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Risk coefficient model 
of necroptosis‑related lncRNA 
in predicting the prognosis 
of patients with lung 
adenocarcinoma
HuiWei Chen1, Zhimin Xie2, QingZhu Li2, GenYi Qu3,5*, NianXi Tan4,5* & YuLong Zhang3

Model algorithms were used in constructing the risk coefficient model of necroptosis‑related long 
non‑coding RNA in identifying novel potential biomarkers in the prediction of the sensitivity to 
chemotherapeutic agents and prognosis of patients with lung adenocarcinoma (LUAD). Clinic and 
transcriptomic data of LUAD were obtained from The Cancer Genome Atlas. Differently expressed 
necroptosis‑related long non‑coding RNAs got identified by performing both the univariate and 
co‑expression Cox regression analyses. Subsequently, the least absolute shrinkage and selection 
operator technique was adopted in constructing the nrlncRNA model. We made a comparison of 
the areas under the curve, did the count of the values of Akaike information criterion of 1‑year, 
2‑year, as well as 3‑year receiver operating characteristic curves, after which the cut‑off value was 
determined for the construction of an optimal model to be used in identifying high risk and low risk 
patients. Genes, tumor‑infiltrating immune cells, clinical correlation analysis, and chemotherapeutic 
agents data of both the high‑risk and low‑risk subgroups were also performed. We identified 26 
DEnrlncRNA pairs, which were involved in the Cox regression model constructed. The curve areas 
under survival periods of 1 year, 2 years, and 3 years of patients with LUAD were 0.834, 0.790, and 
0.821, respectively. The cut‑off value set was 2.031, which was used in the identification of either the 
high‑risk or low‑risk patients. Poor outcomes were observed in patients belonging to the high‑risk 
group. The risk score was the independent predictor of the LUAD outcome (p < 0.001). The expression 
levels of immune checkpoint and infiltration of specific immune cells were anticipated by the gene 
risk model. The high‑risk group was found to be highly sensitive to docetaxel, erlotinib, cisplatin, and 
paclitaxel. The model established through nrlncRNA pairs irrespective of the levels of expression could 
give a prediction on the LUAD patients’ prognosis and assist in identifying the patients who might 
gain more benefit from chemotherapeutic agents.
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AIC  Akaike information criterion
lncRNA  Long noncoding RNA
ICB  Immune checkpoint blockade
EMT  Epithelial-mesenchymal transition
RNAseq  Transcriptome profiling
ROC  Receiver operating characteristics
LASSO  Least absolute shrinkage and selection operator
TME  Tumor microenvironment
uni-Cox  Univariate Cox
HCC  Hepatic cell carcinoma
CI  Confidence interval
GTF  Gene transfer format
GSEA  Gene set enrichment analysis
FC  Fold change
nrlncRNAs  Necroptosis-related long non-coding RNAs
HR  Hazard ratio

One of the major global causes of mortalities that are cancer-related is Lung  cancer1. In 2020, the number of new 
lung cancer cases was 2,206,771, while the number of mortalities was 1,796,1442. Lung adenocarcinoma (LUAD), 
a subtype of NSCLC, accounts for ~ 50% of the non-small cell lung cancers (NSCLCs)  cases3,4. Despite NSCLC 
molecular-targeting therapy together with chemotherapy having made remarkable advancement, its overall 
survival rate in the period of 5 years is still lower than 15%5. As a result, the identification of robust biomarkers 
is crucial in predicting the LUAD patients’ prognosis profiles.

Since most cancer is naturally resistant to apoptosis, inducing cell death pathways, e.g., necroptosis, has 
emerged as a possible therapeutic  strategy6. Via the mechanism of activating RIPK3 and RIPK1 in the tumor 
microenvironment (TME), necroptosis, a new programmed type of necrotic cell death distinct from apoptosis, 
can boost antitumor immunity that is CD8 + leukocyte-mediated7. Cancer cells have been found to prefer to 
avoid necroptosis as a way of their survival. Furthermore, the expression level of low RIPK3 has been shown to 
be related to an unfavorable prognosis in patients with several  cancers8,9. From recent research, with regard to 
the use of necroptosis in cancer control, CD8 + leukocytes, and BATF3 + cDC1 cells were found to be  required7. 
These data indicate that necroptosis may act as a possible immunotherapy target for lung adenocarcinoma.

Long non-coding RNAs (lncRNAs), which do not code for proteins, aid in regulating several biological 
processes, especially in cancers. lncRNAs play a crucial function in human tumors, such as autophagy, tumor 
initiation, necroptosis, apoptosis, proliferation, cell cycle, and metastasis. lncRNAs can influence gene expression 
via the mechanism of interfering with protein translation or directly interacting with proteins and other RNA 
 species10. lncRNAs have been shown to assist malignancies to avoid immune destruction as well as enhance the 
inflammation of  tumors11. lncRNAs contribute to cancer malignant phenotypes through alterations at transcrip-
tomic and genomic levels. They also play a part in changing the immune  microenvironment12 since lncRNAs 
control the genes expression that has a relationship with immune cells activation, leading to the infiltration 
of immune-cell13. Moreover, recent evidence suggested that necroptosis-related lncRNAs (nrlncRNAs) can be 
utilized in predicting the patient prognosis and assist in distinguishing between the cold and hot tumors, thus 
enhancing the therapy development of Gastric  Cancer14. Necroptosis-related lncRNAs have not been popularly 
suggested as a potential therapeutic target to treat lung adenocarcinoma. As a result, more research is needed to 
thoroughly comprehend the function of necroptosis-related lncRNAs in immunotherapy.

In this study, we used Model algorithms in constructing the risk coefficient model of necroptosis-related 
long non-coding RNA. Then we identified novel potential biomarkers in the prediction of the sensitivity to 
chemotherapeutic agents and prognosis of patients with LUAD.

Materials and methods
Data acquirement. Transcriptome profiling (RNAseq) data of lung adenocarcinoma and the relevant clini-
cal information were obtained from https:// tcga- data. nci. nih. gov/ tcga/. It is the website for The Cancer Genome 
Atlas (TCGA) containing 497 LUAD samples and 54 normal tissue samples adjoining to the tumor. Then, from 
Ensembl (http:// asia. ensem bl. org), we acquired the gene transfer format files (GTF) for annotating and differen-
tiating the mRNAs together with lncRNAs from the transcriptome data.

Identifying necroptosis‑related lncRNAs. The necroptosis-related gene set M24779.gmt was obtained 
from http:// www. gseam sigdb. org/ gsea/ index. jsp, the website for Gene Set Enrichment Analysis (GSEA). Sub-
sequently, it was added to the genes that are necroptosis-related from the prior reports. Using the Pearson cor-
relation analysis and co-expression strategy, lncRNAs with a co-expression correlation coefficient > 0.4 and 
p-value < 0.001 were defined as nrlncRNAs. We utilized the “limma” R package for the purpose of performing 
analysis of the differential expression of the acquired nrlncRNAs. The nrlncRNAs showing a log fold change 
(FC) > 1.0 along with false discovery rate (FDR) < 0.05 were identified as differentially expressed nrlncRNAs 
(DEnrlncRNAs).

Construction of DEnrlncRNA pairs. DEnrlncRNAs were cyclically singly paired, and the parameter 
value was defined as α value of 0 or 1. The lncRNA pair value was 1 in the case where the lncRNA A expression 
was more than that of a sample of lncRNA B; else, it was 0. Then, the created 0-or-1 matrix was subjected to 
additional screening.

https://tcga-data.nci.nih.gov/tcga/
http://asia.ensembl.org
http://www.gseamsigdb.org/gsea/index.jsp
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Risk model establishment for risk score assessment. For the purpose of screening lncRNAs related 
to patient survival from the nrlncRNA pool (p < 0.05), a univariate Cox proportional hazard regression analysis 
was performed. Then, for 1000 cycles, the least absolute shrinkage and selection operator (LASSO) regression 
analysis was conducted through the use of a p-value < 0.05 together with cross-validation of 10-folds. To prevent 
overfitting, stimulation was set up 1000 times for each cycle in a random manner. For the purpose of conduct-
ing Cox proportional hazard regression analysis, we chose pairs that contained a frequency of more than 100 
times, and the best lncRNA pairs were chosen for the construction of the Cox risk coefficient model. By risk 
score calculation, we computed the AUC value of every model and drew the 1-, 2-, and 3-year receiver operating 
characteristics (ROC) curves that are dependent on time of the model.

Groups of low and high-risk were constructed based on the optimal fitting of the Akaike information crite-
rion (AIC).

Constructed risk model validation. The Kaplan–Meier analysis was conducted in investigating the sur-
vival differences between patients in both groups. With the aid of the “survival” and “survminer” R packages, the 
survival curve was drawn for visualization. The Chi-square test was performed in finding out the relationship 
between the model and clinical factors. We then carried out the Wilcoxon rank-sum test for assessing the asso-
ciations between several subgroups of clinical indicators and the risk score. To obtain a clear comprehension of 
the data, we utilized “limma” and “ggpubr” in R packages. To validate that the model can be utilized on LUAD 
patients as a clinical prognostic predictor that is independent, Cox multivariate and univariate regression analy-
ses were executed on clinical correlation features as well as the risk score. To envisage this data, the R “survival” 
package was put into use. For the purpose of comparing the accuracy of the risk score and clinically relevant 
features in predicting survival profiles and outcomes, we made a comparison of the ROC curves acquired from a 
follow-up lasting 1 year with ROC curves of indicators that are clinically relevant in the same chart.

Tumor‑Infiltrating immune cells correlation analysis. Current techniques were utilized in calcu-
lating the status of the immune infiltration in the TCGA samples, including XCELL (http:// xCell. ucsf. edu/)15, 
QUANTISEQ (http:// icbi. at/ quant iseq)16, TIMER (version 2.0; http:// timer. cistr ome. org/)17, MCPCOUNTER, 
CIBERSORT (http:// ciber sort. stanf ord. edu/)18, EPIC (http:// epic. gfell erlab. org)19, and CIBERSORT-ABS to per-
form analysis of the correlation between infiltration of immune cells and the risk score. We assessed the differ-
ences existing between the high-risk and low-risk groups in their tumor-infiltrating immune cell content by the 
Wilcoxon signed-rank test. Furthermore, we did an analysis on the spearman correlation to find out the relation-
ship between the risk score and the infiltration levels of the immune cells. The “limma”, “scales,” “ggplot2,” as well 
as “ggtext” packages in R were utilized in data visualization.

Immunosuppressive molecules expression analysis related with ICIs. The “limma” and “ggpubr” 
packages in R were utilized to find out if there were substantial differences in gene expression that are ICI-related 
between the two groups. After this, visualization of data was performed.

Chemotherapeutic agents correlation analysis. The conventional chemotherapeutic drugs, including 
erlotinib, cisplatin, paclitaxel, docetaxel, gefitinib, individually or in combination, were selected in determining 
if there existed a difference in chemotherapeutic agents response based on LUAD patients belonging to both 
groups. We utilized the drug’s half-inhibition rate (IC50) as an index in measuring the sensitivity to the drug. 
The “limma,” “ggpubr,” “ggplot,” and “pRRophetic” packages in R were used in data analyses and visualization. 
This study utilized R software (version 4.0.0: http:// www.r- proje ct. org) for conducting statistical analyses, and 
Supplementary Table S7 provides the specific functions of the R package.

Ethics approval and consent to participate. Not applicable, data was collected from public data reposi-
tories.

Guidelines statement. All experimental protocols were performed in accordance with the relevant guide-
lines and regulations and adhered to the Declaration of Helsinki.

Results
Necroptosis‑related lncRNAs of patients with LUAD. As shown in the flow chart (Fig. 1), the TCGA 
database was used in retrieving the LUAD transcriptome data. Data that contained no duplicates and follow-up 
time were not included in the present research, and 497 LUAD samples and 54 normal tissue samples adjacent 
to the tumor were considered. From GSEA and previous reports, we acquired a 67 necroptosis-related genes (nr-
genes) profile (Supplementary Table S1). Co-expression analysis was conducted between lncRNAs and nr-genes 
that were known, and differentially expressed lncRNAs (|LogFC|> 1.0 and p < 0.05) between cancer and nor-
mal samples were identified. There was a total of 484 identified nrlncRNAs (Supplementary Table S2), and 140 
obtained DEnrlncRNAs; of the 140, there were 127 upregulated and 13 downregulated DEnrlncRNAs (Fig. 2A,B, 
and Supplementary Table S3).

Risk Score =

n∑

i=1

Risk coefficient i × nrlncRNA Expression i.

http://xCell.ucsf.edu/
http://icbi.at/quantiseq
http://timer.cistrome.org/
http://cibersort.stanford.edu/
http://epic.gfellerlab.org
http://www.r-project.org
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Establishment of differentially expressed necroptosis‑related lncRNA pairs and the risk coef‑
ficient model. By making the 140 DEnrlncRNAs match from several cycles, 7182 differentially expressed 
necroptosis lncRNA pairs, in total, were acquired (Supplementary Table  S4). By performing univariate Cox 
(uni-Cox) regression analysis, we identified 196 DEnrlncRNA pairs that could significantly affect LUAD patient 
survival (Supplementary Table S5). Next, 26 DEnrlncRNAs pairs were identified for the risk coefficient model 
building by performing the LASSO regression analysis. These 26 DEnrlncRNA pairs were then analyzed by per-
forming multivariate as well as univariate Cox regression analysis (Fig. 3A,B) to obtain the risk factor for each 
necroptosis-related lncRNA pair (Table 1).

Assessment of the prognostic predictive performance of the risk model. The 26 prognostic DEn-
rlncRNA pairs that were selected were utilized in constructing patients’ receiver operator characteristic (ROC) 
curves during the periods of 1, 2, and 3 years (Fig. 4A). The areas under the curve (AUC) during the periods of 
1, 2, and 3 years were found to be 0.834, 0.790, and 0.821, respectively, which also contained a predictive signifi-
cance. The 1-year area under the curve (AUC) was calculated of 0.834, which was the largest AUC (Fig. 4B). The 
cut-off value was computed based on the best fit and found to be 2.031(Fig. 4C). This cut-off value was used in 
differentiating between high- and low-risk groups of patients with LUAD. Accordingly, the low-risk group con-
tained 338 patients who participated in the group, whereas the high-risk group contained 126 patients.

Correlation analysis of clinical features with the aid of the risk model. R was used in analyzing 
the correlation between risk-subgroup patients and risk scores (Fig. 5A). We obtained the relationship of the 
patients on their risk coefficient score as well as the survival status (Fig. 5B). Subsequently, through the use of the 
survival status from both groups, the construction of the Kaplan–Meier curve was achieved (Fig. 5C). The find-
ings indicated that the patients’ rate of survival in the low-risk group was substantially greater in comparison to 
that of the group of high-risk (p < 0.001). Moreover, patients belonging to the low-risk group presented a survival 
time that was significantly longer in comparison to that in the high-risk group (p < 0.001).

For the purpose of examining the correlation between clinical features and LUAD risk, we conducted multiple 
chi-square tests. The Wilcoxon signed-rank test assisted us in obtaining a heatmap (Fig. 6A). From the findings, 

Figure 1.  The study’s flow chart.
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Figure 2.  Heat map and differential expression analysis of necroptosis-related lncRNAs in LUAD. (A) Heat 
map of Necroptosis-related lncRNA genes of normal tissues and LUAD tissues. Upregulation is shown by Red, 
while blue downregulation is shown by Blue. (B) Necroptosis-related lncRNAs in LUAD together with normal 
tissue are shown as a volcano plot. Red dots: upregulated with significant differential expression; green dots: 
downregulated with significant differential expression; black dots: no significant difference.

Figure 3.  Results obtained from Cox regression analysis based on 26 necroptosis-related lncRNA pairs 
associated with the outcome of LUAD. (A) Forest plot of the 26 necroptosis-related lncRNA pairs associated 
with the outcome of LUAD by performing Cox univariate regression analysis. (B) Forest plot of Cox multivariate 
regression analysis of 26 necroptosis-related lncRNA pairs associated with LUAD. Risk factors are highlighted in 
red, while protective factors are highlighted in green.
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it was evident that there was a significant correlation between the risk coefficient score and LUAD patients’ sur-
vival status (p < 0.001), T stage (p < 0.001), N stage (p < 0.01), and tumor stage (p < 0.001). The scatter diagrams 
of clinical characteristics indicated that risk scores were significantly different by clinical-stage (Fig. 6D), T stage 
(Fig. 6E), N stage (Fig. 6G), and survival status (Fig. 6H), while Age (Fig. 6B), Gender (Fig. 6C), and M stage 
(Fig. 6F) were not significantly different.

From the findings of the study, it was evident that the clinical-stage of LUAD patients (p < 0.001, HR = 1.580, 
95% CI [1.348–1.852]), T stage (p < 0.001, HR = 1.587, 95% CI [1.300–1.936]), M stage (p = 0.026, HR = 1.920, 95% 
CI [1.080–3.414]), N stage (p < 0.001, HR = 1.695, 95% CI [1.392–2.056]), and risk score (p < 0.001, HR = 1.256, 
95% CI [1.211–1.302]) indicated that differences were significant according to the results of the univariate Cox 
regression analysis (Fig. 7A). However, the risk score (p < 0.001, HR = 1.235, 95% CI [1.186–1.286]) was the only 
factor whose presentation was a prognostic predictor that was independent by performing the multivariate Cox 
regression analysis (Fig. 7B). We did a comparison on the ROC curve of clinical features and the risk coefficient 
score during the period of 1 year (Fig. 7C). The result showed that the patients’ risk score (AUC = 0.834) and 
stage (AUC = 0.709) had the highest predictive efficacy.

Immune‑cell infiltration and risk coefficient model correlation. We assessed if there was a relation-
ship between the tumor immune microenvironment and the model (Fig. 8). The findings are recorded in Sup-
plementary Table S6. By performing Spearman correlation analysis, we established a positive correlation existed 
on the tumor-infiltrating immune cells when compared to the high-risk group, including common lymphoid 
progenitors, resting mast cells, CD4 + T cells, macrophage M1, uncharacterized cells, macrophage M0, as well as 
neutrophils (Supplementary Fig. S1).

Correlation between risk coefficient model and genes. We also did an analysis of the correlation of 
genes to that of the risk coefficient model and found out that a relationship between high-risk scores and the 
expression level of CTLA4 existed (p < 0.001, Fig. 9A). Nevertheless, GAL9 (p > 0.05, Fig. 9B), HAVCR2 (p > 0.05, 
Fig.  9C), LAG3 (p > 0.05, Fig.  9D), PD1 (p > 0.05, Fig.  9E), PDCD1LG2 (p > 0.05, Fig.  9F), PDL1 (p > 0.05, 
Fig. 9G), and TIGIT (p > 0.05, Fig. 9H) indicated that the correlation was not significant.

The correlation between the risk coefficient model and chemotherapeutic agents. Moreo-
ver, we investigated the correlation between the risk coefficient model and the sensitivity to chemotherapeutic 
agents. To assess the drugs’ efficacy, we utilized IC50. Lower IC50, indicating that the sensitivity was higher. 
According to these findings, we established that there was a correlation between the high-risk group and the 

Table 1.  26 pairs of prognostic necroptosis-related lncRNA pairs multivariate COX regression analysis results. 
HR hazard ratio, HR.95L 95% CI lower limit, HR.95H 95% CI upper limit.

LncRNAs Coefficient HR HR.95L HR.95H P-value

AL117379.1|SCAT2 − 0.4473 0.6393 0.4414 0.9258 0.0179

RHOQ-AS1|AL359697.1 − 0.3710 0.6900 0.4655 1.0228 0.0647

RHOQ-AS1|AL136115.2 − 0.3629 0.6957 0.4940 0.9796 0.0377

AC130650.2|AC010168.2 0.5233 1.6876 1.1877 2.3978 0.0035

AC093788.1|AC008870.2 0.5064 1.6593 1.1756 2.3420 0.0040

AL109614.1|KDM4A-AS1 0.2945 1.3424 0.9523 1.8923 0.0927

AC016394.1|AC026356.1 − 0.5008 0.6060 0.4229 0.8684 0.0064

EML4-AS1|TMPO-AS1 − 0.3142 0.7302 0.4693 1.1363 0.1635

AC021851.1|SAMD12-AS1 0.2816 1.3252 0.9502 1.8481 0.0971

AC011815.1|DHDDS-AS1 0.4371 1.5482 1.0490 2.2849 0.0277

AF117829.1|AC004908.2 0.2826 1.3266 0.9266 1.8991 0.1227

AF117829.1|AC008669.1 0.3991 1.4905 1.0251 2.1671 0.0366

AC006017.1|AC002128.1 − 0.4567 0.6334 0.4214 0.9520 0.0281

AL513327.1|FAM30A 0.3370 1.4007 0.9224 2.1270 0.1138

AC079684.1|TMPO-AS1 − 0.5265 0.5907 0.4124 0.8460 0.0041

KDM4A-AS1|Z82243.1 − 0.3426 0.7099 0.5085 0.9911 0.0442

AC010834.3|AC092279.1 0.3084 1.3612 0.9423 1.9662 0.1003

SAP30L-AS1|AC007546.1 0.3922 1.4802 1.0092 2.1707 0.0447

SAP30L-AS1|AC008870.2 0.3776 1.4588 0.9563 2.2253 0.0797

AC104695.3|AC037198.1 0.4019 1.4946 1.0327 2.1632 0.0331

AC139887.4|AC022211.1 − 0.3417 0.7105 0.4789 1.0543 0.0896

AC007552.2|AC022211.1 − 0.3256 0.7223 0.5079 1.0270 0.0701

AC245884.8|AL355075.2 0.2626 1.3003 0.9290 1.8200 0.1258

AC245014.3|FAM30A 0.2807 1.3241 0.9203 1.9050 0.1304

AC010186.3|AC092279.1 0.4071 1.5025 1.0541 2.1417 0.0244
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higher sensitivity to cisplatin (Fig. 10A), docetaxel (Fig. 10B), erlotinib (Fig. 10C), and paclitaxel (Fig. 10E). 
There was no significant difference in the sensitivity to gefitinib in both groups (Fig. 10D).

Discussion
Recent research reports have set up signatures based on lncRNAs for the purpose of evaluating the prognosis of 
patients with cancer. lncRNA-related models of LUAD, such as immune-related  lncRNAs20–22, autophagy-related 
 lncRNAs23–25, pyroptosis-related  lncRNAs26, and methylation-driven  lncRNAs27, were reported in previous stud-
ies. In this study, we constructed the models of risk coefficient, which were essential in the assessment of the 
LUAD patients’ prognosis based on the nrlncRNA pairs.

In the present research, we firstly obtained LUAD patients’ nr-gene and lncRNAs data from GSEA and TCGA, 
did an analysis of the differential co-expression in establishing the DEnrlncRNAs, and then performed lncRNA 
pairs validation through cyclically single pairing them together with a matrix of 0-or-1. Second, we acquired 
each sample’s risk coefficient of patients with LUAD and then constructed a risk coefficient model by perform-
ing multivariate regression, LASSO regression analyses, as well as Cox multivariate and univariate regression 
analyses. Third, we computed each ROC’s AUC value in obtaining the optimal model fit and then obtained the 
critical value based on optimal fitting of the Akaike information criterion (AIC), which was utilized in identifying 
the difference existing in the high and low-risk groups. The novel model had the clinical practicability benefit in 
differentiating between the cases belonging to both groups.

We performed the correlation analyses in assessing the efficacy and accuracy of the constructed risk coefficient 
model, including tumor-infiltrating immune cells, survival, genes, clinical characteristics, and chemotherapeutic 
agents, and found that the model algorithm worked well.

Figure 4.  The curves of ROC were obtained after the determination of the risk coefficient model based on 
necroptosis-related lncRNA pairs of LUAD. (A) The model was used in obtaining ROC curves during the 
periods of 1 year, 2 years, as well as 3 years. The values for AUC were greater than 0.790. (B) A ROC curve of 
one-year containing the highest value of AUC was established with the aid of the model. (C) 2.031 was the cut-
off value, which differentiates between high- and low-risk patients using the best fit.
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To find out the correlation between the risk scores and tumor-infiltrating immune cells, we utilized seven 
techniques that are generally accepted to estimate the immune infiltrating cells, including TIMER, XCELL, 
CIBER-SORT, QUANTISEQ, EPIC, MCPCOUNTER, as well as CIBERSORT-ABS, and found out that the 
relationship between the tumor-infiltrating immune cells, such as CD4 + T cells, resting mast cells, common 
lymphoid progenitors, uncharacterized cells, macrophage M0, macrophage M1, and neutrophils and the high-
risk group was positive (p < 0.01). Wu et al.28 proposed that LINC00665 played a critical role in enhancing the 
infiltration levels of macrophages, dendritic cells, and inhibited regulatory T cells to avoid exhaustion. T-cell. 
Xu et al.29 established that HK3 enhanced the infiltration of macrophages and monocytes that presented the 
antigens of the cell surface and regulated the debilitating T cells’ critical genes (PD1 and CTLA4), thus having 
an effect on the process of immune escape.

In cancer immunotherapy, it was found that necroptosis participated highly in the immunity of the antitu-
mor. Good performance was evident from the prognostic signature that was necroptosis-related on the basis 
of four genes (EZH2, TLR4, TRAF2, and PGAM5) in the prediction of the prognosis of patients with stomach 
 adenocarcinoma30. Immune checkpoint inhibitors (ICIs) include anti-cytotoxic T lymphocyte-associated antigen 
4 (CTLA-4) and anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1). Recent 
studies have identified novel immune checkpoint targets such as lymphocyte activation gene 3 (LAG-3), T cell 
immunoglobulin and ITIM domain (TIGIT), T cell immunoglobulin and mucin-containing domain 3 (TIM-3), 
hepatitis A virus cellular receptor 2 (HAVCR2) gene and the TIM-3 ligand galectin-9 (Gal-9), etc. Cytotoxic T 
lymphocyte-associated protein 4 (CTLA-4) expressed by T cells is recognized as a key immune checkpoint for 
autoimmunity and cancer therapeutic targets. CTLA-4 is a member of the immunoglobulin-associated receptor 
family, which Suppresses T cell activation and responsible for all aspects of T cell immune regulation. The gen-
eration of specific monoclonal antibodies illustrates the controlling role of CTLA-4 in T cell responses. CTLA-4 
can mediate negative regulation of T cell activation by competing with the co-stimulatory receptor CD28 for 
binding to its co-ligands B7.1 and B7.2. It can also be regulated by promoting Treg development and function.
After activation, CTLA-4 expression is induced on CD4 + Foxp3− (forkhead box P3) and CD8 + Foxp3− con-
ventional T cells, while CTLA-4 constitutively expressed by CD4 + Foxp3 + Treg  cells16. We believe that there 
are differences between various immune cells and immune-related phenotypes. According to the findings of the 
present research, we observed the expression levels of CTLA4 were elevated in samples from patients belonging 
to the high-risk group, which can be utilized as a potential therapeutic target.

Tumor microenvironment changes may be linked to the development of immune-targeted drug resistance, 
making it crucial to discover sensitive drugs for clinical therapy. The correlation analysis of chemotherapeutic 
agents showed that the sensitivity to cisplatin, docetaxel, erlotinib, and paclitaxel was greater in the group of 
high-risk in comparison to that of the group of low-risk. It was shown that necroptosis induction in the immune 
checkpoint blockade (ICB) and tumor microenvironment may have a synergistic impact on enhancing a long-
term tumor  rejection7. The phosphorylation or lack of caspase 8 was essential for Paclitaxel-triggered necroptosis 
in lung adenocarcinoma cells. When epithelial-mesenchymal transition (EMT) was triggered, a novel lncRNA, 
called lncCRLA, was markedly upregulated, which inhibited RIPK1-induced necroptosis by interfering with the 
RIPK1-RIPK3 interaction by binding to the RIPK intermediate  domain31.

Necroptosis is a form of regulated cell death regulated by RIP1, RIP3, and MLKL. Inducing necroptosis 
in mice with orthotopic pancreatic cancer increased the survival time and attenuated tumor growth, stroma, 
and  metastasis32. lncRNAs have been established to affect tumor cell growth from several previous research, 
which is crucial for clinical therapy as well as patient  prognosis33. For example, via the mechanism of inhibiting 

Figure 5.  Risk coefficient model for the prognosis anticipation of LUAD. (A) To classify patients into low- and 
high-risk groups, the risk score was utilized. (B) Scatter plot of risk score and survival outcome for each patient. 
(C) Construction of the Kaplan–Meier curve on the basis of the survival status of patients belonging to both 
groups.
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miR-150-5p, lncRNA LINC00673 regulates the invasion, epithelial-mesenchymal transition, migration, as well 
as the proliferation of non-small cell lung  cancer34, while LINC00472 inhibited EMT via binding to YBX1 and 
affecting the cell’s mechanical features, and as a result, obstructing its invading and metastasizing  ability35. The 
lncRNA MIF-AS1 enhanced the proliferation of tumor cells while reducing apoptosis in digestive system  cancer36. 
Experiments have shown that the lncRNA that is necrosis-related has been shown from several experiments 
to target miR-873; moreover, RIPK1/RIPK3 plays a role in the regulation of the cardiomyocyte  necroptosis37. 
Another study found that when HCC expresses lncRNA LINC00176, miRNAs, such as miR-9 and miR-185, 
are produced and downregulate the mRNAs they target, which enhances the necroptosis of liver cancer  cells38.

The novel insights about nrlncRNAs could assist us in gaining a clear understanding of the LUAD mechanism, 
which could have a crucial role in the treatment. However, in the present research, there were some disadvan-
tages together with limitations. For initial analysis, there was insufficient raw data and thus more clinical data 
are needed. The sample size was small. The risk factor model lacked external data validation, which reduced the 
reliability of the model, so further validation needs to be performed.

Finally, the present research showed that nrlncRNAs and the risk coefficient might be utilized in predicting 
the prognosis of patients with LUAD and assist in identifying those patients who might benefit from chemo-
therapeutic agents.

Figure 6.  Risk coefficient model of LUAD for clinical correlation analysis. (A) The clinical correlation heatmap, 
(B) age, (C) gender, (D) clinical-stage, (E) T stage, (F) M stage, (G) N stage, and (H) survival status.
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Figure 7.  Cox regression analysis of clinical correlation characteristics and integrated ROC curves. (A) Clinical 
characteristics of Cox univariate regression analysis indicated that Stage, T stage, M stage, N stage, and risk 
score were correlated with the outcome of LUAD. (B) Cox multivariate analysis showed that risk scores were 
predictors of outcome in an independent manner. (C) The comparison of risk coefficient score and clinical 
characteristics showed that Stage (AUC = 0.709) and risk coefficient score (AUC = 0.834) had the highest 
predictive efficacy.
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Figure 8.  Correlations between immune cell infiltrations and risk score of LUAD samples.
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Figure 9.  The relationship between LUAD patients’ genes and risk model. The levels of expression of (A) 
CTLA4; (B) GAL9; (C) HAVCR2; (D) LAG3; (E) PD1; (F) PDCD1LG2; (G) PDL1; (H) TIGIT in high-risk and 
low-risk LUAD subjects. Ns not significant; ***p < 0.001.
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Data availability
The datasets analysed during the current study are available in the [The Cancer Genome Atlas (TCGA)] reposi-
tory, [persistent web link to datasets] [https:// portal. gdc. cancer. gov/ repos itory].
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