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This paper deals with the problem of optimal control for the transmission dynamics of tuberculosis (TB). A TB model that
considers the existence of a new class (mainly in the African context) is considered: the lost to follow up individuals. Based on
the model formulated and studied in the work of Plaire Tchinda Mouofo, (2009), the TB control is formulated and solved as
an optimal control theory problem using the Pontryagin’s maximum principle (Pontryagin et al., 1992). This control strategy
indicates how the control of the lost to follow up class can considerably influence the basic reproduction ratio so as to reduce the
number of lost to follow up. Numerical results show the performance of the optimization strategy.

1. Introduction

Cameroon has a high rate of tuberculosis endemic. It is
estimated that in absence of effective epidemiology statistics,
there are 100 new Cases for 100 000 habitants per year
[1]. Like in many sub-Saharian African countries, the fight
against tuberculosis (TB) in Cameroon is difficult due to
the interaction with the Human Immunodeficiency Virus
(HIV) [2] and particularly with the poor social-economic
conditions.

In the literature, there are many TB mathematic models
[3–5]. The study of those models has an impact in the
control process of the disease. Most of those models are
SEIR-models; for those models, one supposes that the
population is subdivided in four epidemiological classes:
Susceptible individuals, latently infected individuals (those
who are infected but not yet infectious), infectious, and the
recovered or cured individuals. The particularity of those
type of models is that, the rate at which susceptible indi-
viduals become latently infected or infectious is a function
of infectious individuals number in a population at that
time.

In this paper, we study a TB model adapted in the
African context in general, particularly for Cameroon. In
this model, we take in account the susceptible low and
fast progression to latently infected and infectious classes,
respectively. We also take into account infectious individuals

on chemoprophylaxis, and we introduce a constant rate to
become a cured individual.

We note that, the statistic studies [6] prove that many
infectious patients do not take their treatment until the
end due to a brief relief or a long time for complete
treatment. Otherwise, some of those individuals can transmit
the disease without presenting any symptom. In this work,
we call them lost to follow up individuals (those who have
active TB but are not in a care center) [7]. In Cameroon, for
example, for a national program of fight against TB, there
is about 10% of infectious individuals who do not end their
treatment and become lost to follow up individuals. The class
of lost to follow up individuals has already been considered
by some authors [5, 7]. Previous [5, 7] works clearly show
that the progression toward the lost to follow up class has
a negative effect on the host population. For that, lost to
follow up individuals are very dangerous for human health
because they are able to transmit the disease very quickly and
discreetly. For our knowledge, the previous authors did not
address the question of controlling the evolution to the lost
to follow up class. In this paper, we address the question to
do so. Our control policy based on decreasing the number of
people going to the class of lost to follow up individuals. We
first formulate a mathematical model taking into account our
control functions. Then, we perfect a mathematical analysis
of the model where we compute the basic reproduction ratio
of the controlled system. We then define a cost function so
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that we could deduce the optimal control function. A huge
part of this work is to compute the solutions numerically and
then draw a conclusion about the efficiency of the control.

2. The Model

We present a tuberculosis model that incorporates the
essential biological and epidemiological features of the
disease such as exogenous reinfection and chemoprophylaxis
of latently infected individuals.

We consider a population of N people. We assume that
latently infected individuals (inactive TB) have a variable
(typically long) latency period. At any given time, an
individual is in one of the following four states: susceptible,
latently infected (i.e., exposed to TB but are not infectious),
infectious (i.e., has active TB but is in a care center), and lost
to follow up (i.e., has active TB but is not in a care center).
We will denote these states by S, E, I , and L, respectively.
Any recruitment is into the susceptible class and occurs at
a constant rate Λ. The transmission of tuberculosis occurs
following an adequate contact between a susceptible and
infectious or lost to follow up. We assume that a fraction δ
of the lost to follow up are still infectious and can transmit
the disease to susceptible individuals (some of them could
die or recover). On an adequate contact with infectious or
lost to follow up, a susceptible individual becomes infected
but not yet infectious. This individual remains in the latently
infected class for some latent period. We use the standard
mass balance incidence expressions βSI and βδSL to indicate
successful transmission of TB due to nonlinear contact
dynamics in the population by infectious and lost to follow
up, respectively. The fractions p1 and p3 of the newly infected
individuals are assumed to undergo fast progression directly
to the infectious and lost to follow up classes, respectively.
The remainders p2 = 1 − p1 − p3 are latently infected and
enter the latent class. After receiving an effective therapy,
individuals leave the infectious class I to the latently infected
class E at a rate r2. We assume that chemoprophylaxis of
latently infected individuals reduces their reactivation at a
constant rate r2. We also assume that individuals leave the
lost to follow up class L to the latently infected class E with
a constant rate γ2. This can be due to the response of the
immune system or traditional treatment (via a traditional
practitioner). Another assumption is that among the fraction
1 − r2 of infectious who did not recover, some of them who
had begun their treatment would not return to the hospital
for the examination of sputum at a constant rate φ and
enter the class of lost to follow up L. After some times,
some of them will continue to suffer from the disease and
will return to the hospital at a constant rate γ1. We assume
that the chemoprophylaxis of latently infected individuals E
reduces their reactivation at rate r1. Thus, a fraction (1 −
r1)E of infected individuals who do not receive effective
chemoprophylaxis become infectious and lost to follow up
with a constant rate K1 and k2, respectively (low progression
of the disease). The constant rate for non-disease-related
death is μ, thus 1/μ is the average lifetime. Infectious and lost
to follow up have additional death rates due to TB-induced
mortality with constant rates d1 and d2, respectively.

Thus, the corresponding transfer diagram is [7] illus-
trated in Figure 1.

We have N = S+E + I + L individuals. And the not listed
parameter in the previous paragraph is as follows.

β: Transmission Rate. The above scheme leads to the follow-
ing differential system:

Ṡ = Λ− μS− β(I + δL)S,

Ė = βp2(I + δL)S + γ2L + r2I −
[
μ + (k1 + k2)(1− r1)

]
E,

İ = βp1(I + δL)S + k1(1− r1)E + γ1L

−[r2 + μ + d1 + Φ(1− r2)
]
I ,

L̇ = βp3(I + δL)S + k2(1− r1)E + Φ(1− r2)I

−(γ1 + γ2 + μ + d2
)
L.

(1)

2.1. The Control and Its Policy. The aim of the control
is to decrease the total number of the lost sight patients
during a period of time t f . The strategy of control we adopt
consists of introducing two control parameters u1(t) and
u2(t) representing the following.

u1: The effort made to take systematically the infectious
patients in a health center in charge.

u2: The effort made to take systematically the latently
infected people declared infectious in charge.

Having introduced the functions ui(t); i = 1, 2, we obtain
the following compartmental model.

Figure 2 leads us to the following differential system:

Ṡ = Λ− μS− β(I + δL)S,

Ė = βp2(I + δL)S + γ2L + r2I

−[μ + (k1 + k2(1− u2(t)))(1− r1)
]
E,

İ = βp1(I + δL)S + k1(1− r1) + γ1L

−[r2 + μ + d1 + Φ(1− u1(t))(1− r2)
]
I ,

L̇ = βp3(I + δL)S + k2(1− u2(t))(1− r1)E

+Φ(1− u1(t))(1− r2)I − (γ1 + γ2 + μ + d2
)
L.

(2)

With initial conditions (S(0);E(0); I(0);L(0)) ∈ R4
+.

We set
[
Ṡ; Ė; İ ; L̇

]

:= [
g1(S,E, I ,L); g2(S,E, I ,L); g3(S,E, I ,L); g4(S,E, I ,L)

]
,

(3)

where the functions g1, g2, g3, and g4 are defined by the
right-hand side of the system (2).

Remark 1. The functions ui(t); i = 1, 2 are assumed to
be integrable in the sense of Lebesgue, bounded with (0 ≤
ui(t) ≤ 1). When the functions of control are near to 1, the
control is very strict.
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3. Mathematical Analysis of
the Model with Control

System (2) can be written in the following compact form:

Ṡ = ϕ(S)− S
〈
η,Y

〉
,

Ẏ = S
〈
η,Y

〉
B + A(t)Y ,

(4)

where S is a state representing the compartment of suscepti-
ble individuals and Y = (E, I ,L)T is the vector representing
the state compartment of different infected individuals
(latently infected individuals, infectious, lost to follow up
individuals). ϕ(S) = Λ − μS is a function that depends on
S ∈ R+, η = (0,β,βδ)T , B = (p2, p1, 1 − p1 − p2), 〈, 〉 is
the usual scalar product in R3, and A is a Metzler [8] 3 × 3
nonconstant matrix defined as

A(t) =

⎡

⎢
⎢
⎢
⎣

−a11(t) r2 γ2

k1(1− r1) −a22(t) γ1

a31(t) a32(t) −a33(t)

⎤

⎥
⎥
⎥
⎦

(5)

with

a11(t) = μ + (k1 + k2 − k2u2(t))(1− r1),

a22(t) = r2 + μ + d1 + φ(1− u1(t))(1− r2),

a31(t) = (k2 − k2u2(t))(1− r1),

a32(t) = φ(1− u1(t))(1− r2),

a33(t) = γ1 + γ2 + μ + d2.

(6)

Remark 2. The dynamic of the susceptibles is asymptotically
stable. In other words, for the system

Ṡ = ϕ(S), (7)

there exists a unique equilibrium S0 = Λ/μ such that

ϕ(S) > 0 for 0 < S < S0,

ϕ(S) < 0 for S0 < S.
(8)

3.1. Positive Invariance of the Nonnegative Orthant. We have
the following result.

Proposition 3. The nonnegative orthant R4
+ is positively

invariant for the system (4).

Proof. The system (4) can be written as

Ṡ = ϕ(S)− S
〈
η,Y

〉
,

Ẏ =
(
SBηT + A(t)

)
Y.

(9)

The fist equation of system (9) implies that

KS(t) = KS0e
−K(t−t0) + Λ

(
1− e−K(t−t0)

)
(10)

for t ≥ t0.
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φ(1− r2

r2
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k2(1− r1)

k1(1− r1)

Figure 1: Flow diagram of the model without control.
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Figure 2: Flow diagram of the model with control.

With K = μ + β(I + δL). For I ≥ 0, L ≥ 0, and S0 ≥ 0,
it comes that S(t) ≥ 0 for all t ≥ t0. As a consequence, R+

is invariant for the system Ṡ = ϕ(S) − S〈η,Y〉. For S ≥ 0,
the matrix (SBηT + A(t)) is a Metzler matrix. Since it is
well known that linear Metzler matrices let invariant the
nonnegative orthant, this proves the positive invariance of
the nonnegative orthant R4

+ for the system (4).

3.2. Boundedness of Trajectories. Adding all equations of
model (2), one has

Ṅ(t) = Λ− μ(S + E + I + L)− d1I − d2L. (11)

Thus, one can deduce that

Ṅ(t) ≤ Λ− μN(t). (12)

After integration, using the constant variation formula, we
have

N(t) ≤ Λ

μ
+ e−μtN(0). (13)

It then follows that

lim
t→+∞N(t) ≤ S0. (14)

It is straightforward to prove that for ε > 0 the simplex

Ωε =
{

(S,E, I ,L) ∈ R4
+; N(t) ≤ Λ

μ
+ ε

}

(15)

is a compact invariant set for the system (2) and that for ε > 0
this set is absorbing. So, we limit our study to this simplex.
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3.3. Basic Reproduction Ratio. Basic reproduction ratio is the
average number of secondary cases produced by a single
infective individual which is introduced into an entirely
susceptible population.

We are going to compute the basic reproduction ratio
of the system with control, and then deduce the basic
reproduction ratio of the system without control.

Proposition 4. The basic reproduction ratio R0(u) of system
(2), with control u = (u1,u2), is given by

R0(u) = βS0

R0,3(u)

(
R0,1(u) + δR0,2(u)

)
, (16)

where

R0,1(u) = p2k1(1− r1)
(
γ2 + μ + d2

)
+ p1γ2

× [μ + k1(1− r1)
]

+ p2γ1

× (μ + k1 + k2 − k2u2(t)
)
(1− r1)

+ p1
(
γ1 + μ + d2

)

× [μ + (k1 + k2 − k2u2(t))(1− r1)
]

+ p3γ2k1(1− r1) + p3γ1

× [μ + (k1 + k2 − k2u2(t))(1− r1)
]
,

R0,2(u) = p3
[
r2μ +

(
μ + d1

)[
μ + k1(1− r1)

]]

+ Φ(1− u1(t))(1− r2)

× (k1 + k2 − k2u2(t))(1− r1)

+ μΦ(1− u1(t))(1− r2)
(
p1 + p2

)

+ k2(1− u2(t))(1− r1)

× [r2 +
(
μ + d1

)(
p3 + p2

)]
,

R0,3(u) = (
μ + d2

)[
μ + d1 + Φ(1− u1(t))(1− r2)

]

× [μ + (k1 + k2 − k2u2(t))(1− r1)
]

+ γ2μ
[
r2 + μ + d1 + Φ(1− u1(t))(1− r2)

]

+ r2
(
μ + d2

)[
μ + k2(1− u2(t))(1− r1)

]

+ γ1
(
μ + d1

)[
μ + (k1 + k2 − k2u2(t))(1− r1)

]

+ γ2k1(1− r1)
(
μ + d1

)
+ γ1r2μ.

(17)

Proof. The system (2) has an evident equilibrium (S0, 0, 0, 0),
where there is no disease. This equilibrium is the disease-
free equilibrium (DFE). We calculate the basic reproduction
ratio, R0(u), using the Van Den Driesseche and Watmough
next generation approach [9] and the techniques reported in
[10, 11]. In order to compute the basic reproduction ratio,
it is important to distinguish new infections from all other
class transitions in the population. The infected classes are I ,
E, and L. We can write system (2) as

ẋ = F (x)−V(x), (18)

where x = (E, I ,L, S), F is the rate of new infections in
each class, V+ is the rate of transfer into each class by all
other means, and V−(x) is the rate transfer out of each class.
Hence,

F (x) = (
βp2(I + δL)S,βp1(I + δL)S,βp3(I + δL)S, 0

)T ,

V(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11E − r2I − γ2L

a22I − k1(1− r1)E − γ1L

a33L− φ(1− r2)(1− u1)I − a31E

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(19)

The Jacobian matrices of F and V at the disease-free
equilibrium DFE can be partitioned as

DF (DFE) =
⎡

⎣
F 0

0 0

⎤

⎦, DV(DFE) =
⎡

⎣
V 0

0 0

⎤

⎦, (20)

where F and V correspond to the derivatives of DF and DV
with respect to the infected classes:

F =

⎛

⎜
⎜
⎝

0 βp2S0 δβp2S0

0 βp1S0 δβp1S0

0 βp3S0 δβp3S0

⎞

⎟
⎟
⎠,

V =

⎛

⎜
⎜
⎝

a11 −r2 −γ2

−k1(1− r1) a22 −γ1

−a31 −a32 a33

⎞

⎟
⎟
⎠.

(21)

The basic reproduction ratio is defined, following Van den
Driessche and Watmough [9], as the spectral radius of the
next generation matrix, FV−1.

From R0(u), we deduce R0(0) (basic reproduction ratio
of the system without control) by taking u ≡ (0, 0). We are
going to compare R0(u) and R0(0).

Note. We have

R0,1(u) = R0,1(0)− ω1(u),

R0,2(u) = R0,2(0)− ω2(u),

R0,3(u) = R0,3(0)− ω3(u),

(22)

where ω1, ω2, and ω3 are nonnegative functions defined by

ω1(u) = (1− r1)
[
γ1 + p1

(
μ + d2

)]
k2u2,

ω2(u) = φ(1− r2)[k2u2 + u1(k1 + k2 − k2u2)]

× (1− r1) + φμ(1− r2)
(
p1 + p2

)
u1

+ k2(1− r1)
[
r2 +

(
μ + d1

)(
p3 + p2

)]
u2,
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ω3(u) = (
μ + d2

)
φ(1− r2)

× [k2u2(1− r1) + u1
[
μ + (k1 + k2 − k2u2)(1− r1)

]]

+ k2(1− r1)u2
[
γ1
(
μ + d1

)
+ r2

(
μ + d2

)]

+ γ2μφ(1− r2)u1.

(23)

Remark 5. Note that

R0(u)− R0(0) = ω3(u)
R0,3(u)

[
R0(0)− ω1(u) + δω2(u)

ω3(u)

]
.

(24)

We can remark that in some conditions, depending only on
system parameters, we can have

R0(u) ≤ R0(0). (25)

Remark 6. Let us examine sensitivity of the basic reproduc-
tion ratio without control R0(0) with respect to β. It is easy
to prove that

∂R0(0)
∂β

= S0

R0,3(0)

(
R0,1(0) + δR0,2(0)

)
> 0. (26)

Thus, R0(0) increases with β.

3.4. Equilibria. The equilibrium (S,Y) on system (2) can be
obtained by setting the right-hand side of all the equations in
model (4) equal to zero, that is,

ϕ(S)− S
〈
η,Y

〉 = 0,

S
〈
η,Y

〉
B + A(t)Y = 0.

(27)

From the second equation of (27), one has Y =
S(−A−1(t))〈η,Y〉B. And replacing in 〈η,Y〉 yields

〈
η,Y

〉 = S
〈
η,
(−A−1(t)

)
B
〉〈
η,Y

〉
. (28)

The case 〈η,Y〉 = 0 implies ϕ(S) = 0 and A(t)Y = 0. Since
A is nonsingular, this gives the disease-free equilibrium P0 =
(S0, 0, 0, 0).

The case 〈η,Y〉 /= 0 implies S∗ = S0/R0(u). From (28), we
have Y∗ = (E∗, I∗,L∗)T = (−A−1(t))Bϕ(S∗).

After calculations, we obtained that, with R0(u) > 1,
the model (4) has a unique endemic equilibrium P∗(u) =
(S∗(u),E∗(u), I∗(u),L∗(u)) given by

S∗(u) = S0

R0(u)
,

E∗(u) = Q1(u)Λ
R3

0(u)

(
1− 1

R0(u)

)
,

I∗(u) = Q2(u)Λ
R3

0(u)

(
1− 1

R0(u)

)
,

L∗(u) = Q3(u)Λ
R3

0(u)

(
1− 1

R0(u)

)
,

(29)

where

Q1(u) = p1r2
(
γ1 + γ2 + μ + d2

)
+
(
r2 + μ + d1

)(
p2γ1 + p3γ3

)

+ p3r2γ1 + γ2φ(1− u1(t))(1− r2)
(
p1 + p3

)

+ p2
(
γ2 + μ + d2

)[
r2 + μ + d1 + φ(1− r2)

]
,

Q2(u) = p2k1(1− r1)
(
γ2 + μ + d2

)
+ p1γ2

[
μ + k1(1− r1)

]

+ p2γ1(k1 + k2 − k2u2(t))(1− r1) + p3γ2k1(1− r1)

+ p1
(
γ1 + μ + d2

)[
μ + (k1 + k2 − k2u2)(1− r1)

]

+ p3γ1
[
μ + (k1 + k2 − k2u2(t))(1− r1)

]
,

Q3(u) = p3
[
r2μ +

(
μ + d1

)(
μ + k1(1− r1)

)]
+ φ(1− u1(t))

× [(k1 + k2 − k2u2(t))(1− r1)]

+ φ(1− u1(t))μ
(
p1 + p3

)
+ k2(1− u2(t))

× (1− r1)
[
r2 +

(
μ + d1

)(
p2 + p3

)]
.

(30)

Lemma 7. When R0(u) > 1, model (2) has a unique endemic
equilibrium defined as in (29).

Remark 8. It is showed in [7] that

(i) if R0(0) ≤ 1, the disease-free equilibrium P0 is
globally asymptotically stable on the nonnegative
orthant R+

4 . This means that, the disease naturally
dies out in the host population;

(ii) If R0(0) > 1, then the positive endemic equilibrium
state P∗(0) of model (2) is globally asymptotically
stable on the set Ωε when

(α4 + δα2)γ1Q3(0) = (α3 + δα1)Q2(0)p3βS
∗(0),

(
μ + (k1 + k2)(1− r1)

)
k2(1− r1)Q1(0)

=
[
k1(1− r1)

α4 + δα2

α3 + δα1
+ k2(1− r1)

]
Q3(0)p2βδS∗(0),

(31)

with

α1 =
[
μ + (k1 + k2)(1− r1)

][
μ + d1 + φ(1− r2)

]

+ r2
[
μ + k2(1− r1)

]
,

α2 =
[
μ + (k1 + k2)(1− r1)

]
φ(1− r2) + k2(1− r1)r2,

α3 =
[
μ + (k1 + k2)(1− r1)

]
γ1 + γ2k1(1− r1),

α4 =
[
μ + (k1 + k2)(1− r1)

](
γ1 + μ + d2

)

+ γ2
[
μ + k1(1− r1)

]
.

(32)
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4. Optimal Control

4.1. Definition of the Cost Function. Let Bi, i = 1, 2, be the
cost associated to the control ui(t), i = 1, 2. (Bi represents the
necessary means to realize the control defined by ui). Our
cost function is hence

J(u1,u2) =
∫ t f

0

⎡

⎣L(t) +
2∑

i=1

Bi

2
u2
i (t)

⎤

⎦dt. (33)

The cost function is defined having in mind that, we are
going to penalize the number of lost sight person. This
justifies the presence of the term L.

The problem now is to find u∗ = (u∗1 ,u∗2 ) satisfying

J
(
u∗1 ,u∗2

) = min
Ω

J(u1,u2), (34)

where Ω = {(u1,u2) ∈ L1(o, t f ); ai ≤ ui ≤ bi, i = 1, 2} and
ai, bi are nonnegative constants such that ai, bi ∈ [0, 1].

4.2. Resolution of the Optimal Problem. Using the Pon-
tryagin’s maximum principle [12], problems (2)–(34) are
reduced to minimize the function H defined by

H(u, S,E, I ,L) = L(t) +
1
2

2∑

j=1

Bju
2
j (t) +

4∑

i=1

λigi, (35)

where the functions (gi, i = 1, 2, 3, 4) are defined by (2).
The necessary conditions for the existence of the solution

for problem (34) are

∂λ1

∂t
= −∂H

∂S
,

∂λ2

∂t
= −∂H

∂E
,

∂λ3

∂t
= −∂H

∂I
,

∂λ4

∂t
= −∂H

∂L
,

(36)

∂H

∂ui
= 0 (i = 1, 2). (37)

System (36) leads to the adjoint system:

λ̇(t) = (0, 0, 0,−1)T + Γ(t)λ(t), (38)

0 0.2 0.4 0.6 0.8 1
0
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200

300

400
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β
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R
0

without control

Figure 3: Variation of the basic reproduction ratio without control
as a function of β, with φ = 0.0022 and k2 = 0.0006.

with λ(t) = (λi(t))i∈{1,2,3,4}, and Γ(t) = (Γi j)1≤i, j≤4 is a non-

constant 4× 4 matrix defined as

Γ11 = μS + β(I + δL),

Γ12 = −βp2(I + δL),

Γ13 = −βp1(I + δL),

Γ14 = −βp3(I + δL),

Γ21 = 0,

Γ22 = μ + (k1 + k2 − k2u2(t))(1− r1),

Γ23 = −k1(1− r1),

Γ24 = −k2(1− u2)(1− r1),

Γ31 = βS,

Γ32 = −
(
βp2S + r2

)
,

Γ33 = r2 + μ + d1 + Φ(1− u1(t))(1− r2)− βp1S,

Γ34 = −Φ(1− u1(t))(1− r2)− βp3S,

Γ41 = βδS,

Γ42 = −
(
βp2δS + γ2

)
,

Γ43 = −
(
γ1 + βp1δS

)
,

Γ44 = γ1 + γ2 + μ + d2 − βp3δS,

(39)

with transversality conditions

λi
(
t f
)
= 0; i ∈ {1, 2, 3, 4}. (40)

Remark 9. The transversality conditions are due to the fact
that after the period of control (t f ), there is no more
information given by the adjoint system.
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Table 1: Table of parameter values [14–16].

Parameters Description Estimated values Source

Λ Recruitment rate of susceptible individuals 5 (yr)−1 Assumed

β Transmission rate variable Assumed

μ Natural death rate 0.019896 (yr)−1 [14]

d1 TB-induced mortality for the follow up 0.02272 (yr)−1 [15]

d2 TB-induced mortality for the lost to follow up 0.20 (yr)−1 [15]

δ Fraction of lost to follow up that are still infectious 1 (yr)−1 Assumed

φ Rate at which infectious become lost to follow up Variable Assumed

p1 Fast route to infectious class 0.3 (yr)−1 [15]

p3 Fast route to lost to follow up class 0.1 (yr)−1 Assumed

r1 Chemoprophylaxis of latently infected individuals 0.001 (yr)−1 [15]

r2 Recovery rate of the infectious 0.7311 (yr)−1 [15]

γ1 Rate at which the lost to follow up return to the hospital 0.2 (yr)−1 Assumed

γ2 Recovering rate for the lost to follow up 0.001 (yr)−1 Assumed

k1 Rate of progression from infected latently to infectious 0.0005 (yr)−1 [16]

k2 Rate of progression from infected latently to lost to follow up Variable Assumed

Proposition 10. System (37) leads to

u∗1 (t) = min

{

max

(

a1;
φ(1− r2)I

B1
(λ4 − λ3)

)

; b1

}

,

u∗2 (t) = min
{

max
(
a2;

k2(1− r1)E
B2

(λ4 − λ2)
)

; b2

}
.

(41)

Proof. The existence of an optimal control pair is due to the
convexity of integrand of J with respect to (u1,u2), a priori
boundedness of the state solutions, and the Lipschitz prop-
erty of the state system with respect to the state variables [12].
By considering the optimality conditions (37), and solving
for u∗1 , u∗2 , subject to the constraints, the characterizations
(41) are derived. To illustrate the characterization of u∗1 , we
have

∂H

∂u1
= B1u1 + φ(1− r2)I(λ3 − λ4) = 0, (42)

at u∗1 on the set {t/a1 < u∗1 (t) < b1}. On this set,

u∗1 (t) = φ(1− r2)
B1

I(λ4 − λ3). (43)

Taking into account the bounds on u∗1 , we obtain the
characterization of u∗1 in (41).

4.3. Determination of the Control Function. In this section,
we are going to show step by step, how to determine the
optimal functions numerically.

Remark 11. The main difficulty here for the optimal control
is that we have initial conditions for system (2) and final
conditions for the adjoint system (transversality conditions).

To overcome this difficulty, we proceed as follows.

Step 1. We choose a control function u(t) ≡ uc(t) in the set
Ω. However, this choice is not a random process; it depends
on the strategy we need to adopt. For example, in this paper,
we adopt a strategy which is very strict at the beginning of
the control. We choose

uc1(t) = b1, uc2(t) = b2, ∀t ∈
[

0, t f
]
. (44)

Step 2. Then, with this choice of the control function uc(t),
one determines the solution (S(t), E(t), I(t), L(t)) of the
Cauchy problem associated to system (2).

Step 3. The knowledge of u(t) ≡ uc(t) and (S(t), E(t), I(t),
L(t)) allows us to determine the solution λ(t) of the Cauchy
problem associated to the adjoint system with transversality
conditions. This takes us to the control functions defined in
(41) by u∗ = (u∗1 ,u∗2 ).

Step 4. For one thing we have the chosen control function uc,
for another thing we have the control function u∗. We take a
convex combination of those functions as follows:

u(t) =
(

1− t

t f

)

uc(t) +
t

t f
u∗(t) (45)

for t ∈ [0, t f ].

Step 5. This process is repeated (Steps 2, 3, and 4), and
iterations are stopped when the values at the unknown
iteration are very closed to the ones at the present iteration.

5. Numerical Simulations

We are going to provide numerical simulations to illustrate
our studies.
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Figure 4: The influence of the control with S(0) = 50, E(0) = 100, I(0) = 150, L(0) = 200, β = 0.002, φ = 0.0022, and k2 = 0.0006. All the
other parameter values are as in Table 1.

We assumed that β is variable because it strongly
influences the basic reproduction ratio (Remark 6). This is
illustrated by Figure 3.

We also assume that the parameters φ and k2, which
denote the rate of progression from infectious to lost
to follow up and the rate of progression from latently
infected to lost follow up, respectively, are variable just to
highlight the fact that the optimal control depends on that
parameters.

For numerical simulations the values of the above param-
eters are β ∈ {0.002; 0.003; 0.02}, φ ∈ {0.0022; 0.1; 0.5}, and
k2 ∈ {0.0006; 0.006}. The values of the other parameters are
given in Table 1.

We solve the state equation (2) with the chosen functions
ui = uci (i = 1, 2) using the Runge-Kutta forward scheme
of order 4. Then, we solve the adjoint system using the
backward Runge-Kutta scheme of order 4.

We deduce u∗i (i = 1, 2) from system (41).
For those simulations, we take t f = 5 years as control

period. We also assume that the total population number is
N = 500 individuals subdivided as follows: S(0) = 50, E(0) =
100, I(0) = 150, and L(0) = 200.

In Figure 4, β = 0.002 is chosen to assure that the
reproduction ratio R0 without control is less than 1. The
values of φ and k2 are chosen here small enough to show
that the control would not really be necessary (Figure 4(a)).
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Figure 5: The influence of the control with S(0) = 50, E(0) = 100, I(0) = 150, L(0) = 200, β = 0.003, φ = 0.1, and k2 = 0.0006. All the
other parameter values are as in Table 1.

Figure 4(b): the average basic reproduction ratio is about
0.4020 without control and about 0.3974 with it. This is
due to the fact that our control is not rigorous enough.
Figure 4(c): the average number during t f = 5 years of lost to
follow up is about 86.4411 individuals without control. This
value is approximately the same with control 86.3869. This is
because the rate at which infectious becomes lost to follow up
φ = 0.0022 and the rate at which latently infected becomes
lost to follow up K2 = 0.0006 are very small.

In Figure 5, β = 0.003 is chosen to assure that the
reproduction ratio R0 without control is less than 1. The
value of k2 is chosen here small enough to show that the
associated control function u2 would not really be necessary.

Unlike the value of φ which the associated control function
u1 is strict (Figure 5(a)). Figure 5(b): the average basic
reproduction ratio is about 0.6482 without control and about
0.6033 with it. Figure 5(c): the average number during t f = 5
years of lost to follow up is about 89.4644 individuals without
control and about 86.7582 with it. In a period of t f = 5
years of control, we succeed in keeping about 3 infectious
individuals in a care center.

In Figure 6, β = 0.02 is chosen to assure that the
reproduction ratio R0 without control is greater than 1.
The value of k2 is chosen here small enough to show
that the associated control function u2 would not really be
necessary. Unlike the value of φ which the associated control
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Figure 6: The influence of the control with S(0) = 50, E(0) = 100, I(0) = 150, L(0) = 200, β = 0.02, φ = 0.5, and k2 = 0.0006. All the other
parameter values are as in Table 1.

function u1 is very strict during the whole control period
(Figure 6(a)). Figure 6(b): the average basic reproduction
ratio is about 5.4460 without control and about 4.0424 with
it. Figure 6(c): the average number during t f = 5 years
of lost to follow up is about 100.4334 individuals without
control and about 87.5361 with it. In a period of t f = 5
years of control, we succeed in keeping about 13 infectious
individuals in a care center.

In Figure 7, β = 0.02 is chosen to assure that the
reproduction ratio R0 without control is greater than 1.
The values of k2 and φ are chosen in order to make both
control functions u1 and u2 strict (Figure 7(a)). Figure 7(b):
the average basic reproduction ratio is about 8.4875 without
control and about 3.9675 with it. The basic reproduction

ratio without control is about twice as large as the one with
control. Figure 7(c): the average number during t f = 5 years
of lost to follow up is about 102.3067 individuals without
control and about 87.4159 with it. In a period of t f = 5
years of control, we succeed in keeping about 15 infectious
individuals in a care center.

6. Summary and Discussion

This has considered the problem of optimal control of
the transmission dynamics of TB. A model considering a
new class has been investigated and analyzed. An optimal
control strategy has been presented, and the results show
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Figure 7: The influence of the control with S(0) = 50, E(0) = 100, I(0) = 150, L(0) = 200, β = 0.02, φ = 0.5, and k2 = 0.006. All the other
parameter values are as in Table 1.

how important it is to control the lost to follow up class,
which is very crucial to the study of the disease. Numerical
simulations have been given to illustrate the effectiveness and
efficiency of the proposed control scheme. In Africa, it is
very important to keep infectious individuals in a care center
in order to complete their treatment and avoid the quick
transmission of the disease. Our control strategy helps to do
so, though other control strategies could be investigated.

For discussion, it should be noted that the model inves-
tigated here is based on some restrictive assumptions as an
epidemic model. We have assumed that

(1) any recruitment, is into the susceptible class and
occur at a constant rate Λ,

(2) we have not taken into account the class of recovered
individuals.

The first assumption is met for the dynamical study
of a host population evolving in a restrictive domain. To
overpass this assumption, we could introduce the diffusion
phenomenon in the model.

The second is due to the fact that the complete recovering
from TB is just apparent in general [13]. In other words,
some infectious individuals apparently recover but actually
harbor TB bacteria, which are in an inactive state. Thus,
those TB bacteria are undetectable by the antibodies or other
molecules aiming to fight the disease.
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