basal and
stimulated by fattymeal CCKplasma levels has been reported
[37].

Glucagon-Like Peptide 1 (GLP1). GLP1 is an anorexigenic
hormone encoded by preproglucagon gene whose post-
translational processing generates different peptides products
(GLP-1, GLP-2, glucagon, glicentin, and oxyntomodulin)
depending on the site expression. GLP-1 is mainly synthe-
sized and secreted by enteroendocrine L cell located in the
duodenum and small and large intestine. It is also present in
the pancreas and hypothalamus [38, 39]. GLP-1 secretion in
the gastrointestinal tract is regulated by glucose and fatty acid
levels after food intake and vagus nerve stimulation [40, 41].
This gut hormone is considered an incretin since several
experimental studies, both in animal and human models,
have showed that the main GLP-1 action is reducing circulat-
ing glucose by stimulating insulin production and secretion
from pancreatic 𝛽-cells and inhibiting glucagon secretion
[42, 43]. This glucose-lowering agent activates its own GLP-1
receptor also in the CNS producing central effects as deceler-
ating the rate of gastric emptying and gut motility, suppress-
ing appetite, and reducing body weight [42, 44, 45]. Several
rodent studies have showed that GLP-1 or analogs of GLP-1
administration produce a dose-dependent inhibition of food
intake attributed to decrease both in meal size and in fre-
quency [46–50]. In humans, the clinical data has showed that
this peptide reduces appetite, hunger, and food consumption
and promotes satiety [51–55].

With the fact that GLP-1 acts as an inhibitor of food
intake, one would expect a decrease in circulating GLP-
1 levels in obesity status. However, conflicting results were
reported. Initially a hypersecretion was found [56], but in
other studies normal [57] or reduced GLP-1 plasma levels
were described in obese subjects [58–61]. Moreover, GLP-1

secretory responses were decreased in diabetic subjects [62,
63]. In addition, in obese diabetic patients GLP-1 levels were
negatively correlated with BMI [64].

Nesfatin-1. Nesfatin-1 is a peptide derived from the precursor
nucleobinding protein 2 (NUCB2), identified in 2006 [65]
as a satiety factor. At central level, NUCB2 is coexpressed
with appetite-regulatory peptides (such as NPY and CART)
in hypothalamic nucleus which are involved in food intake
control [66]. At peripheral level, nesfatin-1 expression was
reported in stomach, pancreas, heart, testis, and adipose
tissue [67]. In the stomach, nesfatin-1 expression was showed
in the same cells producing ghrelin [68]. Nesfatin-1 is a novel
anorexigenicmodulator of food intake and body weight by its
actions in reducing food intake, weight gain, and fat depots
[65, 67]. With respect to nesfatin-1 production, a regulatory
role for nesfatin-1 on gastric motor activity as the mediator of
its anorexigenic actions has been suggested [65, 66, 69]. The
fact that in the stomach nesfatin-1 expression takes place in
the same cells producing ghrelin at a tenfold higher level than
in the brain and that the vagus nerve is implicated in nesfatin-
1 anorexigenic effect suggests that, as with ghrelin, the main
source in the organism for nesfatin-1 is the stomach. More-
over, taking into account the opposite effects of both peptides
on food intake, adiposity, and body weight, the possibility of
an interaction between nesfatin-1 and ghrelin to regulate
energy homeostasis should be considered.

Different studies have showed that both gastric expression
of NUCB2/nesfatin-1 and circulating levels are increased in
obese subject with respect to lean individuals levels [67, 70,
71]. Moreover, plasma nesfatina-1 concentration was posi-
tively correlated with BMI [70, 71].

Gastrin. Gastrin is a gastrointestinal peptide produced and
released mainly by the G-cells in the antral and duodenal
mucosa, although its expression was also described in the
pancreas. The main biological effects of this hormone are
stimulation of acid secretion from gastric parietal cells and
stimulation of mucosal growth in the acid-secreting part of
the stomach [37, 72]. Moreover, it has been postulated that
gastrin presents an insulinotropic effect [73].

It has been reported that EC system in the digestive tract
mediates gastric acid secretion among other actions such as
gastric empting and contractility [74, 75]. The cannabinoid
agonists inhibit pentagastrin-evoked acid secretion. It has
been showed in rat’s studies that the mechanism underlying
the antisecretory effect of EC is mediated by CB1 receptors in
an agonist’s dose-dependentmanner [74, 75]. In addition, this
antisecretory effect is only effective when the CB-1 receptor
agonists are administrated peripherally [76].

2.2.2. Main Adipokines Involved in Energy Balance Regulation.
Recently, an increasing number of adipose tissue derived
signals named adipokines have shown to regulate energy
balance by communicating to the brain the organism energy
status. In the past, adipose tissue was only considered as a
lipid reservoir of the whole body. Nevertheless, this classical
vision was banished when leptin was isolated in 1999. This
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event supposes an important starting point in the study of the
adipose tissue as an endocrine organ.

Leptin. Leptin is a protein hormone produced and secreted
mainly bywhite adipose tissue (WAT) and plays an important
role in the regulation of food intake (satiety and appetite)
and energy expenditure [77].Their circulating levels correlate
positively with the fat mass. Leptin key function is regulating
appetite acting through the leptin receptors in the arcuate
nucleus of the hypothalamus.Themechanism of leptin action
involves the inhibition of orexigenic neuropeptides in parallel
with increase in anorexigenic peptides, decreasing hunger
[78].

In obese subjects, leptin-circulating levels are increased
and do not reduce the food intake [77]. In addition, exoge-
nous leptin administration in these patients does not influ-
ence neither appetite nor body weight due to central leptin
resistance existence.

Adiponectin. Adiponectin is synthesized and secreted mainly
by adipocytes into circulation. At central level, adiponectin
acts in the brain to produce an increase in energy expenditure
and weight loss [79]. One of the key roles of adiponectin is
acting as an endogenous insulin sensitizer [80] but also it
exerts anti-inflammatory and antiapoptotic actions on differ-
ent cell types [79].

Adiponectin levels are downregulated under adverse
metabolic conditions, as adverse fat distribution and adipose
tissue dysfunction typical of obesity status, resulting in
decreased adiponectin plasma levels [79]. Accordingly, adi-
ponectin-circulating levels correlated inversely with body
weight and especially with visceral fat mass [81].

Besides being considered a gastrokine, Nesfatin-1 is also
categorized as an adipokine due to being synthesized in
adipose tissue [82].

2.2.3. Gut Microbiota Role in Energy Balance Regulation. A
novel key “organ” proposed to be involved in energy home-
ostasis is the gut microbiota. This is an environmental factor
evolvingwith organism frombirth and dietary habits. Besides
participating in different intestinal functions (as defense
against pathogens and immunity among others), several
studies have reported that gut microbiota is involved in the
fat mass development and altered energy homeostasis, regu-
lating fat storage [83, 84]. In pathological conditions such as
obesity and TD2 the microbiota is able to control the host
metabolism and participate in development of low-grade
inflammation [85–87].

Obesity pathology is associated with changes in the gut
microbiota composition and diversity, which gut permeabil-
ity alters. Several researches have showed important changes
in two gut microbiota-dominant phyla: Firmicutes and Bac-
teroidetes. In obesity animalmodels an increase in Firmicutes
and decrease in Bacteroidetes were reported [88–91]. In
humans, the obesity pathology is also associatedwith changes
in principal bacterial phyla abundance. Generally, the Firmi-
cutes/Bacteroidetes ratio is increased in obese subjects [92,
93].

Recently, a new pathophysiological mechanism linking
to gut microbiota, EC system, and adipogenesis has been
reported. Gut microbiota alterations activate the gut EC
system increasing gut permeability, which produce endotox-
emia, exacerbate gut barrier disruption, and activate periph-
eral EC system, in both intestine and adipose tissue. Under
obesity pathological conditions, the endotoxemia and EC
system activation dysregulate adipogenesis [94].

3. Obesity Treatments

The scientific concern about current alarming obesity rates,
in industrialized as in developing countries, has showed that
the studies have been focused on understanding the main
physiologies mechanisms controlling energy homeostasis to
develop efficacy obesity treatments. Currently, there are three
strategies for treatment of obesity: lifestyle interventions,
pharmacotherapy, and bariatric surgery [95]; the main goal
of these strategies is weight loss. Lifestylemodifications in the
patterns of diet and increase in daily exercise can be useful in
obesity prevention; however in most cases these procedures
only achieve short weight loss [96, 97]. Pharmacological
interventions have shown limited success and currently
antiobesity drugs options are limited. However, new drugs
acting through the CNS pathways and/or peripheral adipose
tissue and gastrointestinal tract signals are under research
and clinical development [82, 98–104]. In fact, FDA has just
approved two novel drugs in September 2014 [105].

The third obesity treatment tier is bariatric surgery. Sur-
gical candidates are patients with BMI ≥ 40 kg/m2 or with a
BMI ≥ 35 kg/m2 who have associated high-risk comorbid
conditions (cardiopulmonary disease or TD2) [106].The clin-
ical benefits of bariatric surgery in achieving weight loss
and improving metabolic comorbidities have largely been
attributes to changes in the physiological responses of gas-
trointestinal hormones and adipose tissue metabolism [107,
108]. Moreover, the role of bariatric surgery in the prevention
and treatment of TD2has garnered attention, since it has been
demonstrated that it markedly reduced the incidence of TD2
developing by 78% [109, 110]. At present, the most effective
obesity treatment, in terms of weight loss, comorbidity
reduction, and enhanced survival, is bariatric surgery [21, 111].
However, owing to concerns about perioperative mortality,
surgical complications, and the frequent need for reopera-
tion, this procedure tends to be reserved for the morbidly
obese [112].

3.1. Bariatric Surgery. Weight loss surgery is divided into
the following three types: restrictive, metabolic, and restric-
tive/metabolic. The first one includes the adjustable gastric
band (AGB), which encircles the stomach cardia with an
inflatable silicone ring, and the sleeve gastrectomy (SG),
which removes most of the stomach greater curvature. Both
procedures limit the patient rate of food intake. Metabolic
procedures include duodenal-jejunal bypass (DJB) and bili-
ary-pancreatic diversion (BPD). DJB procedure consists in
duodenum separation from the stomach outlet connecting a
jejunal branch in its place. In this situation, nutrients bypass
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Figure 1: The figure represents the major organs involved in the modulation of peripheral signals (ghrelin, nesfatin-1, gastrin, leptin,
adiponectin,GLP-1, CCK, and gutmicrobiota) after Roux-en-Y gastric bypass (RYGB) surgery.The increase/decrease in the signals is designed
by arrows. CB1: cannabinoid receptor type 1; CCK: cholecystokinin; GLP-1: glucagon-like peptide 1.

the duodenum, which is exposed to undiluted bile, and
nutrients and bile mixture taking place in the jejunum. BPD
method involved amuch longer intestinal bypass thanDJB, in
which the alimentary limb is anastomosed to the ileum.
The roux-en-Y gastric bypass (RYGB) is considered as both
restrictive and metabolic weight loss surgery. In this inter-
vention the stomach is separated into a small upper pouch
which is anastomosed to a roux jejunal limb. The remnant
stomach remains attached to the biliary limb, into which the
bile drains. In this way foods have earlier contact with themid
and distal small bowel.

Each weight loss surgery has its pros and cons. BPD can
lead to severe nutrient deficiencies, making the SG or RYGB
be the procedure selected [113, 114]. It has been reported that
RYGB induces greater weight loss and resolution of diabetes
than other procedures. For example, RYGB surgery has
greater efficacy for weight loss in obese individuals than AGB
(25% weight loss versus 14%) [115]. This indicates that the
specific gut anatomical manipulations may produce different
physiological effects [116].

4. Changes after Bariatric Surgery

At present, bariatric surgery is the most effective strat-
egy to treat obesity due to the clinical benefits in weight

loss achieved and improving metabolic comorbidities [95].
Between the different procedures for bariatric surgery, the
RYGB is currently the key effective bariatric surgery proce-
dure for long-term weight loss maintenance [117, 118]; there-
fore the metabolic changes after bariatric surgery described
in this review mainly focus on this weight loss surgery
(Figure 1).

Compare with other gastric surgery procedures RYGB
surgery induces greater and sustain rapidly weight loss,
between 65 and 75% of excess body weight and fat mass [119].
Moreover, after RYGB improvement of glucose homeostasis
and dyslipidemia and decreased diabetes it has been reported
[110, 119, 120].

Taking into account the relevant role of RYGB in improv-
ing obesity and associated pathologies, an increasing number
of studies focus on the main modifications of peripheral
signals regulating energy balance after RYGB.

4.1.Hormonal ChangesAssociatedwithGastric Surgery. Stud-
ies of ghrelin-circulating levels after bariatric surgery showed
different controversial results with the surgery procedure.
With respect to RYGB strategy, studies have showed that
ghrelin levels decreased, increased, or did not change [121–
126]. These different results found on ghrelin plasma levels
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after RYGB can be explained by the variability in the time at
which blood was drawn, the operative technique used, and
the remnant gastric pouch in any case. Regarding the remain-
ing bariatric surgery procedures the ghrelin levels are vari-
ables. For example, several studies have reported an increase
or no change in ghrelin levels after AGB [127–131], a decrease
after SG procedure [124, 132, 133], and a decrease or no change
both in DJB and in BPD [133, 134].

The bibliography reported controversial data about the
modification of the pattern of secretion of CCK after gastric
surgery. In fact, the published works about this topic have
revealed great variations in the production of CCK depend-
ing on the type of procedure. The studies performed after
jejunoileal bypass surgery showed an increase in the density
of CCK mucosal enteroendocrine cells [135] both in humans
and in rats [136]. Moreover, in patients after this surgery
procedure CCK levels were increased 3 months [137] and
even 20 years [138] after surgery. The first studies with RYGB
surgery failed to find modifications in the postprandial CCK
response to an enriched protein-fat mail six months after
surgery [139]. However, more recently, changes in postpran-
dial CCK levels were reported in patients 2 weeks after
surgery [140]. All together might lead to proposing that the
increase in postprandial CCK levels might contribute to early
satiety after RYGB surgery.

Different studies have showed that circulating GLP-1
levels increase after RYGB surgery, prior to weight loss occur-
rencewhichmayparticipate in remission of diabetes [122, 130,
141–143]. In the other bariatric surgery procedures variable
responses to circulating GLP-1 levels were showed [134].

It has been demonstrated that circulating nesfatin-1 levels
decreased after RYGB surgery [144].

Several studies in animals and humans have revealed
that the changes in circulating levels of gastrin after surgery
depend on the selected procedure. It has been reported that
the levels of serum gastrin strongly increase at 6 and 36 weeks
after SG surgery in rats. However, this hypergastrinemia
found after SGwas not observed in the case of DJB procedure
[145]. Similar results were found in patients who showed high
circulating gastrin levels after SG, but no modifications were
observed after AGB [146, 147]. Regarding RYGB procedure,
fasting plasma concentrations of gastrin were unchanged
after surgery, although under postprandial conditions these
levels were decreased [140].The fact that SG surgery produces
an increase in circulating gastrin levels can be caused by
the major reduction of the oxyntic mucosa achieved by this
procedure. Accordingly, this reduction of the mucosa leads
to hypoacidity decreasing the inhibitory effect of luminal
hydrochloric acid on gastrin secretion [145, 148].

Several studies have reported a decrease in circulating
leptin levels after RYGB intervention [123, 126, 130, 149, 150].
This fact is not striking taking into account the fact that the
circulating leptin concentrations are correlated with body
fat mass percent and it has been proved that RYGB surgery
reduces adiposity. AGB procedure is the only bariatric
surgery strategy where an increase in leptin levels has been
reported [130, 151–153], although there are studies which
showed no changes or decrease in post-AGB leptin levels
[134].

The studies that have researched the adiponectin levels
after bariatric surgery have reported an increase in circulating
levels after RYGB procedure [142, 150, 154–158].

4.2. Gut Microbiota Changes. Several studies show that
gut microbial ecology changes significantly after bariatric
surgery. Recently, it has been reported that RYGB procedure
modifies the gut microbiota profiles in both rats and humans
[93, 159, 160]. Gut microbiota analysis has reported that a
decrease in the Firmicutes/Bacteroides ratio and an increase
in Proteobacteria taxonomic group are induced after RYGB
[93, 117, 160–163]. Liou and coworkers have showed that
these marked modifications in gut microbiota are due to
gastrointestinal reconfiguration caused after RYGB interven-
tion [162]. In the case of Proteobacteria group, which is a
bile-tolerant bacterium, the greater amount of free bile acids
released into the intestine after RYGB create an environment
more hospitable which is responsible for Proteobacteria
growth [134].Moreover, it has been demonstrated that RYGB-
associated gut microbiota is able to produce a decrease in
body weight and adiposity, probably reducing the ability to
harvest energy from diet or regulating lipid metabolism and
upregulating energy expenditure throughmicrobial products
[93, 162].

5. Conclusions

The main mechanism responsible for the beneficial effect of
bariatric surgery could be related to variations in the pattern
of secretion of peripheral signals, especially those derived
from the gastrointestinal tract. However, until now contro-
versial results have been published which do not allow fully
elucidating the mechanism responsible for the restoration of
body weight after bariatric surgery.
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metabolic gauge regulating whole-body energy homeostasis,”
Trends in Molecular Medicine, vol. 14, no. 12, pp. 539–549, 2008.

[15] S. J. Guyenet and M. W. Schwartz, “Regulation of food intake,
energy balance, and body fat mass: implications for the path-
ogenesis and treatment of obesity,”The Journal of Clinical Endo-
crinology and Metabolism, vol. 97, no. 3, pp. 745–755, 2012.

[16] O. Al-Massadi, A. B. Crujeiras, R. C. González et al., “Age,
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[115] L. Sjöström, M. Peltonen, P. Jacobson et al., “Bariatric surgery
and long-term cardiovascular events,” Journal of the American
Medical Association, vol. 307, no. 1, pp. 56–65, 2012.

[116] M. A. Stefater, H. E. Wilson-Pérez, A. P. Chambers, D. A.
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