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Raman-active modes of human skin and pork belly have been studied systematically by a near-
infrared Raman spectrometer with an exciting laser of 1064 nm. The main components and 
quantitative determination of pork belly are extracted by fitting the Raman spectra with the 
normalized Raman spectra of biochemical reagents such as collagen, elastin, triolein, fibronectin, 
fibrin, and hyaluronic acid. It demonstrates that the main components and quantity are various 
at different locations of pork belly, while the main components of human skin are similar to 
those of pig skin. In a further step, the evolution of the heating time-dependent Raman modes 
of isolated pig skin has been investigated for the mechanism of burnt skin. One can find that 
the spatial structure and main components of skin have an excellent thermal stability in the 
temperature range from -120 to 200 ◦C, which is confirmed by the temperature dependent 
Raman spectra of isolated pig skin, microporous acellular dermal matrix (MADM) as well as 
their corresponding biochemical reagents (collagen, elastin, triolein, etc.). These results help 
understand the mechanism of the living skin burnt by fire or hot water, and supplies an alternative 
technology for surgeons to diagnose the depth of a burn injury in time.

1. Introduction

Raman spectroscopy is an optical technique, which utilizes inelastic scattering of light to identify biological tissues [1–4]. It 
can be applied to probe the vibrations of chemical functional groups in diverse materials such as polymers [5,6], pharmaceuticals 
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[7–9], and semiconductors/insulators [10–13]. This technique provides chemical fingerprinting services for almost materials except 
the chemical information [13–15]. Besides, the frequency of exit photon (laser wavelength) is one of the important parameters. For 
polymer materials, the background fluorescence will be suppressed using the Raman spectrometer equipped with a near-infrared 
laser source [3]. Sometimes, the Raman signals detected from the surface of tissue/cells are very weak or are challenging to identify 
components. A so-called surface-enhanced Raman spectroscopy has been developed, which can realize an ultrahigh sensitivity down 
to the single-molecule level [16,17]. Moreover, a handheld Raman spectrometer with 1064 nm excitation is prominent because it can 
be used in the clinical diagnosis in the near future [18,19].

Generally, there are two stages for the case of skin burns by fire or hot water. The first stage is the moment that the living 
skin is suffering from fire/hot water, and the extrinsic factors (temperature, contact time, pressure, specific heat capacity, etc.) are 
dominant [20]. The features are that it occurs suddenly, and it is all over in a matter of a few seconds. In this stage, it is a challenge 
for a surgeon to give an accurate initial diagnosis of the depth of a burn injury accurately by the naked eye (visual assessment) 
especially the superficial partial thickness and deeper partial-thickness burns, which have distinct differences in treatment, healing 
time, prognosis and outcome [21,22]. The second one is the post-burn stage and the intrinsic factors (immune system, inflammatory 
mediators, etc.) are dominant. The determination of burn depth becomes much more reliable [23]. The injury causes inflammatory 
mediators to be released from cells within the immune system. The mediators will cause the skins blood vessels to dilate or expand, 
which will allow more blood flow to the skin surface [24]. Blisters are common in superficial second-degree burns, and the blisters 
are caused by capillaries in the dermis leaking fluid, which pushes and lifts the epidermis [25]. During an inflammatory process, 
there coexists damage and repair of tissue cells. For superficial (first degree) and superficial partial thickness, the collagen structure 
survives and the repair of damaged tissue cells is dominant. On the other hand, collagen structure has been collapsed for deep partial 
thickness and full thickness (third degree) [26]. After the inflammatory factors act on the body, it causes damage tissue cells and 
makes the local tissue cells show degeneration and necrosis, which is required excision and grafting within 3-4 weeks [27,22]. It 
should be emphasized that the initial diagnosis of burn depth is very essential and difficult for both clinicians and patients.

In this study, we try to supply a spectroscopy technique to help surgeons determine the degree of burn depth at the first stage. The 
isolated samples have been investigated in order to avoid the effects of inflammatory reaction. The main components and quantity 
are various at different locations of pork belly, while the main components of human skin are similar to those of pig skin. Moreover, 
the temperature dependent Raman spectra of isolated pig skin indicate that the spatial structure and main components of pig skin 
have an excellent thermal stability in the temperature range of -120 and 200 ◦C.

2. Experimental section

2.1. Pork belly, pig skin and components

Analytical grade ethanol (CH3CH2OH, 99.7%), acetone (CH3COCH3, 99.5%), and isopropanol (CH3CH2OHCH3, 99.5%) were 
purchased from Jiangsu YongHua Fine Chemical Reagent Co., Ltd. The biomaterials triolein (C57H104O6 Tokyo Chemical Industry, 
Shanghai), bovine collagen (Sigma-Aldrich), bovine elastin (Sigma-Aldrich), hyaluronic acid (MedChemExpress), fibronectin (Sigma-
Aldrich) and fibrin (Sigma-Aldrich) were purchased for detecting the main components of dermis tissues. A healthy pig (25 kg, 
provided by the Animal Experimental Center of Wenzhou Medical University) was killed under proper ethical protocols. We obtained 
the pork belly and prepared the microporous porcine acellular dermal matrix (MPADM), which has been reported elsewhere [28,29]. 
In brief, the 0.3 mm-thick dermis was collected once the top 0.2 mm-thick portion of the skin was excised using a motor dermatome. 
The pore matrix with the pore size (∼135 μm) and pore space (∼1.0 mm) is realized using a laser punch controlled by a computer 
system. In addition, the present burn wounds of isolated pig skin were generated using an ethanol-burn model with various burning 
times [30]. Note that the pork belly, pig skin and subcutaneous tissue used in this experiment are all isolated tissues.

2.2. Raman measurement

A Raman spectrometer is utilized to collect the Raman spectra of human/pig skin tissue with an exciting laser wavelength 
of 1064 nm. The integration times and irradiation powers are 10 s and 400 mW, respectively. It should be emphasized that an 
appropriate laser power density must be considered in clinics to avoid skin injury. The wavenumber range of spectra is 250-2000 cm−1

and the collection time for each spectrum was around 30 s. Moreover, a total of three spectra were collected from three different 
points across the surface of tissues and then averaged. Raman spectra were also collected for the pure biochemical reagents (collagen, 
triolein, elastin, fibronectin, fibrin and hyaluronic acid). The Raman spectra f(𝜈) of the epidermis/dermis/subcutaneous tissues were 
fitted by the normalized Raman spectra g𝑖(𝜈) of biochemical reagents with different weight index (a𝑖): f(𝜈)=

∑
a𝑖g𝑖(𝜈). The isolated 

pig skins were burnt by pure liquid ethanol with a gauze in 0, 5, 15, 30, and 45 s. The temperature dependent Raman spectra 
of tissues/biomaterials were carried out in a Lincam chamber from -120 to 200 ◦C protected by nitrogen. Note that background 
fluorescence in the Raman spectra was not removed and the experimental data were not mathematical smoothed.

3. Results and discussion

3.1. Raman modes of human and pig skin

Fig. 1 shows the photographs of (a) human skin from the underside of forearm, (b) pig skin and (c) subcutaneous tissue. And the 
2

corresponding Raman spectra were collected at room temperature (cf. Fig. 1d). Interestingly, the shape of spectra is similar compared 
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Fig. 1. Photographs of (a) human skin, (b) pig skin and (c) subcutaneous tissue, and (d) the corresponding Raman spectra measured at room temperature. Inset: the 
utilized Raman spectrometer. Note that the five main Raman peaks (P1-P5) are labeled.

Fig. 2. (a) Raman spectra of pork belly with different layers and cross section of bone labelled from 1 to 7. (b) Raman spectra of the bone surface and nearby 
periosteum. Note that each spectrum is shifted in intensity for clarity.

to human and pig skin/subcutaneous tissue. There are five main Raman peaks (P1-P5) nearby 860, 940, 1270, 1460, and 1665 cm−1, 
which are labeled by arrows. In addition, the spectra were fitted by multiple Lorentz functions. It was found that the peak positions 
and broadening are almost the same. Moreover, the intensity of Raman modes of pig skin is much larger than that of human skin. 
In this case, we will investigate the Raman spectra of pig dermis tissue instead of those of human skin. It indicates that the laser 
1064 nm can detect the change information about dermis injury through the epidermis. Extracted the content changing trends of 
biochemicals in different degrees of burns by fitting the Raman spectra of burns of pig tissues. We will try to establish a relationship 
between normal/burnt skin and the concentration of tissue biochemicals in the following sections.

3.2. Raman-active modes of park belly

In Fig. 2a, the Raman spectra of park belly with different cells/tissues were recorded at room temperature. For the case of dermis 
tissue (# 1), there are double peaks nearby 850 and 950 cm−1. The width at half-maximum of the Raman peaks is broad compared to 
3

the other Raman spectra of tissues such as fat and muscle. Moreover, the Raman-active modes from the subcutaneous tissues (#2-5) 
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Fig. 3. Raman spectra of the pure biochemicals: (a) elastin, (b) collagen, (c) triolein, (d) fibronection, (e) fibrin, and (f) hyaluronic acid.

are sharp and have a similar feature, which means they have almost the same biochemicals. On the other hand, the Raman spectrum 
(# 6) comes from the muscle tissue. The intensity becomes weak and the width at half-maximum increases compared to those of 
fat cells. Obviously, there is an additional Raman peak at around 960 cm−1 in the spectrum of cross section of bone (# 7), which 
is attributed to the PO3−

4 symmetric stretches in Ca10(PO4)6(OH)2 (calcium hydroxyapatite) [31]. Besides, we measured the Raman 
scattering of the bone surface and nearby periosteum, as shown in Fig. 2b. It reveals that the peak nearby 960 cm−1 is very sharp 
because the density of bone cell is high. In addition, the components of periosteum are similar to those of dermis because the Raman 
peak positions have almost the same feature. However, the difference of peak intensities and shape reveal that the concentration of 
biochemicals is different.

In order to assess the main components in the skins of human and pork belly. We have investigated the pure biochemicals (elastin, 
collagen, triolein, fibronectin, fibrin, and hyaluronic acid) in detail by using Raman spectra measured at room temperature (Fig. 3). 
The molecular vibrations of elastin and the peak positions of main Raman modes are labeled in Fig. 3a. The bands at 855 and 930 
cm−1 can be attributed to the C-C stretching vibrations of proline. And the peak at 1004 cm−1 can be assigned to phenylalanine. The 
1104 and 1336 cm−1 bands are attributed to isodesmosine/desmosine, which is specific for Elastin [31]. The intense peak located at 
1450 cm−1 is assigned to the CH2/CH3 bending modes of proteins [32]. Generally, the band nearby 1260 cm−1 comes from the amide 
III (C-H stretching vibration, 𝛼-helix) [33]. The band at around 1665 cm−1 is attributed to the amide I (C=O stretching vibrations) 
of structural proteins with the secondary structure of 𝛽-sheet [34,35]. Note that the ratio of the Raman intensity of the amide III 
and amide I suggests the evolution of the damage/repair process [36]. Fig. 3b depicts the Raman scattering of another essential 
protein (collagen). The unique feature of collagen is the Raman modes appeared at 800 and 940 cm−1, which may originate from 
the hydroxyproline/proline [13]. In addition, there are some other bands related to the amide I/III, C-C or C-H bending vibrations 
and so on. For the case of triolein, there are dominated by C-C stretching, =CH, -(CH2)𝑛- and -CH3 deformations bands (1075, 1265, 
1300, and 1440 cm−1), an unsaturated C=C stretching band (1655 cm−1), and an ester band (C=O stretching vibrations, 1750 cm−1) 
[37]. In Fig. 3d, the Raman bands of fibronection nearby 1090 and 1640 cm−1 can be attributed to the C-N stretching and amide I 
(𝛽-sheet), respectively. Note that the background fluorescence of this kind of protein is more energetic, and the frequency of amide 
I has a shift towards lower wave numbers. Also the Raman spectra of the pure fibrin and hyaluronic acid are shown in Figs. 3e and 
3f, respectively.

In order to ascertain the components of the pork belly at different positions. All the Raman spectra of pork belly (dots) were 
fitted with the basis Raman spectra of pure biochemicals (solid lines) using nonnegative least-squares minimization fit (cf. Fig. 4). 
It suggests that the Raman spectrum of each morphologic structure (#1-7) is well described using the biochemical basis spectra. 
For each morphologic structure, the contribution of each biochemical component was obtained (Table 1). Note that all the Raman 
spectra are normalized before fitting. Generally, each cell/tissue is composed largely of one or two major biochemical components, 
combined with some less abundant biochemicals. The weighting factor of collagen (0.175) in dermis (# 1) is dominant than other 
tissues (# 2-7). Obviously, triolein is dominant in fat cells/tissue. Moreover, the muscle cells/tissue include triolein, fibronection, 
4

elastin, fibrin, etc. While, the bone contains fibrin and triolein besides the main component of calcium hydroxyapatite. It is reported 
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Fig. 4. Experimental data of tissue and fitted curves based on the pure biochemicals: (a) dermis tissue (#1), (b) fat tissue (#2), (c) mixture of fat and muscle (#3) and 
(d) muscle tissue (#6).

Table 1

The component of pork belly at different locale positions from epidermis 
to bone labelled from 1 to 7 in Fig. 2. (fibronection: fibro., hyaluronic 
acid: HA.)

triolein elastin collagen fibro. fibrin HA

#1 0.264 0.689 0.175 0.045 — —
#2 0.943 — — — — —
#3 0.742 0.075 0.025 0.156 0.191 —
#4 0.929 — — — 0.007 0.004
#5 0.861 — 0.025 — 0.032 0.036
#6 0.453 0.258 — 0.304 0.126 0.006
#7 0.271 0.043 0.008 0.073 0.137 —

that the water content of the skin is about 25 mass% [9]. Unfortunately, the percentage of proteins, fat, and amine acid are not 
reported in the literatures.

3.3. Raman-active modes of pork belly burnt by ethanol

The evolution of Raman modes of isolated pig skin burnt in air for different times (0, 5, 15, 30, and 45 s) has been investigated, 
as shown in Fig. 5a. The main first-order Raman active modes are labeled from P1 to P5. The shape of curves and peak positions of 
main Raman-active modes are almost the same. It indicates that the biochemical structure of the skin does not be destroyed by the 
heat. To a certain degree, the isolated pig skin has an excellent thermal stability. Noted that the intensity of Raman modes for burnt 
skin increases compared to the original one. For the Raman mode (P1) nearby 881 cm−1, the intensity increases with increasing the 
burnt time. While other four modes (P2-P5) have a maximum for the case of 30 s (cf. Fig. 5b). The phenomenon can be attributed to 
the density increasement of the tissue due to the absorption of heat. The contact time (30 s) is a critical index for the determination 
of accurate initial diagnosis in time.

In a further step, temperature dependences of the isolated pig skin, microporous acellular dermal matrix, as well as their main 
biomaterials (i.e., collagen and elastin) have been studied in the temperature range from -120 to 200 ◦C in a Linkam chamber 
protected by nitrogen, as shown in Fig. 6. As the temperature increases, the Raman intensity of an isolated pig skin increases till 
about 20 ◦C and then decreases (cf. Fig. 6b). The shape and peak positions do not change a lot, which means the tissue/molecular 
structure does not have a noticeable change. For the case of microporous porcine acellular dermal matrix, the Raman intensity 
decreases first and then increases due to the background fluorescence. The intensity and positions do not change obviously, as shown 
in Fig. 6d. It is interesting that the intensities of Raman modes for pig skin are the strongest at around room temperature. On the 
contrast, the intensities of those for microporous porcine acellular dermal matrix are the weakest at around room temperature. 
Besides, we investigate the thermal stability of the main biomaterials such as collagen and elastin, as illustrated by Figs. 6e and 6f, 
respectively. For the elastin, the intensity has a slight increasement especially for the modes located at 800-1100 cm−1, which are 
related to the C-C vibrations. In the temperature range of -120 to 200 ◦C, the isolated pig skin and microporous porcine acellular 
5

dermal matrix as well as their main components exhibit an excellent thermal stability.
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Fig. 5. (a) Raman spectra of the pig skin burnt in air by ethanol with different time of 0 – 45 s. The five main Raman peaks (P1-P5) are labeled. (b) The corresponding 
intensity of Raman modes labelled by Pi (i = 1, 2, 3, 4, and 5) as a function of burnt time.

Fig. 6. Temperature dependent Raman spectra of (a, b) the isolated pig skin, (c, d) microporous acellular dermal matrix (MADM), (e) collagen, and (f) elastin powder 
at various temperatures from -120 to 200 ◦C upon heating.

4. Conclusions

In summary, the Raman active modes of isolated pig skin are investigated instead of human skin since the shape of the Raman 
6

spectra of human and pig skin are similar. The frequency, intensity and broadening of the first-order Raman-active modes are various 
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due to the different tissues of pork belly. By fitting the Raman spectra with the normalized Raman spectra of biochemical reagents, 
the main components and the corresponding contents of different cell/tissue are identified. To a certain degree, the frequency of 
the Raman modes does not change obviously with increasing the heating time and temperature. It means that the isolated pig 
skin, microporous porcine acellular dermal matrix as well as their main components exhibit an excellent thermal stability in the 
temperature range of -120 to 200 ◦C. That is the reason why surgeons have to confirm the determination of the initial diagnosis 
24 h later. Therefore, Raman spectroscopy can help surgeons/clinicians to have a more accurate initial diagnosis in time, which is a 
much more important part for the following right treatments of burn injuries. Moreover, it also can help us to probe the evolution of 
chronic wound based on the change trends of components inside.
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