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Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a bacteria 
with truly protean biology. It infects a variety of hosts, among which the most commonly 
studied are humans, cattle, and fish. GBS holds a singular position in the history of bacterial 
genomics, as it was the substrate used to describe one of the first major conceptual 
advances of comparative genomics, the idea of the pan-genome. In this review, I describe 
a brief history of GBS and the major contributions of genomics to understanding its 
genome plasticity and evolution as well as its molecular epidemiology, focusing on the 
three hosts mentioned above. I also discuss one of the major recent paradigm shifts in 
our understanding of GBS evolution and disease burden: foodborne GBS can cause 
invasive infections in humans.

Keywords: group B Streptococcus, Streptococcus agalactiae, foodborne disease, review, genomics,  
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INTRODUCTION

Streptococcus agalactiae was first described in 1887 as a common bacteria infecting the udders 
of cattle, causing a disease termed mastitis (Nocard and Mollereau, 1887). This led to significantly 
lower milk production (Keefe, 1997; Ruegg, 2017), thus the species name agalactiae (from the 
Greek: a-, no; galactos, milk). In these cows, milk production can be  reduced over 20% in 
infected cows, which, prior to the institution of active control measures, could conservatively 
affect 15–40% of all cows (Shaw and Beam, 1935). It came to be  known by its other common 
name, Group B Streptococcus, with the Lancefield classification in 1933 (Lancefield, 1933), 
where the “Group B” references the species-specific carbohydrate “substance C” from Streptococci 
(Lancefield, 1928) recognized by rabbit immune sera (this substance C is associated with the 
cell wall and distinct from the polysaccharide capsule). Today, GBS is well known as the most 
common cause of neonatal meningitis, which is further classified into early onset (<7  days 
after birth) and late onset (7  days to 3  months after birth) (Berardi et  al., 2007; Edwards 
et  al., 2011; Nanduri et  al., 2019). Transmission to the newborn can be  vertical, through 
contact with mucus membranes, or through ingestion of infected amniotic fluid (Verani et  al., 
2010). Consistent with this, it is a frequent (20–40% of individuals) colonizer of the human 
gastrointestinal tract and the reproductive tract of women, based on two prevalence studies 

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2019.01447&domain=pdf&date_stamp=2019-06-28
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2019.01447
https://creativecommons.org/licenses/by/4.0/
mailto:slchen@gis.a-star.edu.sg
https://doi.org/10.3389/fmicb.2019.01447
https://www.frontiersin.org/articles/10.3389/fmicb.2019.01447/full
https://www.frontiersin.org/articles/10.3389/fmicb.2019.01447/full
https://www.frontiersin.org/articles/10.3389/fmicb.2019.01447/full
https://loop.frontiersin.org/people/41067/overview


Chen Genomics Review of Streptococcus agalactiae

Frontiers in Microbiology | www.frontiersin.org 2 June 2019 | Volume 10 | Article 1447

in a North American university (Bliss et  al., 2002; Manning 
et  al., 2004). However, GBS is also an increasingly common 
cause of severe invasive disease, typically in immunocompromised 
individuals and the elderly, since the 1960s (Farley et al., 1993; 
Schuchat, 1998; Farley, 2001; Francois Watkins et  al., 2019).

These well-known facts about the history and medical 
importance of GBS parallel several deeper themes of GBS 
biology. The dual names by which we  refer to this bacterium 
echo a split in how we  have studied its biology in humans, 
cattle, and other animals. The rise of human infections, first 
in neonates and more recently in adults, matches a theme of 
ongoing evolution and niche expansion for the species. Finally, 
the shift in associated species from cattle to humans foreshadows 
additional potential species jumps that are apparently continuing 
to this day. GBS is now known to be widely distributed among 
diverse species of mammals, reptiles, amphibians, and fish (such 
as dogs, cats, goats, elephants, frogs, crocodiles, dolphins, seals, 
llamas, and camels) (Edelstein and Pegram, 1974; Bishop et al., 
2007; Delannoy et  al., 2013; Tavella et  al., 2018), not only 
colonizing but in many cases also capable of causing severe 
invasive disease. Of particular note, besides its importance in 
human and bovine medicine, GBS is a significant pathogen 
for aquatic species, including those of importance for food 
production (Amal et  al., 2011). Streptococcal infections are 
responsible for an estimated US$150 million in global losses 
in farmed tilapia in 2000 (close to 10% of the total value) 
(Amal et  al., 2011). As with human and bovine infections, 
GBS infection in fish was first described relatively recently, 
with two seminal reports in 1958 and 1966 (Hoshina et  al., 
1958; Robinson and Meyer, 1966). Even from these first reports, 
GBS was noted to be  a particular danger to farmed fish, being 
highly contagious and usually fatal (Hoshina et  al., 1958; 
Robinson and Meyer, 1966).

GBS has therefore been studied in multiple contexts: human 
health, veterinary medicine, and agriculture. Research has thus 
been motivated by both health and economic goals, which 
naturally vary in importance across these different disciplines. 
Beyond the proximal questions of how GBS colonizes and 
causes specific diseases in specific hosts, GBS is an intriguing 
case study for the larger questions of how broad host range 
at the species level is maintained despite evidence of variation 
at the subspecies level. These larger evolutionary questions are 
again made more urgent by convincing evidence of ongoing 
adaptation and emergence of pathogenicity and resistance 
in GBS.

To tackle these specific questions about disease mechanisms 
as well as broader evolutionary questions, genomics is a natural 
fit. Recent years have seen an explosion of genomic data 
available for GBS, as is the case for all other bacteria. The 
transition to a post-genomic era for GBS holds an additional 
promise for a unified understanding across the medical and 
veterinary fields, which may lead to a fuller appreciation of 
the importance and impact of this versatile bacterium. In this 
review, I  will focus on two primary topics: (1) GBS genome 
plasticity and evolution and (2) GBS molecular epidemiology 
related to geography and host range (focused on humans, cattle, 
and fish). I  have included some contextual information drawn 

from non-genomic papers using other typing systems, but this 
review does not aspire to be  complete in regard to the entire 
corpus of GBS studies.

PRE-GENOMIC CLASSIFICATION 
SYSTEMS

GBS, like many other bacteria of medical importance, has 
long been recognized to have intraspecies variation that can 
be  tracked with a variety of molecular methods. Early studies 
utilized immunological reactions, resulting in a (still commonly 
used) serotyping scheme consisting of 10 major serotypes (Ia, 
Ib, II-IX) (Edwards et al., 2011). Numerous other systems have 
been applied to GBS, including ribotyping (Huet et  al., 1993), 
RAPD (Random Amplification of Polymorphic DNA) (Limansky 
et al., 1998), RFLP (Restriction Fragment Length Polymorphism) 
(Hauge et  al., 1996), PFGE (Pulsed-Field Gel Electrophoresis) 
(Rolland et  al., 1999), and MLEE (Multilocus Enzyme 
Electrophoresis) (Musser et  al., 1989). The other major 
pre-genomic classification system (although, ironically, published 
after the first genome sequences became available) that still 
remains in common use today is MLST (Multilocus Sequence 
Typing) (Jones et  al., 2003), due to its balance between ease 
of typing, portability between labs, and reasonable resolution 
(Maiden, 2006). From these initial pre-genomic studies, the 
general outlines of the population structure of GBS were 
inferred. The different major hosts (humans, cattle, and fish) 
have largely distinct populations of strains, with some notable 
exceptions that may be  indicative of cross-species jumps. 
Furthermore, changes in the epidemiology of disease and 
responsible serotypes or MLST types have been noted (see 
Section “The Pan-Genome”). However, overall, prior to the 
genomic era, GBS could generally (though not exclusively) 
be classified based on its host species (Finch and Martin, 1984; 
Bohnsack et  al., 2004; Sukhnanand et  al., 2005; Evans et  al., 
2008; Pereira et  al., 2010), which then could be  subdivided 
into several (3–5) large groups of closely related strains (termed 
clonal complexes in the MLST nomenclature) that accounted 
for most diseases (Table 1).

TABLE 1 | Major MLST Clonal Complexes of GBS found in humans, cattle, and 
fish.

MLST clonal 
complex

Associated 
serotype(s)

Associated 
host(s)

Associated 
geography

1 III, V, VI, VIII Human Global
1 (ST459) IV Human North America
7 Ia Fish, Human Asia (fish)
10 Ib Human Global
10 (ST283) III Human, Fish Southeast Asia, Brazil
17 II, III Human, Cattle Global
19 II, III Human Global
23 Ia, III Human, Cattle Global
26 IV Human Africa
67 Ia, II Cattle Americas, Europe
103 Ia Cattle Europe, Asia
552 Ib Fish Global
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GROUP B STREPTOCOCCUS GENOME 
PLASTICITY AND EVOLUTION

Initial Genome Sequences
The first full genome sequences of GBS were of the human 
isolates NEM316 (ST23, Serotype III) (Glaser et  al., 2002) and 
2603V/R (ST110 (a single locus variant of ST19), Serotype V) 
(Tettelin et  al., 2002), both published in late 2002. These two 
genomes provided a heretofore unprecedented view of the 
organization and potential evolution of the GBS genome, which 
was initially gleaned from comparisons with genomes of S. 
pyogenes and S. pneumoniae strains. Generally, the GBS genome 
consists of a conserved “backbone” that is punctuated by 14–15 
genomic islands of variable gene content (and many smaller 
islets). GBS was remarkable for its high number of tRNAs 
(80), ABC transporters (62), and signal transduction systems 
(17–20 two component systems). In addition, there are multiple 
classes of mobile DNA elements that presumably contributed 
to disrupting, duplicating, and transferring genes. In particular, 
insertion sequences, prophages, and a triplicated integrated 
plasmid in NEM316 (denoted pNEM316–1) (Glaser et  al., 
2002) were major contributors to variation in gene content 
that was specific to GBS and that also varies among different 
GBS strains. With only a single full genome to analyze, neither 
of these initial genome papers were able to directly identify 
large-scale chromosomal recombination occurring in GBS, 
though it was clear from comparative genome hybridization 
experiments that genes within the species-specific GBS islands 
were also more likely to vary among GBS strains as well 
(Tettelin et  al., 2002).

The Pan-Genome
The structure of the GBS genomes, with a conserved backbone 
punctuated with islands of variable gene content, led directly 
to a simple hypothesis as to why different GBS strains may 
preferentially colonize or infect different hosts. GBS as a species 
might be  defined by the conserved regions, while the variable 
islands, which often possessed features of genes important for 
virulence (Glaser et  al., 2002; Tettelin et  al., 2002), could carry 
genes that provided specific phenotypes important in different 
hosts or different disease settings. This structural stratification 
of gene conservation became more clear as more genomes 
were sequenced, not just for GBS but for other bacteria as 
well, most notably E. coli (Welch et  al., 2002).

This represented, in a sense, a specific genomic extension 
to genetics. Clearly, different phenotypes for host specificity 
and disease would be  traceable to genetic mechanisms; and 
now, perhaps, there was a structural genomic framework which 
would organize the adaptation and evolution of these traits. 
The first formalization of this idea was the pan-genome concept 
(though the potential structural aspect of genome organization 
was not noted). The seminal paper describing the concept of 
a pan-genome (the complete set of genes that is found in all 
individuals of a given species) was based on an analysis of 
eight GBS genome sequences (Tettelin et al., 2005). GBS therefore 
holds a special place in the early transition to the post-genomic 

era for bacteria. It was also the first organism described to 
have an “open” pan-genome; rarefaction analysis predicted that, 
even with an arbitrarily large number of genome sequences, 
every new genome sequence would contribute an extra 33 
genes that had not previously been seen in any other GBS. 
The pan-genome concept was one of the first truly new results 
to arise from comparative genomics; it was a systematic 
rationalization of differing gene content that necessarily required 
the existence of multiple genome sequences, and it further 
gave rise to the companion concept of a core genome that 
consists of genes that are conserved across all individuals of 
a given species (Medini et  al., 2005; Tettelin et  al., 2005).

The initial ideas about core and pan-genomes were a 
remarkably useful organizational framework for thinking about 
a variety of issues relevant to bacteria and genomics, leading 
to their immense popularity. The pan-genome concept was 
closely related to ideas about genome plasticity, horizontal gene 
transfer, the concept of species for bacteria, and genome 
evolution (Medini et  al., 2005). The conceptual simplicity of 
core (conserved) versus accessory (variable) genes in an organism 
was a natural fit for rationalizing differences in pathogenic 
potential, host range, and other variable phenotypes. Put simply, 
a core genome in some sense defined a species by providing 
conserved phenotypes and responses; of prime practical interest 
were those that medical microbiology leveraged to perform 
species identification in the lab. For an individual strain, the 
accessory genome (in other words, the subset of the pan-genome 
found in that individual above and beyond the core genome) 
could vary from other individuals, and would explain differences 
in observed phenotypes such as virulence; alternatively, as more 
genomes became sequenced, it became clear that sometimes 
gene set differences could also be related to different ecological 
niches, such as different geographical locations or host organisms. 
It was also further shown that large (up to 334 kb) chromosomal 
segments, including these islands, could be  transferred 
horizontally between strains (Brochet et  al., 2008).

The initial promise of the pan-genome concept for providing 
a holistic organizational framework for individual bacterial 
species, however, was difficult to fulfill. The initial eight GBS 
strains that were sequenced and analyzed were chosen for 
their representation of different serotypes and host organisms, 
both proxies for sampling the diversity of the species and its 
disease-relevant phenotypes (Tettelin et al., 2005). One implicit 
assumption embedded in this initial analysis was that new 
GBS genomes would sample similarly new subsets of the species 
diversity; returning to serotype or host organisms as proxies, 
larger data sets would inevitably begin to sample (at least 
some) very similar strains. In other words, the initial analysis 
looked at eight strains that were first chosen for sequencing 
because they were of different serotypes and MLSTs; they were 
chosen to represent the diversity of the species. With hundreds 
to thousands of genomes, however, an additional strain is 
unlikely to represent a divergent, previously unsampled clade 
or subclone. Thus the diversity modeled from eight relatively 
diverse strains may not be  accurate when extrapolated to an 
arbitrary number of strains. Indeed, the high relatedness of 
many GBS isolates has become more clear in the observation 
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of frequent clonal expansion of virulent or hypervirulent clones, 
especially among those causing disease (see examples below 
in the “Molecular Epidemiology” sections).

In addition, the original pan-genome paper inspired numerous 
similar analyses on other sets of genome sequences, and not 
all were limited to gene sequences (Lefébure and Stanhope, 
2007; Liu et  al., 2013; Kayansamruaj et  al., 2015; Puymège 
et  al., 2015; He et  al., 2017; Wolf et  al., 2018; Wang et  al., 
2018a); the result of an open pan-genome was consistently 
found. Beyond the use of genomics to calculate the sizes and 
“openness” of the core and pan-genomes, many studies performed 
additional analyses that provided several clear and general 
insights into overall GBS genome plasticity and evolution. GBS 
genomes have obviously evolved by recombination, likely driven 
by large-scale DNA transfers mediated by mobile elements 
(Bröker and Spellerberg, 2004; Brochet et  al., 2008; Sørensen 
et  al., 2010; Da Cunha et  al., 2014). There is an interesting 
dichotomy between very clear evidence of large-scale 
recombination between different lineages of GBS (Springman 
et al., 2009; Da Cunha et al., 2014; Teatero et al., 2016; Campisi 
et  al., 2016a) with very little recombination within expanding 
clones, which instead evolve largely by accumulation of mutations 
(Brochet et  al., 2006; Flores et  al., 2015; Almeida et  al., 2017; 
Kalimuddin et  al., 2017). Interestingly, there have been several 
noted instances of serotype switching, likely through 
recombination and after emergence of a successful lineage, 
which may confound earlier typing studies (Luan et  al., 2005; 
Brochet et  al., 2008; Martins et  al., 2010; Bellais et  al., 2012; 
Teatero et  al., 2014; Neemuchwala et  al., 2016; Wang et  al., 
2018a). These can occur through large-scale recombinations 
(most clearly seen in originally Serotype V ST1 strains that 
have converted to Serotype Ib, II, and IV through apparently 
single recombinations, ranging from 79 to 200Kbp, encompassing 
the capsule determining cps locus) (Neemuchwala et al., 2016). 
Notably, genomics provides the most clear view of this 
phenomenon, as previous studies using PFGE, MLST, lab-based 
serotyping, and sequencing of the cps locus estimated potential  
serotype switching events from 2 to 16% (Luan et  al., 2005;  
Martins et  al., 2010).

Therefore, the overall picture of GBS evolution is consistent 
with the hypothesis, most clearly articulated by the lab of Philippe 
Glaser, of a continuous generation of new lineages, through 
any mutational mechanism including mobile element activity, 
reductive evolution, or large-scale recombination, coupled with 
nearly clonal evolution of successful lineages, characterized by 
very little recombination and possibly by reductive evolution 
(Brochet et al., 2006, 2008; Lefébure and Stanhope, 2007; Sørensen 
et  al., 2010; Rosinski-Chupin et  al., 2013; Almeida et  al., 2016). 
There are several additional strong results that provide insights 
into the mechanisms of subspecies adaptation. Notable examples 
are the consistent genome reduction in fish-adapted isolates 
(see Section “Group B Streptococcus Molecular Epidemiology 
in Fish”) (Liu et al., 2013; Rosinski-Chupin et al., 2013; Delannoy 
et al., 2016); the consistent presence of the scpA and lmb virulence 
factors in human isolates (though they are still found, at lower 
frequency, in animal isolates) (Franken et  al., 2001; Sørensen 

et  al., 2010); and the development of metabolic modifications 
matched to expected nutrient sources, exemplified by the 
acquisition of the Lac.2 operon enabling lactose fermentation 
in cow-associated strains (Richards et  al., 2013).

Group B Streptococcus Genome 
Sequencing Today
As of this writing (March, 2019), there are over 7,000 GBS 
strains for which genome sequencing data are publicly available 
in the GenBank Sequence Read Archive (SRA). As with other 
microorganisms, the number of data sets has grown exponentially 
over the past few years, and the literature contains reports of 
several notable survey studies that together have contributed 
several thousand data sets (Metcalf et al., 2017), though several 
of these appear not to have been published in manuscripts 
yet (Table 2). Furthermore, the advent of journals like Genome 
Announcements, which publishes only genome sequences without 
analysis, has led to a large growth in manuscripts describing 
single or multiple genome sequences, and genome sequencing 
is being more routinely used as a tool (as opposed to the 
main endpoint of a study) (Table 3).

Group B Streptococcus Molecular 
Epidemiology of Human Isolates
One of the major solutions that increases in genome sequencing 
throughput has delivered is definitive molecular epidemiology 
(Klemm and Dougan, 2016). The bacterial genomics field has 
variously described this also as phylogeography, phylogenomics, 
or global population structure studies; but the underlying 
concept of correlating strain relatedness with some other variable, 
such as isolation location, remains the same. The first major 
study to present enough sequences that were reasonably thought 
to represent nearly the full species diversity was published in 
2014 (Da Cunha et  al., 2014). This manuscript analyzed 229 
strains, mostly (94%) isolated from humans, but also including 
13 isolates from four other animals, all encompassing five 
different continents. This for the first time provided a global 
view of the species that could integrate the preceding MLST 
scheme. One prominent result from this analysis was the 
definitive conclusion that human GBS disease isolates arise 
from a limited number of clones. The clonal evolution and 
spread of individual clones was already strongly suggested by 
previous MLST studies, which had already identified clonal 
complexes that were variously associated with human and 
animal disease (Table 1). Interestingly, unlike several other 
bacterial pathogens, the distribution of GBS clones was not 
generally correlated with geography. There were some known 
exceptions [like the prevalence of CC26  in Africa (Brochet 
et  al., 2009)], and the sampling of South America, Africa, and 
Asia was extremely low, both in this study and generally in 
the GBS literature (Dagnew et  al., 2012; Johri et  al., 2013; 
Kwatra et  al., 2016). The overall conclusion from this first 
look, however, was that most of the major GBS CCs causing 
human disease had relatively low geographical stratification 
when compared with other surveyed bacteria.
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A common theme for GBS, however, is that the general 
rules for the overall population are punctuated with notable 
exceptions. There has not been a similarly large-scale (i.e., 
species-wide) phylogeographic study of GBS since the Da 
Cunha 2014 publication. Instead, deeper analysis of individual 
clones, often with strong geographic biases, have added new 
perspectives to the distribution (and possibly evolution) of 
GBS in humans, and there has been encouraging recent progress 
in previously undersampled areas (not all using genomics) 
(Johri et  al., 2013; Crespo-Ortiz et  al., 2014; Dutra et  al., 
2014; Louthrenoo et  al., 2014; Mitima et  al., 2014; Belard 
et al., 2015; Bergal et al., 2015; Dangor et al., 2015; Eskandarian 
et  al., 2015; Rivera et  al., 2015; Villanueva-Uy et  al., 2015; 
Wang et  al., 2015, 2016; Le Doare et  al., 2016; Seale et  al., 
2016, 2017; Sinha et  al., 2016; Campisi et  al., 2016b; Medugu 
et  al., 2017; Slotved et  al., 2017; Suhaimi et  al., 2017; 
Veeraraghavan et  al., 2017; Botelho et  al., 2018; Emaneini 
et  al., 2018; Guo et  al., 2018; Li et  al., 2018; Melo et  al., 
2018; Nkembe et  al., 2018; Sigaúque et  al., 2018; A’Hearn-
Thomas et  al., 2019; Lee et  al., 2019; Mukesi et  al., 2019; 
Nagano et  al., 2019). However, as an example of the progress 
still needed, I  could find only one study of human GBS each 
from Indonesia and the Philippines, and none from Vietnam, 
in Pubmed (Wibawan et  al., 1992; Villanueva-Uy et  al., 2015); 
Indonesia is the fourth most populous country in the world, 

and all three of these countries have populations that are 
larger than any individual European country.

There are several remarkable examples of what appears to 
be a single dominant clone of GBS causing the majority of disease 
in specific locations. From 1992 to 2013, more than 90% (210/229) 
of the invasive serotype V isolates were closely related isolates 
of an ST1 clone (however, this study did not examine other 
serotypes) (Flores et al., 2015). A similar serotype-restricted study 
found a rising incidence of serotype IV isolates in Minnesota 
from 2004 to 2008 [8.4% of 1,160 patients (Diedrick et al., 2010) 
compared to <1% of nearly 3,000 isolates from 1993 to 2002 
from four cities including Minneapolis-St. Paul (Ferrieri et  al., 
2004)]. Subsequent genomic studies, again encompassing strains 
from Minnesota as well as Manitoba and Saskatchewan, Canada, 
determined that 89% of the serotype IV isolates from 2010 to 
2014 were from the same clone of ST459 (Teatero et  al., 2015a). 
Interestingly, in the geographically distant Toronto, where serotype 
V isolates were dominated by ST1, 81% of serotype IV isolates 
collected from 2009 to 2012 were comprised of just two STs, 
ST452 (CC23) and ST459 (CC1) (Teatero et  al., 2015b), the 
same major STs previously found in Minneapolis (Diedrick et al., 
2010). Additionally, there has recently been another dramatic 
reported expansion of a single clone causing human disease: 
ST283 (serotype III) in Southeast Asia (Ip et al., 2006; Kalimuddin 
et al., 2017) (see section “Emerging Group B Streptococcus Disease”).

TABLE 2 | Large BioProjects listed in GenBank with more than 100 Illumina whole genome sequencing data sets for GBS (As of March 7, 2019).

Project title Data sets Contributor BioProject IDs Reference

Invasive group B streptococcal isolates 4,381 Centers for Disease Control  
and Prevention

PRJNA355303
SRP094065

(Metcalf et al., 2017)

Group B streptococcal infections in neonates.
GBS interaction with the host innate  
immune system

1,512 Wellcome Trust Sanger Institute PRJEB14124
ERP015737

The Clinical and Molecular Epidemiology of 
Streptococcus agalactiae (GBS) Colonisation on 
the Kenyan Coast

1,034 University of Oxford PRJNA315969
SRP072745

(Seale et al., 2016)

Streptococcus agalactiae group B Streptococcus 
GBS associated with maternal carriage in the UK

743 Wellcome Trust Sanger Institute PRJEB20117
ERP022239

Comparison of molecular serotyping  
approaches of Streptococcus agalactiae from 
genomic sequences

800 Public Health England PRJEB18093
ERP020015

(Kapatai et al., 2017; 
Jauneikaite et al., 2018)

Whole genome sequencing and  
analysis of Streptococcus agalactiae samples 
collected in Malawi

379 University of Oxford PRJEB8986
ERP010039

WGS of Group B Streptococcus from disease and 
healthy carriage

355 Wellcome Trust Sanger Institute PRJEB11000
ERP012314

Singapore S. agalactiae working group  
sequencing project

351 Genome Institute of Singapore PRJNA293392
SRP078405

(Chau et al., 2017; Kalimuddin 
et al., 2017)

Genomic characterisation of uropathogenic 
Streptococcus agalactiae

288 Wellcome Trust Sanger Institute PRJEB2837
ERP001152

(Ip et al., 2016; Sullivan et al., 
2017)

Streptococcus agalactiae  
Genome sequencing

287 Baylor College of Medicine PRJNA274384
SRP053238

(Flores et al., 2015; Teatero 
et al., 2016)

Persistence of a dominant bovine lineage of group 
B Streptococcus reveals genomic signatures of 
host adaptation

149 Institut Pasteur PRJEB12926
ERP014458

(Almeida et al., 2016)

Genome diversity of spatially distinct 
Streptococcus agalactiae

116 Wellcome Trust Sanger Institute PRJEB2589
ERP000746

(Da Cunha et al., 2014)

Genome sequences of 113 S. agalactiae isolates 
using the Illumina technology

113 Leibniz Institute of Plant Genetics 
and Crop Plant Research

PRJEB4456
ERP003749

(Da Cunha et al., 2014)
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Antibiotic Resistance
The headline result from the Da Cunha et  al. (2014) analysis 
was that resistance to tetracycline in GBS drove its increased 
importance for human disease (Da Cunha et  al., 2014). All 
of the major clonal complexes infecting humans had a high 
(>90%) rate of tetracycline resistance, mostly mediated by the 
tetM gene. The high rate of tetracycline resistance was thought 
to be  due to initial acquisition through a mobile genetic 
element (Tn916 or Tn5801 in all but one strain) then expansion 
of a subsequent clone. Importantly, the insertion position of 
the transposon was identical within all strains of the expanded 
clones causing human disease. A Bayesian analysis predicted 
that the divergence date of the expanded tetracycline-resistant 
clones corresponded well with the introduction of tetracycline 

for clinical use in 1948 (Da Cunha et  al., 2014). This raised 
the possibility that the increasing virulence of GBS, or at 
least the rise in GBS cases, was caused by the simultaneous 
selection for more virulent and more tetracycline-resistant 
strains (Da Cunha et  al., 2014).

Rising resistance is a nearly universal feature of medically 
important bacteria. For GBS, this has been reported not only 
for tetracycline, but for also for fluoroquinolones and 
aminoglycosides (Hays et  al., 2016). Fortunately, beta-lactam 
antibiotics, particularly penicillins, which are first-line therapy 
for GBS, have remained highly effective, with large surveys 
documenting less than 1% of strains as resistant (Hays et  al., 
2016; Metcalf et  al., 2017). Interestingly, vancomycin resistance 
has recently been reported for the first time in two GBS strains, 

TABLE 3 | GBS genome sequencing reports.

Strain name(s) MLST Serotype Host Location Reference

ILRI005, ILRI112 Camel Kenya (Zubair et al., 2013b)
ILRI025, ILRI030, ILRI037, ILRI054,  
ILRI067, ILRI120, ILRI127

ST610, ST617, ST612, 
ST615, ST614, ST618, 
ST613

VI, Ia, I, V Camel Kenya, Somalia (Rothen et al., 2017)

09mas018883 Cow Sweden (Zubair et al., 2013a)
M19 I Cow China (Yang et al., 2016)
ST-1 ST1 V Dog United States (Harden et al., 2016)
UCN70 III Human New Zealand (Malbruny et al., 2011)
GB00112 ST17 Human Canada (Singh et al., 2012)
PR06 Human Malaysia (Mz et al., 2013)
CNCTC 10/84 ST26 V Human United States (Hooven et al., 2014)
ED-NGS-1000 Human United Kingdom (Kropp et al., 2014)
SG-M1 ST283 III Human Singapore (Mehershahi et al., 2015)
H002 III Human China (Wang et al., 2015b)
GBS85147 ST103 Ia Human Brazil (de Aguiar et al., 2016)
GB00037 ST1 V Human Canada (Singh et al., 2016)
34 strains total Various Various Human France (Six et al., 2016)
BSB14107, BSB14238 ST19 Human United Kingdom (Doumith et al., 2017)
14-179, 14-192, 13-6, 13-87, 12-165,  
12-221, 12-224, 11-11, 11-19, 11-206

ST2, ST19, ST26,  
ST805, ST806

II, III, V Human Norway (Gabrielsen et al., 2017)

874,391 ST17 III Human Japan (Sullivan et al., 2017)
VB11227, VB12497, VBP4522, VBP3124 ST103, ST249,  

ST23, ST1
Ia, V Human India (Veeraraghavan et al., 

2017)
Sag37, Sag158 ST12, ST19 Ib, III Human China (Zhou et al., 2017)
HU-GS5823 ST335 III Human Japan (Nagaoka et al., 2018)
195-16-B-RAT, 196-16-B-RAT, 
197-16-B-RAT, 198-16-B-RAT, 
199-16-B-RAT, 200-16-B-RAT, 
201-16-B-RAT

ST1, ST12 V, Ib Rat United States (Bodi Winn et al., 2017)

STIR-CD-17 ST260 Ib Tilapia Honduras (Delannoy et al., 2012)
GD201008-001 ST7 Ia Tilapia China (Liu et al., 2012)
ZQ0910 Tilapia China (Wang et al., 2012)
SA20-06 Tilapia Brazil (Pereira et al., 2013)
FNA07, FPrA02, ENC06 ST7 Tilapia Thailand (Kayansamruaj et al., 

2014)

138P Tilapia United States
(Pridgeon and Zhang, 
2014)

138spar Tilapia United States (Pridgeon et al., 2014)
JP9, JP17 ST7, ST283 Ia, III Tilapia Thailand (Areechon et al., 2016)
S25 ST552 Ib Tilapia Brazil (Mainardi et al., 2016)
S13 ST552 Tilapia Brazil (Facimoto et al., 2017)
HZAUSC001 Tilapia China (Zhang et al., 2017)
14-98, 14-104, 14-110 ST260, ST261 Ib Tilapia Honduras, Costa Rica, 

United States
(Jaglarz et al., 2018a)

14-66, 14-107, 14-119 ST7 Ia Tilapia United States, China (Jaglarz et al., 2018b)
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through introduction of two different vanG elements found 
integrated at the same chromosomal locus in both strains 
(Srinivasan et  al., 2014). Finally, macrolide resistance, most 
commonly measured for erythromycin, has also been rising, 
with rates measured since 2010 in the range of 14–59% (Lamagni 
et  al., 2013; Da Cunha et  al., 2014; Hays et  al., 2016; Metcalf 
et  al., 2017). Of great interest, a large survey in France found 
an exception to this trend, with rates of macrolide resistance 
falling from 47 to 30% between 2007 and 2014 (Hays et  al., 
2016). Many of these surveys leverage strong antibiotic 
susceptibility testing infrastructure in first-world countries; 
however, this is beginning to give way to genomic predictions 
that may eventually provide solutions for low resource settings. 
With regard to this, GBS-specific analyses for the prediction 
of antibiotic resistance and serotypes from genomic data were 
shown to provide high accuracy (Metcalf et al., 2017). Genomics 
currently cannot fully replace traditional antibiotic testing, as 
previously unknown (or rare) resistance mechanisms cannot 
be  predicted from sequence data alone. However, genomics 
has the additional advantage of providing greater insight into 
the dynamics driving spread of resistance and changes in 
resistance rates. For example, antibiotic resistance in GBS is 
largely mediated by resistance gene acquisition for all of the 
major antibiotic classes except for fluoroquinolones, which 
instead arise mostly by mutations in the gyrA and parC genes 
and penicillins (Metcalf et  al., 2017). In addition, there are 
multiple examples of rising resistance rates being associated 
with expansion of individual clones, as seen for tetracycline 
as described above (Da Cunha et  al., 2014), erythromycin 
resistance in ST1 (Flores et al., 2015), and beta-lactam resistance 
in several examples of closely related isolates (Metcalf et  al., 
2017). Overall, therefore, genomics paints a general overall 
picture similar to that described for clonal emergence above; 
antibiotic resistance is initially acquired through horizontal 
transfer or possibly recombination (also enabling acquisition 
of fluoroquinolone or penicillin resistance), followed by clonal 
expansion of successful lineages that drive increases in antibiotic 
resistance rates.

As in other bacteria, mobile genetic elements are often 
associated with more than just antibiotic resistance genes. Many 
of these additional genes have features that suggest they may 
be  involved in virulence, such as surface attachment signals 
(LPXTG), predicted surface localization, homology to adhesin 
proteins, novel metabolic activities, or predicted secretion and 
toxicity. One well-described example is the co-occurrence of 
AlpST-1, a predicted surface-exposed adhesin protein, that is 
encoded within the same mobile genetic element (denoted the 
RDF.2 MGE) as the tetM-carrying Tn916 in a collection of 
202 ST1, serotype V strains from the US and Canada (Flores 
et  al., 2015). In this clone, the authors argue that the close 
genetic linkage between tetM and the AlpST-1 virulence gene 
could account for the association between tetracycline resistance 
and virulence, so the virulence would not be  due to the 
tetracycline resistance per se (Flores et  al., 2015).

The concept that antibiotic resistance is associated with 
strains with high pathogenic potential for humans (and other 
animals) is not controversial. Indeed, therapeutic and agricultural 

antibiotic usage is perhaps one of the strongest influences that 
humans have exerted on the makeup of our microbial 
environment. However, we typically associate antibiotic resistance 
with a loss of fitness in bacteria, which is then overcome by 
the strong selection pressure of antibiotic administration (though 
numerous counterexamples exist). Antibiotic resistance is 
generally not considered a virulence determinant in and of 
itself. The observation of high tetracycline resistance rates, 
independently acquired in multiple lineages of common human 
GBS strains (CC1, 10, 17, 19, 23, and 26), is indeed an 
incontrovertibly strong demonstration that tetracycline use has 
dominated the evolution of GBS in humans (Da Cunha et  al., 
2014). As in the case of ST1, however, the underlying pathogenic 
mechanisms, which can lead to a stronger understanding of 
disease and novel strategies for prevention (Flores et al., 2015), 
remain the central unanswered question for essentially all 
GBS lineages.

Group B Streptococcus Molecular 
Epidemiology in Cattle
In contrast to the idea that most of the GBS population was 
not strongly stratified by geography, it has long been known 
that GBS demonstrates relatively strong host specificity. In addition 
to human disease, the economic impact of lower milk production 
due to mastitis has driven substantial S. agalactiae research 
(Keefe, 1997; Ruegg, 2017). Substantial work, therefore, has also 
examined the potential commonality in the rise of human and 
cattle infections, most obviously mediated through milk and 
close contact with dairy farmers (Bliss et  al., 2002; Bohnsack 
et  al., 2004; Sukhnanand et  al., 2005; Foxman et  al., 2007; 
Manning et  al., 2010).

The literature describing GBS that infects bovine hosts is 
extensive, in keeping with the initial S. agalactiae nomenclature 
(which refers to its effects on dairy cows). As with human 
isolates, pre-genomic techniques had already been used to 
sketch a general outline of the population structure. Bovine 
isolates generally fall into two main clusters, represented in 
the MLST scheme by CC67 and CC23. A significant minority 
of strains were found to fall into CCs that overlapped with 
human isolates, most prominently CC17 (Sørensen et  al., 
2010). As seen with human GBS, however, there are examples 
of recent changes in prevalent GBS clones which may differ 
based on geography. A recent rise in CC61 strains was noted 
in Portugal, with an origin estimated in the early 1990s 
(Almeida et  al., 2016). From 84 bovine isolates collected 
from milk from 14 dairy farms in China between 2011 and 
2016, all were either CC61 or CC103 (Pang et  al., 2017). 
Interestingly, CC103 strains have also been noted in Denmark 
and Norway, but not the UK or US (Bisharat et  al., 2004; 
Zadoks et  al., 2011; Jørgensen et  al., 2016).

The fact that GBS was known first as a bovine pathogen 
and only later noted to cause increasing rates of neonatal and 
adult disease led to a strong interest in exploring a potential 
zoonotic transmission from cows to humans (and vice versa). 
There was suggestive increase in GBS colonization rate among 
university students who drank milk (n  =  150), but this was 
not statistically significant (Bliss et al., 2002). A larger, longitudinal 
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study (3-week intervals over 3 months) in a similar population 
found no significant association between GBS colonization and 
beef or milk consumption; notably, there were positive 
associations with sexual activity and fish consumption (Foxman 
et  al., 2007). Another epidemiological study examined the 
colonizing GBS in humans who had regular close contact with 
cattle. Of 68 matched human-cattle stool samples, one set had 
the same GBS as measured by MLST, capsule, RAPD pattern, 
and antibiotic resistance profile. Of note, the cattle sampled 
were not symptomatic, and stool is not a typical sampling 
location in cattle. Perhaps more interestingly, human colonization 
was significantly associated with exposure to cattle in the 
previous week (Manning et  al., 2010). Overall, therefore, 
transmission between humans and cattle seemed rare if 
not nonexistent.

The conclusion that the human pathogenic CC17 lineage 
was derived from a bovine GBS ancestor was therefore a 
dramatic result (Bisharat et  al., 2004). This initial report was 
based on an analysis of MLST gene sequences. In what has 
become a repeated testament to the value of whole genome 
analyses, this initial MLST result has been challenged by 
subsequent genomic studies (Brochet et  al., 2006; Sørensen 
et  al., 2010; Richards et  al., 2013). Comparative whole genome 
hybridization on microarrays to assess gene content in a 
collection of 75 strains from humans and multiple animal 
hosts indicated that the common ancestor of the bovine ST61 
and ST17 strains was likely more similar to a human ST17 
strain, implying the reverse transmission direction (Brochet 
et  al., 2006). An examination of 15 genes (including the seven 
MLST genes) in addition to several virulence-associated traits 
in a representative set of 55 strains (drawn from 238  in total) 
showed differences between the human and bovine CC17 strains 
that were not captured by the MLST genes. Combined with 
differences between human and bovine strains with respect to 
the ability to ferment lactose, the presence of the human-
associated scpB virulence gene, and the presence of the PI-1 
pilus island, the authors concluded that human CC17 strains 
evolved separately, perhaps from a common diverse pool, from 
the bovine CC17 isolates (Sørensen et al., 2010). Finally, whole 
genome sequencing data from 202 strains isolated from human 
and animal hosts was used as part of an analysis aimed at 
understanding the factors responsible for survival in the bovine 
mammary gland. Acquisition of the Lac.2 operon, which enables 
fermentation of lactose (the primary sugar in cow milk), was 
a consistent feature of bovine strains. In contrast, among ST17 
strains of human and bovine origin, none of the human strains 
had the Lac.2 operon, which was interpreted as unlikely if a 
bovine strain was the ancestor of the human isolates (Richards 
et  al., 2013). Notably, as with the association of human strains 
with presence of the scpA and lmb genes noted above, the 
association of the Lac.2 operon with bovine isolates, while 
strong, is not exclusive; 8/151 human strains in one survey 
carried Lac.2 (Richards et  al., 2013), though for some strains, 
such as NEM316, the origin (possibly S. gordonii) may be distinct 
from the origin suspected in bovine strains (S. dysgalactiae 
subsp. dysgalactiae) (Richards et  al., 2011). Therefore, with the 
benefit of larger scale genomic data, it still appears that bovine 

and human strains are largely (if not completely) separate, at 
least in terms of the severe disease-causing strains, though 
the possibility of overlap continues to be discussed (Lyhs et al., 
2016; Wang et al., 2018b). There seem to be cases of colonization 
in both directions, but this appears to be  transient in both 
cattle and humans (Jensen, 1982; Betsy Foxman et  al., 2006). 
On a longer evolutionary scale, however, the genomic data 
are clear that some bovine- and human-adapted lineages do 
at least share common ancestors, most notably for CC17 and 
CC67 (Sørensen et  al., 2010; Pang et  al., 2017).

Group B Streptococcus Molecular 
Epidemiology in Fish
The next most extensively studied host organism for GBS 
is fish. Again, much of the motivation for this research has 
been economic interest, as Streptococcosis is a major disease 
affecting farmed fish (Amal et  al., 2011). In fish, GBS are 
generally limited to certain MLST types, which leads to their 
occasional reference in this literature as biotypes, with a 
strong association with serotype. One early study proposed 
two new species, S. shiloi and S. difficile, as pathogens of 
fish in Israel starting in 1986 (Eldar et  al., 1994). These 
were later resolved to S. iniae and S. agalactiae (serotype 
Ib), respectively (Eldar et  al., 1995; Vandamme et  al., 1997). 
Subsequently, the fish literature began to refer to biotypes 
of GBS, which persists today in the marketing for fish 
vaccines1. Biotype I  corresponds to serotype Ia, ST7, and is 
mostly found in Asia. Biotype II corresponds with serotype 
Ib, ST260 or ST261 (and is referred to as CC552, though 
this has recently been refined), and is found generally 
throughout the globe (Delannoy et  al., 2013; Paul, 2014; 
Munang’andu et  al., 2016; Barony et  al., 2017).

Similar to the situation with bovine GBS, one major topic 
of research has been the possibility of cross-species infections 
between humans and fish. Reliance on MLST again indicated 
that there was evidence for transmission: ST7 is found in 
both humans and fish (Evans et  al., 2008; Delannoy et  al., 
2013), as well as other aquatic animals, and a large outbreak 
of fish infections in Kuwait Bay was thought to be  due to 
human GBS isolates entering the water through sewage 
contamination (Jafar et  al., 2008). Three genomic studies 
later examined human and fish ST7 strains more closely. In 
one study, the human and fish ST7 strains were very similar, 
with similar gene content and a uniformly low nucleotide 
divergence throughout the genome (Rosinski-Chupin et  al., 
2013). A second study noted that human and piscine ST7 
strains were closely related based on genome content (CRISPR 
arrays, prophages, and virulence-associated genes) (Liu et al., 
2013). The third study, which included fish strains from both 
CC7 and CC552, identified eight genomic regions, mostly 
located within genomic islands, containing genes associated 
with or specific to piscine strains, which were then confirmed 
by PCR screening across a larger collection of 43 isolates 
from various hosts (Delannoy et al., 2016). In addition, strains 

1 https://www.aquavac-vaccines.com/products/
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of ST23, which are common human pathogens, were unable 
to cause experimental infections in tilapia, while one of two 
human ST1 strains was equally pathogenic to tilapia compared 
a bona fide piscine ST7 isolate (Delannoy et  al., 2016; Wang 
et  al., 2017). Overall, therefore, it appears that much of the 
population of piscine and human isolates are largely separate, 
but at least some strains of CC7, may be  able to infect both 
hosts. Another common theme is the idea that host specificity 
has evolved through genome reduction, where genes and 
pathways no longer needed in other environments (hosts 
such as humans) are lost once GBS specializes to colonize 
fish, most clearly demonstrated in CC7 and CC552 (Liu 
et  al., 2013; Rosinski-Chupin et  al., 2013; Delannoy et  al., 
2016). For example, several studies found multiple fish strains 
with genome sizes in the 1.7–1.8  Mbp range, compared with 
2.0–2.2  Mbp for many human isolates (Liu et  al., 2013; 
Rosinski-Chupin et  al., 2013). This 200–300 Kbp accounts 
for over 100 otherwise “core” genes lost in fish isolates, which 
are enriched for carbohydrate transport and metabolism 
functions (Liu et  al., 2013). Interestingly, another study of 
human ST19 strains found that at least some are able to 
cause experimental disease in tilapia, a phenotype that correlates 
with capsule type (Wang et  al., 2018a).

One of the notable features of the research on piscine 
GBS is that the sampling covers a complementary geographic 
range to the human and much of the cattle GBS literature. 
Aquaculture is a rapidly growing business in South America, 
the Middle East, and Asia, particularly Southeast Asia; these 
are all areas that have been notably undersampled in human-
focused GBS studies. In these areas, it appears that many 
of the major food fishes, found in both freshwater and 
saltwater, can be affected (including rainbow trout, seabream, 
tilapia, yellowtail, catfish, croaker, killfish, and pomfret) (Amal 
et  al., 2011). Interestingly, our knowledge of the population 
structure of piscine GBS is actually stronger than that for 
human disease-causing isolates in many countries, for a variety 
of reasons including economics, infrastructure, and the 
assumption that seemingly globally distributed clones (for 
human disease) would be  similarly dominant in unsampled 
regions. Accordingly, there are potentially emerging clones 
of piscine GBS that are being reported (such as Serotype 
III and IX in Southeast Asia and China, respectively) 
(Kalimuddin et  al., 2017; Zhang et  al., 2018).

Emerging Group B Streptococcus Disease
The emerging GBS clone in Southeast Asia, ST283 (Serotype 
III), neatly intertwines the previously mentioned themes of 
ongoing GBS evolution (leading to potential cross-species host 
jumps), the potential for some clones to have strong geographical 
associations, and the value of genomics for enabling integration 
across different disciplines. Emerging clones such as ST283 
therefore challenge our understanding of GBS ecology, evolution, 
disease, and management.

In 2015, Singapore experienced an outbreak of foodborne 
GBS infections. Associated with consumption of a local raw 
fish dish (魚生, yu sheng), over 200 patients suffered severe 
invasive disease, with bacteremia, meningitis, and septic arthritis 

(Rajendram et  al., 2016; Tan et  al., 2016; Kalimuddin et  al., 
2017)2. Prior to this outbreak, GBS had never been thought 
to be  transmitted by the foodborne route. In retrospect, there 
had been indications that food consumption was associated 
with gastrointestinal colonization (Bliss et  al., 2002; Foxman 
et al., 2007), and there had been an example of lizards contracting 
GBS sepsis through consuming contaminated mice (Hetzel 
et  al., 2003). Furthermore, it seems clear that GI colonization 
by any organism in humans seems reasonable to assign to 
oral consumption until proven otherwise. Given that GBS is 
a common GI colonizer of both men and women, then, one 
interpretation is that even early onset neonatal meningitis is 
ultimately a foodborne disease (via vaginal colonization through 
the GI tract, then infecting the newborn during birth).

Interestingly, the outbreak organism, ST283, is a common 
MLST type that causes aquaculture-associated fish 
Streptococcosis. An ST283 strain and a single locus variant, 
ST491, had been identified in farmed fish in Vietnam and 
Thailand, isolated in the early 2000s (Delannoy et  al., 2013). 
ST283 strains had also been reported to cause invasive infections 
similar to those seen in the 2015 Singapore outbreak in otherwise 
healthy humans from Hong Kong and Singapore as early as 
1998 (Wilder-Smith et al., 2000; Ip et al., 2006, 2016; Barkham 
et  al., 2018). Investigating after the 2015 Singapore outbreak, 
it was found that 71% of freshwater fish sold for raw consumption 
(which was associated with the outbreak) in Singapore carried 
GBS, with 14% carrying ST283; in contrast, 9–33% of saltwater 
fish carried GBS, with none being ST283 (Chau et  al., 2017). 
Singapore imports the vast majority (>90%) of its food, including 
fish3; indeed, 4.6% of fish samples were already positive for 
GBS, with 1% of fish positive for ST283, at entry ports to 
Singapore (Chau et  al., 2017), leading to a suspicion that 
regional aquaculture fish may also be colonized by ST283 (while 
ST283 is known to cause disease outbreaks in farmed fish, 
the fish being imported and sold appeared healthy). Troublingly, 
a recent report has identified ST283 as a cause of GBS outbreaks 
in at least five fish farms in 2016–2017 from four different 
states in Brazil, and this is suspected to be  due to import of 
fish from Southeast Asia (Leal et  al., 2019).

ST283 was originally described an emerging cause of invasive 
infections in Hong Kong and Singapore (Ip et  al., 2006). It 
was only identified as a potential foodborne pathogen in 2015 
(Rajendram et  al., 2016; Tan et  al., 2016; Kalimuddin et  al., 
2017). Epidemiological data for human infections are not 
consistently available in many countries in Southeast Asia, but 
recent data suggest that the endemic incidence of ST283 infections 
outside Singapore may be  comparable to or higher than the 
incidence at the peak of the Singapore outbreak (Barkham 
et  al., 2019; https://outbreakwatch.blogspot.com/2018/07/
proahedr-strep-group-b-singapore.html). If ST283 is also a 
foodborne pathogen outside Singapore, as recently suspected 
in Thailand (Kayansamruaj et  al., 2018), this suggests the 
remarkable interpretation that GBS infections in Southeast Asia 

2 http://10minus6cosm.tumblr.com/post/132590510556/serious-group-b-streptococcal- 
infection-in-adults
3 https://www.ava.gov.sg/
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are actually first and foremost a foodborne illness (in stark 
contrast to the current paradigm of neonatal and 
immunocompromised disease found in current medical teaching). 
This further raises the possibility that invasive GBS disease 
caused by non-ST283 strains in human adults may be  at least 
partially foodborne, expanding our understanding of GBS in 
general as a possibly long unappreciated zoonotic pathogen, 
with attendant implications for food safety. As food consumption 
is associated with vaginal colonization in women (Foxman et al., 
2007), a further implication is that neonatal infections may 
also ultimately be  a late sequelae of foodborne consumption 
of GBS. Interestingly, there is a case report of a late-onset 
neonatal infection caused by a genomically indistinguishable 
strain that was consumed by the mother via placental pills 
(Buser et  al., 2017).

CONCLUSIONS AND OUTLOOK

GBS has a uniquely dynamic biology. At the overall species 
level, there is remarkably broad host range and global geographical 
reach. Standing in counterpoint to this broad generalism are 
numerous examples of strong host specificity and local 
geographical stratification. The source of this intraspecies 
heterogeneity likely traces back to similarly dynamic processes 
shaping the genome, with the capacity for large-scale 
chromosomal recombinations paired with highly independent, 
clonal evolution of individual successful lineages. GBS is not 
only an emerging pathogen in the traditional sense of rising 
incidence; a closer examination of its biology indicates that 
it is a continuously emerging pathogen that, in little more 
than a single human lifetime, has altered and continues to 
alter the tenets of epidemiology of human, bovine, and piscine 
colonization, infection, and economics. Since the first GBS 
genome sequences, genomics has been an ideal technology to 
capture the dynamism of this species. It therefore seems apt 
that GBS was the organism that birthed the concept of the 
pan-genome; its description as having an open pan-genome, 
with infinite possibility for evolution and adaptation, is a fitting 
metaphor for the recent history of GBS. GBS, in turn, provides 

a compelling argument for the continued progress of genomics 
and our need, as a community, to implement broad genomic 
monitoring in both developed and developing countries. The 
recent genomic history has demonstrated shifts in our 
understanding of GBS with respect to cattle, human neonates, 
human adults, aquacultured fish, and now the interface between 
fish and humans and food safety and economic development. 
Where else is GBS lurking? Further advances in genomics will 
hopefully enable us not only to reconstruct post hoc what 
GBS will do next, but to catch it in the early stages of its 
next evolutionary jump.
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