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Abstract

Optimality principles have been proposed as a general framework for understanding motor control in animals and humans
largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these
concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed
execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained
balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while
minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic
musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor
hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to
experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination
patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions
in a single biomechanical context, we identified a common optimization framework that could predict up to 48
experimental conditions per animal (n = 3) across both perturbation directions and different biomechanical contexts created
by altering animals’ postural configuration. Predictions were further improved by imposing experimentally-derived muscle
synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance.
These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar
kinetics to the optimal solution, but with increased control effort (<26) compared to individual muscle control. Our results
are consistent with the idea that hierarchical, task-level neural control mechanisms previously associated with voluntary
tasks may also be used in automatic brainstem-mediated pathways for balance.
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Introduction

Although optimality principles have been presented as a general

framework for understanding motor control in animals and in

humans [1], the ability of optimization to explain experimental

data using high-dimensional musculoskeletal models remains

largely unknown. Studies using optimization approaches have

demonstrated an impressive ability to predict qualitative features

of motor behaviors, such as the presence of low-dimensional

muscle patterns [2,3], and the presence of high levels of noise in

some redundant degrees of freedom and low levels of noise in

others [4]. Further, studies using approaches based on optimal

feedback control have even predicted features such as counter-

movements [1,5]. However, much of this evidence relies on

biomechanical models that are abstract [1], that lack muscles [6,7]

or that have reduced degrees of freedom for computational

efficiency [3,8,9,10]. When complex musculoskeletal models are

used to predict experimental data, the greatly increased complex-

ity often precludes investigation of more than a single experimen-

tal condition [2,11], which may be insufficient to discriminate

different candidate control strategies or cost functions [12,13].

Here, our goal was to test optimization as a predictive tool for

understanding motor control by predicting detailed changes in

experimentally-measured quantities across multiple biomechanical

conditions.

The postural response to perturbations during standing balance

is a motor paradigm in which consistent patterns of motor outputs

are elicited across different biomechanical contexts, but the degree

to which these patterns reflect neural control or biomechanical

mechanisms is unknown. To maintain balance, the center of mass

(CoM), a task-level variable, must be maintained above the base of

support of the feet. Robust patterns of muscle activity referred to

as the automatic postural response (APR) occur about 40 ms after

horizontal translations of the support surface [14] and are

consistently tuned to the direction of CoM motion across different

perturbation types [15], suggesting that these long-latency

responses reflect task-level control of the CoM by the nervous

system. This robustness is surprising given that in a quadruped, the

net force acting on the CoM can be produced by many

combinations of individual limb forces. Further, each limb force

can be produced by many patterns of muscle activity due to

muscular redundancy [16,17]. Active ground reaction forces
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during the postural response (,100 ms latency) tend to be directed

along a diagonal axis either towards or away from the CoM across

perturbation directions [18]. The distribution of individual limb

force direction and magnitude in the horizontal plane is

consistently altered by varying the distance between the fore-

and hind-feet, yet surprisingly, the directional tuning of muscle

activity remains intact (Figure 1) [19], suggesting that the limb

force variation may be due largely to differences in biomechanical

context across postural configurations.

However, we demonstrated that biomechanical constraints

alone are insufficient to determine the active production of limb

forces during perturbations to standing balance. Measured

postural forces are nearly ten times smaller than the absolute

force production capability of a detailed musculoskeletal model of

the isolated cat hindlimb in all directions [20]. The diagonal

orientation of the forces is not predicted from anisotropies in the

force-generating capability of the limb, which is greatest in the

anterior-posterior direction. Further, changes in postural force

directions across biomechanical contexts cannot be attributed to

alterations in the force-generating capability of the limb, as peak

force directions do not change appreciably across postural

configurations [21]. Therefore, here we sought to improve our

predictions of experimental measures through the addition of a

model of a neural control mechanism that could achieve

appropriate task-level forces and moments at the CoM while

coordinating redundancy across both multiple muscles and across

multiple limbs.

The optimal feedback control of CoM dynamics predicts the

timecourse of activity in single muscles during balance control in

both quadrupeds and bipeds [22,23,24]; however, it remains

unknown whether task-level constraints at the CoM are sufficient

to predict execution-level motor patterns across multiple muscles

and limbs in a complex and redundant musculoskeletal system.

Such redundancy has previously been resolved by minimizing

neural control effort, assumed to be equivalent to the sum squared

muscle activation or sum squared motor commands [2,13,25,26].

Such optimizations have been applied to predict muscle tuning

curves across conditions in relatively simple or quasi-static motor

tasks [2,26], or to deduce complex muscle activation patterns from

detailed kinetic and kinematic measures [27]. Moreover, effort

minimization is also sometimes treated as equivalent to energy

minimization, which can predict aspects of gait in simple models of

locomotion in humans and other animals [28,29,30]. However,

predicting muscle coordination in detailed musculoskeletal models

by minimizing quantities like effort remains challenging [11].

Further, it has been argued that low-dimensional muscle

patterns emerge from optimization of the activation of individual

muscles, without explicit neural constraints on muscle activation

[1,2]. While low-dimensional patterns in the form of muscle

synergy groupings have been observed experimentally

[19,31,32,33,34,35,36], studies using planar musculoskeletal

models have noted similarities in motor behaviors predicted by

optimally controlling individual muscles or muscle synergies

[3,37]. Such predictions have been based on relatively simple or

abstract musculoskeletal models, and thus it is not clear whether

such emergent low-dimensional patterns are competent to predict

forces and muscle activation patterns in more behaviorally-

relevant motor tasks. It has also been argued that muscle synergies

may allow for near-optimal performance with simplified compu-

tations based on a reduced number of controlled variables [37,38],

but may increase control effort due to additional coactivation [39].

However, direct comparisons of the energetic cost associated with

controlling individual muscles or muscle synergies in a 3D model

of a natural behavior have not been performed.

Here, we sought to identify a task-level optimization framework

that could predict execution-level limb forces and muscle tuning

measured in an unrestrained balance task across different

biomechanical contexts. We hypothesized that features of

execution-level patterns of limb forces and muscle activity reflect

the minimum-effort solution for achieving appropriate forces and

moments at the CoM. We compared predictions using a static

Figure 1. Schematic of variations in muscle activity and limb
forces with altered stance distance during balance tasks in cats
hypothesized to arise from neuromechanical interactions. Top
to bottom: sagittal-plane kinematics, left hindlimb ground reaction
forces, left hindlimb muscle tuning curves. As stance distance between
the fore- and hind-limbs is decreased from left to right (top row), a
wider range of ground reaction force directions is observed (middle
row), as well as increased muscle activation; however, muscle tuning to
perturbation direction is conserved (bottom row).
doi:10.1371/journal.pcbi.1002465.g001

Author Summary

The nervous system has the ability to rapidly and flexibly
coordinate many muscles and limbs to produce move-
ments. This neuromechanical transformation must robustly
achieve motor goals under the changing mechanics of the
body and environment, and select one solution amongst
many alternatives. What computational principles govern
such decisions? Although optimality principles have
predicted features of biological movement in simple
models, here we show that this computational principle
can robustly predict detailed experimental measures in an
unrestrained, whole-body balance task. Detailed patterns
of muscle activity and forces across multiple movement
directions and body configurations were predicted based
on interactions between musculoskeletal mechanics of the
limbs, and task-level neural strategy of controlling the CoM
mechanics while minimizing control effort. Moreover,
similar muscle activity and forces were generated when
muscles were coupled together in groups called muscle
synergies, reducing the number of independent variables
that are controlled. Our work is consistent with the idea
that the nervous system may learn to coordinate muscles
and limbs by minimizing effort in producing natural
movements, and may use approximate solutions based
on muscle synergies. Understanding such neural mecha-
nisms may allow us to predict the effects of neural injury
and disease on motor function.

Optimization Predicts Redundant Forces for Balance
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quadrupedal musculoskeletal model of the cat to data from

experiments. Specifically, we predicted that limb forces would be

directed along the diagonal for long stance distances, and more

evenly distributed in direction at short stance distance. Further, we

predicted that muscle activity would be low-dimensional, and that

muscle tuning to perturbation direction would scale, but not shift

as postural configuration varied. By varying cost functions and

task-level variables we demonstrated that the predicted outputs

depended on the optimization formulation, and not simply the

biomechanical constraints. Finally we compared results from

optimal control of individual muscles to those based on controlling

experimentally-derived muscle synergies. Our work suggests that

the neural control of this natural behavior can be well described by

a cost function that minimizes effort expended in the muscles in

order to achieve appropriate forces and moments to stabilize the

CoM. Further, our results are consistent with the idea that the

computation may be implemented in a hierarchical control

framework that allows for approximately-optimal motor patterns

with a reduced number of controlled variables.

Methods

Summary
To test the hypothesis that execution-level variables reflect

optimal control of task-level variables, we predicted patterns of

limb forces and muscle activity in response to multidirectional

postural perturbations in cats based on achieving task-level

mechanics while minimizing different formulations of control

effort (Table 1). Using a detailed static quadrupedal musculoskel-

etal model of standing balance, we first identified patterns of

muscle activity that produced forces and moments at the CoM

necessary to maintain balance in response to postural perturba-

tions in twelve different perturbation directions while minimizing

neural control effort (model MMe). We considered multiple

postural configurations with altered stance distance between the

fore- and hind-feet. We compared identified muscle activation

patterns and the resulting ground reaction forces to mean values

measured experimentally during the initial response. In order to

demonstrate that biomechanical constraints alone could not

account for the identified solutions, we demonstrated that alternate

cost functions and task goals produced qualitatively different

results. We compared predictions from minimum effort control of

CoM force and moment to predictions from minimizing an

alternative cost function designed to be a better representation of

the metabolic energy used in the muscles (model MMm).

Additionally, we compared predictions of controlling an alternate

task-level variable, the position of the center of pressure (CoP;

model MPe). Finally, to investigate whether task-level control of

the CoM could be accomplished with a small number of muscle

synergies, rather than with individual muscles, we constrained the

muscles in the model to activate in muscle synergies adapted from

previously-observed experimental data (models SMe and SMc).

We estimated and compared the energetic cost, the computational

cost, match to experimental data, and the dimensionality of the

muscle activation patterns predicted by controlling individual

muscles or postural muscle synergies.

Postural perturbation paradigm
We parameterized the musculoskeletal model and assessed

predicted limb forces and muscle activation patterns using

previously-collected data of three cats during quiet standing and

postural perturbations in multiple postural configurations [19].

The cats (bi, 2.7 kg; ru, 4.2 kg; ni, 3.5 kg) were trained to stand

unrestrained with weight evenly distributed on four 8 cm-square

force plates mounted on a moveable perturbation platform that

could translate in any of 12 directions in the horizontal plane

(Figure 2). Translations were 15 cm/s velocity and 5 cm

amplitude. Data were collected in a self-selected postural

configuration (preferred configuration), and in postural configu-

rations in which the stance distance between the fore- and hind-

force plates was altered. The following stance distances were

examined in each of the animals: bi, 30 cm, 27 cm (preferred),

20 cm, and 13 cm; ru, 40 cm, 29 cm (preferred), 24 cm, and

18 cm; ni, 29 cm (preferred), 24 cm, and 18 cm. Stance width

between the left and right force plates was 8 cm in all conditions.

We modeled muscle activity and limb forces associated with the

initial period of the automatic postural response (APR) to

perturbation, which can be studied as a quasi-static process.

Multiple experimental and modeling studies have demonstrated

that the forces during the initial portion of the APR can be

attributed primarily to muscular forces [19,40,41]. During this

period the acceleration- and velocity-dependent terms in the

equations of motion are negligible so that the influence of dynamic

Table 1. Hypothesized models of optimal task-level control.

Model
Execution-Level
Variable

Task-Level
Variable Cost Function

MMe muscle CoM muscle effort, Eq. 3

MMm muscle CoM muscle energy, Eq. 4

MPe muscle CoP muscle effort, Eq. 3

SMe synergy CoM muscle effort, Eq. 3

SMc synergy CoM synergy effort, Eq. 6

doi:10.1371/journal.pcbi.1002465.t001

Figure 2. Experimental postural perturbation paradigm and
example data used for model constraints and validation. A:
Directions of translational perturbations are evenly-spaced in the
horizontal plane. B: Coordinate system for forces and kinematics. C:
Time traces of platform position, CoM and CoP displacement for a 60u
perturbation along the direction of the perturbation, and left hindlimb
ground reaction forces for 20 perturbations (cat bi) in the preferred
postural configuration. The shaded region represents the initial period
of active force generation due to the postural response. The CoM and
CoP values in the time bin shown were used to define constraints on
performance of the quadrupedal model, and individual forces across
the four limbs were then compared to model predictions.
doi:10.1371/journal.pcbi.1002465.g002

Optimization Predicts Redundant Forces for Balance

PLoS Computational Biology | www.ploscompbiol.org 3 April 2012 | Volume 8 | Issue 4 | e1002465



terms on ground reaction forces is minimal [42] and the task can

be approximated as quasi-static. This feature is due to the fact that

there are distinct delays between the perturbation onset, the

evoked muscular activity, and the subsequent active force. EMG

activity due to the initial perturbation acceleration occur

approximately 60 ms after the onset of the perturbation and only

produces active forces at the ground after an additional 60 ms

delay. Thus, there is no interaction between the perturbation

acceleration and the active forces which occur during the constant-

velocity, e.g. quasi-static phase of the perturbation [15]. Similarly,

the acceleration of the body segments is largest while the

acceleration of the platform is transmitted across all body segments

[43], whereas after this period, the CoM has approximately

constant horizontal-plane velocity (note the approximately con-

stant slope of the CoM displacement during the active period

indicated by the gray bar, Figure 2). Therefore, inertial forces

associated with segment accelerations are not appreciable during

the active response. Second, due to the relatively short latency of

the active response compared to the overall motion, the posture of

the animal has not changed appreciably from quiet standing at the

onset of the active response. The posture of the animal affects

gravitational forces, as well as torque generation via the muscle

moment arm matrix. However, at the onset of the active force, the

total displacement of the CoM is typically less than 1 cm and the

effective tilt angle of the CoM is 1–2u [15]. Therefore the posture

can be considered to be static, with no appreciable changes in

gravitational forces or muscle moment arms. Therefore, our model

assumes that all of the ground-reaction forces during the initial

period of the APR are due to muscular activation, rather than

dynamic terms.

Quadrupedal musculoskeletal model
We created the quadrupedal musculoskeletal model by

modifying and assembling four instances of an existing static, 3-

D musculoskeletal model of the cat right hindlimb [20,21]. The

hindlimb model relates 31-element muscle excitation vectors �ee to

the six-element force and moment system �FF produced at the

hindlimb endpoint:

�FF~ J �qqð ÞT
� �z

R �qqð ÞF0FAFL �qqð Þ�ee ð1Þ

where the vector q is comprised of the model’s seven kinematic

degrees of freedom: three at the hip, and two each at the knee and

ankle, J �qqð ÞT
� �z

designates the Moore-Penrose pseudoinverse of

the transpose of the geometric system Jacobian (pinv.m), R �qqð Þ
designates the moment-arm matrix, and F0 and FAFL �qqð Þ are

diagonal matrices of maximum isometric forces and scaling factors

based on muscle force-length properties [44]. Hindlimb model

parameters are provided for each animal and experimental

condition in Dataset S1. The muscles included in the hindlimb

model and recorded in experimental data are summarized in

Table 2. A closed-form expression for the Jacobian was identified

with AutoLev software (Online Dynamics, Inc., Sunnyvale, CA,

USA; currently being developed as MotionGenesis Kane) and

implemented in Matlab (Mathworks, Natick, MA). The model of

the left hindlimb was created by duplicating the right hindlimb

model and reversing the sign of the lateral force component.

Prior analyses demonstrated that the hindlimb model is

insensitive to the pseudoinverse operation, although the choice

of pseudoinverse can be particularly important in robotics

applications [45,46]. Two previous studies demonstrated that the

overall hindlimb force production capability is unchanged whether

one degree of freedom (hip rotation) is locked, making the

Jacobian 666 and exactly invertible [20], or whether the

pseudoinverse is used [21], because the majority of the muscles

in the model have hip rotation moment arms that are small in

comparison to other degrees of freedom at the hip. Further, very

similar endpoint force directions are produced by the muscles in

the model in these two conditions. Across muscles, animals, and

experimental conditions, the average difference in predicted

endpoint force direction between the hip-locked and pseudoin-

verse conditions was only a few degrees (2.865.0u, dorsal plane;

4.4611.3u, sagittal plane). These results are consistent with recent

experimental results in which similar mappings between muscle

forces and endpoint forces and torques were identified when

mechanical degrees of freedom were locked or freed [46].

Because a detailed musculoskeletal model of the forelimb was

unavailable, we approximated the forelimb by modifying the

hindlimb model into a vertical strut that transformed muscle

activation to vertical force. Although the forelimbs do not always

contribute to horizontal-plane forces during the postural response

[18], they contribute non-negligible vertical forces, of magnitudes

several times larger than their horizontal force magnitudes. There

also may be less potential for horizontal-plane forces to be

produced by the extensor muscles in the cat forelimb because the

morphology is more columnar than that of the hindlimb.

Therefore, we approximated the forelimb as a transformation

from muscle activity to vertical force by eliminating all rows of

Equation 1 except for the row corresponding to vertical force.

The transformation from muscle activation to CoM force and

moment in the quadrupedal musculoskeletal model was found

using the forces from each limb and the approximate location of

the CoM. Resultant CoM force was calculated as the sum of the

individual limb forces. Resultant CoM moment was calculated as

the sum of the vector cross products between the vectors from the

CoM to the limb endpoints and the limb forces. Limb endpoint

moments were assumed to make negligible contributions to the net

Table 2. Summary of muscles included in the hindlimb
model and analyzed in experimental data.

Muscle name Abbreviation Muscle name Abbreviation

adductor femoris ADF plantaris PLAN

adductor lounges ADL psoas minor PSOASb,n

biceps femoris anterior BFAn peroneus tertius PT

biceps femoris posterior BFPb,n,r pyriformis PYR

extensor digitorum
longus

EDL quadratus femoris QF

flexor digitorum longus FDLr rectus femoris RFb,n,r

flexor hallucis longus FHL sartorius SARTb,n,r

gluteus maximus GMAX semimembranosus SMb,n,r

gluteus medius GMEDb,n,r soleus SOL

gluteus minimus GMIN semitendinosus STn,r

gracilis GRACb,n,r tibialis anterior TA

lateral gastrocnemius LG tibialis posterior TP

medial gastrocnemius MG vastus intermedius VIb

peroneus brevis PB vastus lateralis VLb

Pectineus PEC vastus medius VMb,n,r

peroneus longus PL

Superscripts b, n, r designate muscles that were recorded in cats bi, ni, and ru,
respectively.
doi:10.1371/journal.pcbi.1002465.t002

Optimization Predicts Redundant Forces for Balance
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moment at the CoM. The net force and moment at the CoM due

to individual limb forces �ffl is thus:

�ff CoM

�mmCoM

~

~

P
l[ LF RF RH LHf g

�ff l

P
l[ LF RF RH LHf g

�rrl|�ff l

ð2Þ

Where �rrl designates the vector from the CoM to the endpoint of

limb l. The transformation from muscle activation to force and

moment at the CoM was formulated as a 66124 matrix equation

for each postural configuration and animal relating muscle

activation levels (31 muscles in each limb, for 124 total) to the

6D CoM force and moment.

Musculoskeletal model parameterization
We identified joint angles in the musculoskeletal model that best

approximated the recorded kinematics of each cat during quiet

standing in each postural configuration (Figure 3A). Positions of

kinematic markers located on the platform and the left sides of the

body were collected at 100 Hz during each trial for each cat.

Locations of joint centers were estimated from marker positions by

subtracting off joint radii, skin widths, and marker widths. The

joint angles that minimized the squared error between the sagittal-

and frontal-plane angles of the femur, shank, and foot in the model

and in the background-period kinematics of each trial of each cat

were identified using numerical optimization (fmincon.m) [20]. All

residual segment angle errors were #1024u. Joint angles were

averaged across like trials. Muscle moment arm values and fiber

lengths were determined with SIMM software (Musculographics,

Inc., Santa Rosa, CA) and averaged across like trials.

We approximated the location of the CoM with respect to the

feet in the musculoskeletal model separately for each cat in each

postural configuration based on kinematic data and morphological

parameters. For all conditions, the CoM was assumed to be

located midway between the limb endpoints in both the anterior-

posterior and medial-lateral directions. The height of the CoM

above the plane of the feet was estimated from kinematic data and

morphological parameters separately for each cat in each postural

configuration. Across postural configurations, average CoM

heights for each cat were (mean 6 SD): bi, 12.660.4 cm; ru,

15.260.4 cm; ni, 12.760.8 cm.

Minimum-effort control of CoM force and moment
(model MMe)

To determine whether minimum-effort task-level control of the

CoM could predict execution-level limb forces and muscle activity,

we first identified patterns of muscle activity in the musculoskeletal

model that produced forces and moments at the CoM similar to

observed values while minimizing squared muscle activation

(model MMe). Task-level constraints on CoM force and moment

were based on average values from experimental data (Figure 3B).

Average limb forces and CoM positions during the active period

120–200 ms after perturbation onset [19] were combined to

estimate the average forces and moments at the CoM for each

perturbation direction and postural configuration of each animal.

Moments generated at the limb endpoints were assumed to make

negligible contributions to the net CoM moment. Because values

were similar across animals and postural configurations, a single

set of average CoM forces and moments that was considered

representative for all animals was then created and used as the

optimization constraint: net horizontal-plane forces directed in the

perturbation direction of 2.5 N magnitude, net vertical forces of 30

N, and net pitch-roll moments of 0.75 N-m magnitude directed

perpendicular to the perturbation direction. CoM yaw moment

was left unconstrained. Muscle activation patterns that satisfied

Figure 3. Kinematic and kinetic constraints used in the optimal control models. A: Kinematics of the musculoskeletal model parameterized
to cat bi at four stance distances. LH, left hindlimb; LF, left forelimb; RF, right forelimb; RH, right hindlimb. B: average forces and moments at the CoM
in each perturbation direction. Solid lines indicate experimental data, dashed lines indicate task-level constraints used in models MMe, MMm, SMe,
SMc. C: average displacement of the CoP in each perturbation direction. Solid lines indicate experimental data, dashed lines indicate task-level
constraints used in model MPe.
doi:10.1371/journal.pcbi.1002465.g003

Optimization Predicts Redundant Forces for Balance
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task-level constraints could not be identified analytically without

violating physiological bounds on muscle activation [44]. There-

fore, optimizations were formulated as quadratic programming

problems (quadprog.m) to identify muscle activation patterns that

satisfied task-level constraints while minimizing total squared

muscle activation:

min �eeT�ee
� �

ð3Þ

Where �ee designates a vector containing the activity levels of all

muscles in the model (124). Additional constraints ensured that the

activation levels of each muscle were in the interval (0,1) and that

vertical ground reaction forces were $0. Separate optimizations

were performed for each animal, postural configuration, and

perturbation direction.

Minimum-energy control of CoM force and moment
(model MMm)

To investigate whether similar force predictions could arise

from optimization criteria other than the minimum effort criterion

used in model MMe, we next altered the cost function to better

approximate metabolic energy consumption in the muscles, in

terms of Joules/second, than minimizing Equation 3, but without

the added complexity of Hill-type muscle models [47]. In single

muscle fibers, metabolic energy usage (Joules/sec) is proportional

to stress [48], equivalent to muscle activation in the model used

here [44]. We assumed that the number of fibers in a muscle, and

therefore its energy consumption, is proportional to its mass.

Therefore, we performed additional optimizations with constraints

and methods identical to the first model formulation, but

minimizing total squared muscle activation weighted by muscle

mass:

min �eeT MT M�ee
� �

ð4Þ

Where M is a diagonal matrix of muscle masses. Masses for each

muscle are included in Dataset S1. The majority of muscle masses

(23/31 hindlimb muscles) were taken from the literature [49].

Because muscles for which no data were available were typically

small, these masses were all set to a common low-midrange value.

Minimum-effort control of CoP location (model MPe)
To investigate whether the minimum-effort control of an

alternate task-variable could predict similar limb forces, we tested

a formulation similar to model MMe, except constrained to match

displacements of the CoP in each perturbation direction, leaving

the net force at the CoM unconstrained. Some studies of sagittal-

plane balance in humans have suggested that the location of the

CoP is the task-level variable controlled during balance [50]. Task-

level constraints on CoP displacement were based on average

values from experimental data (Figure 3C). The average

displacement of the CoP at the midpoint of the active period in

each perturbation direction for each postural configuration of each

animal was calculated from the four vertical forces [15]. Similar to

the first model formulation, a single set of corrections in CoP

location (3.3 cm in magnitude and directed opposite the direction

of the perturbation) was created and used as task-level constraints

in the optimizations.

Minimum-effort control of CoM force and moment using
postural muscle synergies (models SMe and SMc)

Next, to determine whether task-level control of the CoM could

be accomplished with a small number of muscle synergies, rather

than individual muscles, we constrained the muscles in each limb

of the musculoskeletal model to activate in 5 muscle synergies

based on muscle synergy force vectors previously observed in the

same animals during the balance task [19]. The model [21],

assumes that the activation of each muscle results from the additive

combination of a few muscle synergies Wj , recruited by scaling

coefficients cj . The activation level of the muscles in the model is

therefore:

�ee~W :�cc ð5Þ

where each element Wij of W represents the activation of the ith

muscle by the jth muscle synergy, restricted to be within the

interval (0,1), and the elements of scaling coefficients �cc are

restricted to be greater than zero. Five muscle synergies and

related ground reaction force vectors were previously extracted

from experimental data of each animal using nonnegative matrix

factorization [19]. The muscle synergy patterns used in the model

were subsequently derived by identifying patterns of muscle

activation in the hindlimb model that could produce each ground

reaction force vector while minimizing squared muscle activation

(Equation 3) [21]. Identical muscle synergies were used in each

limb and in all postural configurations. The constraints and

solution method in this formulation were very similar to model

MMe, with the exception that muscle synergy activation levels cj

were identified rather than muscle activation levelsei. Synergy

activation levels were constrained to be positive with respect to a

level that created a background net vertical force. We considered

two different cost functions in optimizations of muscle synergy

control. Optimizations were performed that minimized muscle

effort, (model SMe), as in Equation 3, but with the addition of

muscle synergy constraints:

min �ccT W T W�cc
� �

ð6Þ

Further, to determine whether optimal solutions could be

identified entirely in reduced-dimension space, optimizations were

also performed (model SMc) that satisfied task-level constraints on

CoM force and moment while minimizing sum squared muscle

synergy activation:

min �ccT�cc
� �

ð7Þ

Assessment of predicted limb forces
We calculated goodness-of-fit between predicted left hindlimb

and right forelimb forces and experimental data from each animal

across experimental conditions. Because vertical force (VF)

magnitudes are several times larger than horizontal force (HF)

magnitudes, they were analyzed separately. We compared

predicted left hindlimb (LH) HF direction, LH HF magnitude,

LH VF magnitude, and right forelimb (RF) VF magnitude with

experimental data. R2 values for each force component were

calculated across perturbation directions for each postural

configuration for each animal and subjected to two-way ANOVAs

(postural configuration6animal) evaluated with a significance level

of a= 0.05 adjusted with a Bonferroni correction for multiple

comparisons (a= 0.0125) to determine whether the predictive

ability of each formulation depended on the experimental

condition. Left hindlimb HF magnitudes in perturbation directions

that loaded the hindlimb (0u through 90u) were also subjected to

two-way ANOVA (postural configuration6animal) evaluated at

Optimization Predicts Redundant Forces for Balance
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a= 0.05 to determine whether magnitudes decreased as postural

configuration was varied. R2 values predicted by the different

model formulations were subjected to three-way ANOVAs

(postural configuration6animal6formulation) and evaluated at

the Bonferroni-corrected level of a= 0.0125.

Assessment of predicted muscle activity
We compared predicted muscle tuning curves to mean values

from each animal and experimental condition. Mean values of

EMG were calculated during the initial burst of muscle activity

60–140 ms after perturbation onset, and averaged across like

trials. We compared the scaling and shifting in predicted tuning

curve peak values across postural configurations to changes

observed in data. Muscle tuning curves were normalized to

maximum values observed in the preferred postural configuration

of each cat. The peak magnitude and perturbation direction of

each muscle tuning curve in each postural configuration of each

animal was identified and expressed as a change from the

preferred configuration value, either as a magnitude change, or as

a direction change in degrees. In tuning curves with more than one

peak, we tracked the peak value that was dominant in the

preferred postural configuration. Tuning curve scaling was

assessed by regressing peak values onto postural configuration

(L,P,S,SS) and comparing the resulting regression coefficients for

each cat and model. Tuning curve shifting was assessed by

calculating the maximum change in peak direction across postural

configurations. These values were then subjected to one-way

ANOVA evaluated at a= 0.05 to determine whether shifts

predicted by each model were comparable to observed values.

We assessed the dimensionality of muscle activation patterns

predicted by models MMe, SMe, and SMc using a simple criterion

based on principal components analysis (PCA). As we were

primarily interested in comparing muscle activity pattern dimen-

sion predicted by controlling individual muscles (MMe) versus that

predicted by controlling postural muscle synergies (SMe, SMc), we

used a simple criterion that excludes components that contribute

less variance than any individual variable in the original dataset

[51,52]. Vectors of predicted left hindlimb muscle activation were

assembled into matrices arranged with perturbation directions

along the rows and muscles along the columns. Separate matrices

were assembled for each postural configuration and animal. The

dimensionality of each matrix was then estimated as the number of

eigenvalues of the data correlation matrix $1.0. Dimensionality

estimates were pooled across animals and postural configurations

and subjected to one-way ANOVA at a significance level of

a= 0.05 to determine whether the formulations predicted similar

muscle activity dimensionality. Dimensionality estimates from

each model were compared to 5, the previously reported value

[19]. Comparisons were performed with t-tests at a significance

level of a= 0.05, adjusted with a Bonferroni correction for

multiple comparisons to a= 0.0167.

Comparison of effort and computation time required for
controlling muscles and postural muscle synergies

We compared the total control effort required for controlling

individual muscles (MMe) versus that required for controlling

postural muscle synergies (SMe, SMc). The control effort required

for the muscle activity predicted by each model formulation was

calculated with Equation 3. Values were normalized to 100% of

the value predicted by optimal muscle control in the preferred

postural configuration of each cat. We then performed one-way

ANOVA on the resulting values, at a significance level of a= 0.05,

to determine whether the three formulations predicted similar

sum-squared muscle activity. We estimated the computational cost

predicted by the three formulations by measuring and comparing

the time required for each formulation to identify muscle activity

patterns in all perturbation directions in each experimental

condition. Resulting values were subjected to one-way ANOVA

at a significance level of a= 0.05, to determine whether the three

formulations required similar computation time.

Results

Summary
Task-level constraints on CoM force and moment or CoP

location were satisfied by all of the models considered, but each

predicted different patterns of muscle activity and limb forces,

demonstrating the high level of redundancy of the quadrupedal

musculoskeletal system. Experimentally-measured horizontal

plane limb forces at preferred stance distance were predicted by

task-level control of CoM forces and moments using either the

minimum-effort or the minimum-energy cost functions (models

MMe and MMm), whereas solutions predicted by control of CoP

control (MPe) differed substantially. However, differences between

forces and moments predicted by models MMe and MMm were

revealed when limb forces were examined across postural

configurations; although MMe solutions varied in magnitude

across stance distances in a similar fashion to experimental

measures, MMm solutions did not predict any qualitative

differences in limb forces across stance distances. Limb forces

similar to MMe predictions were found when a muscle synergy

constraint was enforced (models SMe and SMc). In all three

models that matched experimental limb forces across postural

configurations (MMe, SMe, SMc), muscle tuning directions were

found to be invariant across postural configurations, similar to

experimental data, resulting in low-dimensional overall muscle

activity patterns. However, using muscle synergies derived from

experimental data (SMe, SMc) allowed better predictions of

activity in flexors, some of which were not activated in the

independent muscle coordination conditions (MMe). Finally,

control effort increased by several times, but the time required

for the quadratic programming search was decreased, when

muscle synergies were controlled (SMe, SMc) rather than

individual muscles (MMe).

Models MMe and MMm predicted individual limb forces
in the preferred postural configuration

Although we did not explicitly try to match experimentally-

measured limb forces with the model, task-level control of CoM

force and moment using either the minimum effort (model MMe)

or minimum energy (MMm) cost functions nonetheless predicted

horizontal plane forces directed towards and away from the CoM

characteristic of the force constraint strategy described previously

[18] in the preferred postural configuration (Figure 4A,B, 27 cm;

Figure 5A, 27 cm). Across all perturbation directions, predicted

left hindlimb HF directions were similar to data (MMe: mean

R2 = 0.8960.08, P,1e-3; MMm: 0.8460.08, P,1e-3). In pertur-

bation directions that loaded the left hindlimb (0u to 90u),
predicted HF forces were directed towards the CoM, similar to

data (data: mean direction 56628u; MMe: 67619u; MMm:

7668u). In perturbation directions that unloaded the left hindlimb

(180u to 270u), horizontal-plane forces were directed away from

the CoM, again similar to data (data: mean direction 26369u;
MMe: 254613u; MMm: 25866u).

Left hindlimb HF magnitudes predicted by both cost functions

varied as bimodal functions of perturbation direction similar to

experimental data, particularly in loaded perturbation directions

(MMe: mean R2 = 0.9460.09; MMm: 0.9160.05). Fits of left
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hindlimb HF magnitudes across all perturbation directions were

reduced somewhat because of the small recorded force magnitudes

in the unloaded perturbation directions (MMe: mean

R2 = 0.7760.29; MMm: 0.4860.09). Maximal left hindlimb HF

magnitudes were observed near 30u perturbations that loaded the

hindlimb and minimal values for perturbations towards 120u, near

the opposite diagonal axis. Average hindlimb HF magnitudes in

perturbation directions where the left hindlimb was loaded (0u to

90u) were 1.260.4 N in data vs. 2.460.9 N and 3.360.3 N, in the

MMe and MMm models, respectively. Absolute predicted HF

magnitudes were larger than recorded values, which was necessary

in order to account for the absent contributions of the forelimbs.

VF magnitudes predicted by both cost functions exhibited a

realistic exchange between the forelimbs and hindlimbs as a

function of the perturbation direction (R2.0.98). For perturba-

tions diagonally to the right (near 30u), left hindlimb vertical forces

were maximal (data: 11.463.4 N; MMe: 12.461.9 N; MMm:

12.361.8 N), whereas recorded right forelimb vertical forces were

near minimal (data: 3.862.5 N; MMe: 2.162.3 N; MMm:

2.062.4 N). Both cost functions predicted complete unloading (0

N) of the left hindlimb and right forelimb in some cases, whereas

the minimum vertical reaction forces observed in data were 1.0 N

in the hindlimb and 0.6 N in the forelimb.

Model MMe, but not model MMm, predicted variations in
limb forces across postural configurations

Differences between the predictions of models MMe and MMm

became apparent when other postural configurations were

considered. Variations in left hindlimb HF direction and

magnitude were observed across stance distances similar to data

[53] in model MMe, but not in model MMm. As stance distance

was decreased, a wider range of HF directions was observed in

MMe but not MMm (e.g., compare changes between 27 cm and

13 cm in Figure 4A versus Figure 5A). Similarly, HF magnitude

Figure 4. Limb forces predicted by optimal task-level control of CoM force and moment. A: average horizontal plane forces observed in
each postural configuration of cat bi (black) compared with model MMe predictions (green). Force vectors are drawn for each limb (clockwise from
top left: LF, left forelimb; RF, right forelimb; RH, right hindlimb; LH, left hindlimb) with their origins offset in the direction of platform motion. Stance
distance decreases from left to right. Predicted forces were directed towards and away from the CoM, characteristic of the force constraint strategy
described previously [18] at longer stance distances (34 and 27 cm), whereas a wider range of force directions was observed at shorter stance
distances (13 cm) [53]. B: comparison of average and predicted limb force components in polar coordinates. HF, horizontal force; VF, vertical force.
Predicted horizontal plane forces reproduced the region of invariant force directions for perturbation directions that unloaded the hindlimb (180u to
270u) observed at longer stance distances (34 and 27 cm) (arrows).
doi:10.1371/journal.pcbi.1002465.g004
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from longest to shortest stance had a greater decreasing trend in

MMe (29622%, P,0.25) than MMm (2468%; P,0.55) in

unloaded directions (180u to 270u). However, neither reached the

degree of HF magnitude change observed experimentally

(259631%; P%0.001) in unloaded directions. Over all directions,

HF magnitude fits to data were significantly higher (P,0.001) in

MMe compared to MMm (Table 3). Moreover, HF magnitude fits

were similar across postural configurations in MMe, but were

significantly decreased at shorter stance distances in MMm

(P,0.0002).

Differences in forces across postural configurations were due to

the fact that MMe favored recruitment of large muscles whereas

MMm favored recruitment of small muscles. Large muscles that

produce downward and backward endpoint forces relative to the

limb axis were preferentially activated in MMe. When stance

distance is shortened, the force rotates to have a more vertical

orientation, thus reducing the component of force in the

horizontal plane [19,21]. In contrast, smaller muscles produce

forces with relatively small elevations in the horizontal plane, so

that horizontal plane force components are relatively constant as

stance distance is shortened. Compared to MMe, model MMm

reduced the activation of large antigravity muscles by several times

(LG, mass 12.4 g, 1/36; VL, 19.6 g, 1/46) and increased the

activation of small muscles by 5–1000 times (PSOAS, 4.0 g, 46;

SOL, 4.03 g, 206; VI, 4.39 g, 56; PT, 1.06 g, 10006).

Model MPe predicted unrealistic limb forces in all
postural configurations

Unlike experimental data, model MPe predicted HF directions

near the strongest axis of force production in the isolated hindlimb

[20] in all perturbation directions and postural configurations

(Figure 5B) to achieve task-level constraints on CoP location.

Because CoP location is measured about the projection of the

CoM on the ground, predicted CoM forces and moments deviated

significantly from experimental measures (peak deviations: ante-

rior force, 18.762.0 N; rightwards force, 1.960.4 N, roll-right

moment, 0.260.1 N-m; pitch-up moment, 2.560.3 N-m).

Although VF magnitudes predicted by model MPe were similar

to data (R2.0.86), HF direction fits were poor (R2 = 0.3660.15),

and CoM-directed horizontal-plane forces were never observed.

Instead, average left hindlimb HF directions were 9063u and

9863u for perturbation directions that loaded, and unloaded the

left hindlimb respectively, near the direction of maximum force

production of the hindlimb [20]. CoP control requires only

modulation of VF magnitude across all four legs; large horizontal

forces result from the fact that the minimum-effort muscle

Figure 5. Predicted horizontal plane forces obtained by altering the cost function and the task level variable. A: model MMm
predictions (yellow). Note that unlike MMe predictions (Figure 4A), MMm predictions are approximately constant as stance distance decreases.
Compare changes between 34 cm and 13 cm to changes in Figure 4A. B: model MPe predictions (blue). Note that predicted forces are near the
anterior-posterior axis, the strongest axis of force production in the isolated hindlimb [20] in all perturbation directions and postural configurations.
doi:10.1371/journal.pcbi.1002465.g005

Table 3. Summary of average limb force R2 values predicted by each model formulation.

Left Hindlimb Right Forelimb

HF Dir HF Mag VF Mag VF Mag

MMe 0.86 (0.06) 0.60 (0.32) 0.97 (0.02) 0.98 (0.01)

MMm 0.81 (0.08) 0.30* (0.26) 0.96 (0.02) 0.98 (0.02)

MPe 0.36 (0.15) 0.23 (0.20) 0.93 (0.03) 0.95 (0.03)

SMe 0.90 (0.08) 0.50 (0.27) 0.96 (0.04) 0.91 (0.13)

SMc 0.91 (0.06) 0.58 (0.31) 0.91 (0.05) 0.87 (0.10)

R2 values are presented as mean (SD) across animals and postural configurations. HF Dir, horizontal force direction; HF Mag, horizontal force magnitude; VF Mag, vertical
force magnitude.
*significant variation across postural configurations (P,0.0125).
doi:10.1371/journal.pcbi.1002465.t003
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activation pattern to produce a vertical force component also has a

very large horizontal component. These predictions were similar

when the minimum energy cost function (Equation 3) was used

(not shown).

Models SMe and SMc predicted active unloading limb
forces superior to model MMe

Adding muscle synergy constraints (models SMe and SMc)

resulted in limb forces that were similar overall to predictions of

model MMe (Table 1); however, SMc additionally predicted a

reduction in HF magnitude at shorter postural configurations that

was comparable to the data (see arrows in Figure 6). As in MMe

predictions, muscle synergy control models predicted characteris-

tic HF directions towards (SMe, 836100u; SMc, 68680u) and

away (SMe, 254645u; SMc, 255642u) from the CoM; however,

visual inspection suggested that HF directions were more dispersed

compared to MMe. Superior to MMe predictions, both muscle

synergy control models predicted statistically-significant decreases

in HF magnitudes in unloaded perturbation directions as stance

distance decreased from preferred to shortest (SMc, 231639%,

P%0.0001; SMe, 24644%, P,0.04), although decreases were

still less than those observed experimentally (259631%). VF

magnitudes were predicted well in both the left hindlimb and right

forelimb in SMe and SMc (R2 = 0.9360.05), although MMe

predictions remained superior (P,0.001). As in MMe predictions,

both the left hindlimb and right forelimb completely unloaded in

some cases for SMe and SMc (Figure 7). In some perturbation

directions of the shortest postural configuration of cat bi (SMe, 5/

132 total; SMc, 6/132) VF magnitude constraints were relaxed to

allow CoM constraints to be achieved; these were excluded from

further analysis.

Models MMe, SMe, and SMc predicted cosine muscle
tuning comparable to experimental data

All models that predicted realistic limb forces across postural

configurations (MMe, SMe, SMc) predicted smooth cosine muscle

tuning to perturbation direction similar to experimental data,

particularly in morphologically simple extensors (Figure 8).

Experimentally-observed tuning curves from left hindlimb exten-

sors were typically cosine-shaped and centered around rightwards

perturbations (0u) with approximate widths of 90u–120u at half-

maximum (e.g., VM, GMED). Models MMe, SMe, and SMc

made similar predictions for several extensors, including GMAX,

GMED, VI, VM, VL, and SOL. Recruitment was not identical

across models; for example, hip extensor BFA was recruited with

similar tuning in SMe and SMc, but only in 1/3 cats in MMe.

Some multifunctional extensors were more difficult to predict; for

example, hip flexor/knee extensor RF was recruited in posterior/

rightwards perturbations towards 330u experimentally, but

predicted tuning curves (MMe, SMe, SMc) were centered about

0u. Ankle extensor/knee flexor MG was recruited with tuning

curves centered near 180u by all models, unlike experimental

results [15]; this tuning was similar to that observed in flexors,

suggesting that the function at the knee might be dominating, with

ankle extension being provided by extensor-tuned SOL. Ankle

extensor/knee flexor LG was also recruited with tuning near 180u
(1/3 cats, MMe) or with bimodal tuning to leftwards and

rightwards perturbations (3/3 cats, SMe, SMc).

In some cases, the activation of flexor muscles was predicted by

models SMe and SMc, but not by model MMe. Although some

flexors were recruited with realistic cosine tuning about 180u in

MMe, including PSOAS and SART (Figure 8), others were

recruited in SMe and SMc but were never recruited in MMe.

Ankle flexor TA was recruited with realistic cosine tuning to

leftwards perturbations only in SMe, and only in cat bi. Some

bifunctional muscles with flexor contributions were recruited in

SMe and SMc but not in MMe. For example, hip extensor/knee

flexor BFP was never recruited in MMe, but was recruited in 3/3

cats in SMe and SMc. Hip extensor/knee flexor GRAC was

similar (2/3 cats, SMe, SMc; 0/3 cats, MMe), although predicted

tuning curves were phase shifted somewhat from the anterior/

leftwards tuning observed experimentally. Although hip extensor/

knee flexor STEN was never recruited in MMe, it was recruited in

SMe and SMc, but with either a bimodal (2/3) or extensor pattern

(1/3).

Models MMe, SMe, and SMc all predicted muscle tuning

curves that scaled in magnitude and shifted as stance distance was

decreased comparable to experimental data (Figure 9). EMG peak

magnitude increased as stance distance was shortened both in

experimental data (regression slopes of 0.25, P,0.0001, bi; 0.10,

ni; 0.10, ru) and in model predictions (MMe, 0.1960.01; SMe,

0.2660.27; SMc, 0.2260.29; all P,0.022). Tuning curves

predicted by all three models exhibited shifting with postural

configuration that was not significantly different (P.0.05) from

recorded values (average variation in peak tuning direction in

Figure 6. Predicted horizontal plane forces obtained by
controlling experimentally-derived muscle synergies versus
individual muscles. Top to bottom: average horizontal-plane forces
observed in each postural configuration of cat ni (black), predictions of
models controlling individual muscles: MMe (green), or muscle
synergies: SMc (blue), and SMe (purple). Arrows highlight significant
force magnitude reductions observed in data, SMc, and SMe, but not in
MMe.
doi:10.1371/journal.pcbi.1002465.g006
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Figure 7. Comparison of limb forces predicted by controlling experimentally-derived muscle synergies rather than individual
muscles in polar coordinates. Data correspond to horizontal-plane forces shown in Figure 6. Colors as in Figure 6. Note that LH HF magnitudes in
perturbation directions that unloaded the left hindlimb (horizontal bars, 180u to 270u) exhibited a monotonic decrease in models SMc and SMe from
the preferred (29 cm, solid lines) to the shortest (18 cm, shortest dashed lines) stance distance similar to data that was not predicted in MMe.
doi:10.1371/journal.pcbi.1002465.g007

Figure 8. Examples of left hindlimb muscle tuning to perturbation direction observed in data and predicted by optimal task-level
control using individual muscles or experimentally-derived muscle synergies. Top to bottom: experimental data, predictions of models
MMm, SMe, and SMc. Colors as in Figure 6. All models predicted smooth cosine muscle tuning to perturbation direction similar to experimental data,
particularly in morphologically simple extensors (e.g., VM, SOL) and in some flexors (e.g., PSOAS). However, some flexors were recruited only when
muscle synergies were controlled rather than individual muscles. Compare BFP, GRAC, TA in MMe vs. SMe. Some multifunctional muscles were more
difficult to predict; e.g., unlike experimental results [15], MG was recruited with pattern similar to a flexor muscle in all models, with ankle extension
being provided by extensor-tuned SOL. Biarticular muscle SART is listed as a hip flexor because it is implemented as such in the musculoskeletal
model.
doi:10.1371/journal.pcbi.1002465.g008
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data, 24624u; MMe, 18624u; SMe, 23621u; SMc, 29628u),
although model SMc predicted increased tuning curve shifting

compared to predictions of model MMe.

Models MMe, SMe, and SMc all predicted low dimensional

muscle activity patterns, with muscle synergy control predicting

lower dimensional EMG than individual muscle control. Patterns

of left hindlimb muscle activity predicted in MMe were

characterized by 4.360.5 principal components across cats and

postural configurations, significantly higher (P,0.0001) muscle

synergy control predictions (SMe: 3.260.6; SMc: 3.160.7).

Dimensionality estimates from models MMe, SMe, and SMc

were all significantly lower (P,0.0001) than 5, the number of

muscle synergies previously identified in the balance task [19].

Models of muscle synergy control required more control effort,

but less computation time during the quadratic programming

search, than model MMe (Figure 10B). Using muscle synergy

control reduced the computation time by a factor of 8 compared to

MMe (P%0.001) whereas control effort increased 2–4 times

(P,0.0005). Post hoc analyses revealed a significant contrast

between the control effort required for the MMe and SMc models

(P,0.05).

Constraining endpoint moments to zero did not affect
forces predicted by model MMe

To test whether model MMe might be predicting unrealistic

endpoint moments, MMe optimizations in the preferred postural

configuration of each animal were repeated with additional

constraints such that the moments at each limb endpoint were

limited to zero. This formulation predicted fits to experimentally-

observed left hindlimb HF directions that were similar to those of

the MMe model (P,0.83, paired t-test). Due to the additional

constraints, 5/12 optimizations of cat Ni failed to converge and

were excluded. Convergence failures occurred in the same

conditions in ten repetitions of these optimizations.

Figure 9. Observed and predicted changes in muscle tuning curve magnitude and direction across postural configurations. A:
Comparison of muscle tuning curve magnitude scaling across postural configurations observed in cat bi with scaling predicted by models MMm,
SMe, and SMc. Data points for individual muscles are shown as filled circles. B: Comparison of muscle tuning curve peak direction shift across postural
configurations observed in cat bi with direction shifts predicted in models MMm, SMe, and SMc. Note that although SMc predicted increased tuning
curve shifting compared to MMe, none of the models predicted significantly increased shifting compared to experimental data. ns, p.0.05; *, P,0.05;
ANOVA, post hoc tests.
doi:10.1371/journal.pcbi.1002465.g009

Figure 10. Comparison of predicted fits to limb force data, computation time and control effort required for task-level optimal
control formulations. Controlling experimentally-derived muscle synergies predicts similar force outputs, but with reduced computation time and
increased control effort compared to controlling individual muscles. A: comparison of fits to limb force data predicted by models MMe, SMe, and SMc.
LH, left hindlimb; RF, right forelimb. Colors as in Figure 6. B: comparison of average computation time and average sum-squared left hindlimb muscle
activation predicted by models MMe, SMe, and SMc. Muscle activation values for each cat are normalized to 100% of the amount predicted by model
MMe in the preferred postural configuration.
doi:10.1371/journal.pcbi.1002465.g010
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Discussion

Our results demonstrate how optimality principles can be used

to understand how the nervous system may distribute effort across

redundant muscles and limbs to achieve task-level goals during the

automatic postural response, a natural motor behavior. Impor-

tantly, this work demonstrates that optimality principles can

predict experimental data in the context of a detailed musculo-

skeletal model. We demonstrate that achieving task-level con-

straints on the forces and moments at the CoM while minimizing

the control effort to the muscles can simultaneously resolve

redundancy at the level of both muscles and limb forces during the

initial portion of the automatic postural response. Moreover, by

examining a rich repertoire of experimental conditions, we were

able to distinguish amongst candidate task-level variables and

effort cost functions, which often generated indistinguishable

predictions in a single biomechanical context. Predictions were

further improved by imposing constraints based on experimental-

ly-derived muscle synergies and muscle synergy force vectors,

demonstrating the feasibility of muscle synergies as physiological

mechanisms for the implementation of near-optimal motor

solutions, as well as suggesting additional costs and constraints

that were not included in our original optimization framework.

These results are consistent with the idea that the hierarchical,

task-level neural control mechanisms previously identified in

cortically-mediated tasks may also be relevant in understanding

brainstem-mediated motor tasks.

Optimization predicts detailed motor patterns across
biomechanical contexts

Although prior studies demonstrated that temporal patterns of

activation of individual muscles during balance could be predicted

from task-level optimal control of CoM dynamics and control

effort, they did not address the partitioning of control effort across

redundant muscles or limbs. Temporal patterns of individual

muscle activity during balance can be predicted from an optimal

tradeoff between minimizing CoM excursion and control effort in

both humans and cats [23,24]. However, previous models of CoM

control during balance have eliminated redundancy by examining

single-plane movements, as well as by controlling the joints with

torques [7,54,55,56,57,58,59] or single muscles [23,24]. In

contrast, we focused on predicting spatial patterns of activity at

the initial timepoint of the CoM feedback response in order to

understand the coordination of multiple muscles and limbs across

multiple perturbation directions spanning the horizontal plane.

Here, we found that detailed patterns of muscle activity and

limb forces across biomechanical contexts were predicted from

interactions between a common optimization framework –

achieving task-level constraints while minimizing effort – and the

changing properties of the musculoskeletal system. Prior studies

demonstrated that the properties of single-limb biomechanics

[20,21] were insufficient to predict the force directions observed

across multiple postural configurations [14,18,53], leaving the role

of biomechanics in determining this behavior unclear. These

results suggest that control effort costs influence the way that the

nervous system distributes effort across the redundant musculature

when different combinations of muscles can realize the constraints

of the task, and that the characteristic changes in forces observed

during the balance task emerge as optimal patterns of distribution

are applied in different biomechanical configurations. Moreover,

constraints on net CoM mechanics allowed both muscle and limb

force redundancy to be simultaneously resolved by minimizing

control effort [2,13,26], eliminating the need to explicitly minimize

limb force [25,60].

Our results also demonstrate the feasibility of muscle synergies

to produce approximately optimal motor patterns in the context of

a detailed model in a realistic motor task. Multiple studies have

demonstrated that muscle synergies might be a feasible and

effective way for the nervous system to produce movement

[61,62,63], and that the control of muscle synergies can closely

approximate the optimal control of individual muscles, particularly

in planar or idealized tasks [37,64,65]. We found that muscle

synergy control was sufficient to achieve the task constraints, in

some cases recreating the activation of flexors that was not well-

predicted by minimizing the activation of individual muscles.

However, in general, solutions from optimal muscle control and

muscle synergy control were broadly similar, consistent with the

results of other studies [2,66]. For example, extensor muscle

activity and the limb forces in perturbations for which the

hindlimb was loaded were well-predicted whether the activity of

individual muscles or of muscle synergies was optimized. Although

our study does not resolve the debate over whether low-

dimensional muscle activation patterns reflect optimal patterns

of individual muscle control or explicit muscle synergy constraints,

these results demonstrate the feasibility of muscle synergies for the

implementation of near-optimal motor solutions in a realistic

motor task.

Taken together, the results of this and previous studies are

consistent with the idea that the temporal and spatial patterning of

muscle activity during the automatic postural response can be

well-described by a hierarchical optimal control framework.

Hierarchical optimal control is based on the idea that higher

levels of the nervous system operate on increasingly abstract

variables, such as CoM kinematics, while relying on lower-level

controllers to locally control high-dimensional musculoskeletal

dynamics [67,68]. We hypothesize that the high-level representa-

tion is critical because multiple studies have demonstrated that

lower-level kinematic variables such as joint angles are insufficient

to predict the activation of individual muscles during balance

control, whereas CoM kinematics robustly predicts which muscles

will be activated [15,54,69,70,71,72]. Such a hierarchical structure

may be required in neural control structures due to neural

conduction and computation delays. One idea proposed for the

low-level control architectures is that they might implement local

feedback control to linearize the nonlinear, fast dynamics of the

musculoskeletal system, or implement other regulatory functions

[68,73]. Our concept of a muscle synergy is proposed as a

transformation between high-level task goals and low-level

dynamics, that may be parameterized to optimally actuate

musculoskeletal mechanics [64] or to provide stability [74], but

not necessarily to function as a controller per se. We speculate that

CoM feedback may be used to recruit muscle synergies, and in

support of this, a recent study in human balance control

demonstrated that CoM kinematics are sufficient to describe the

temporal recruitment of postural muscle synergies throughout

complex perturbations [75]. Despite the various differences, the

similarity between solutions arising from optimization of the

activity of individual muscles and optimization of the activity of

muscle synergies are consistent with the idea that muscle synergies

may reflect mid- or low-level control structures within a general

hierarchical optimal control scheme for movement.

Model interpretation, validation, and limitations
While control of the CoP was sufficient to explain the results of

previous studies that considered a limited range of biomechanical

conditions, we were able to compare CoP and CoM as task-level

variables by examining their ability to predict individual limb

forces across multiple directions of perturbation. Both the CoM
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and CoP have been proposed as controlled variables for balance

control [50,70], but control of CoP involves fewer constraints and

is based on the control of vertical and not horizontal limb forces.

These candidate control variables have typically been investigated

in models of only a single plane of movement

[7,23,24,54,55,56,57,58,59], where they may make indistinguish-

able predictions. Here, forces predicted by the two candidate task-

variables were similar for the direction of primary limb loading in

which lateral forces were small. Predictions of sagittal-plane limb

forces were also similar across both models (MMe vs. MPe) in the

directions across all directions in which the limb was loaded. Given

the anisotropic force generation characteristics of the hindlimb

[20], it seemed plausible that the control of vertical forces could be

sufficient to determine shear forces as well. However, the models

produced qualitatively different horizontal plane forces, suggesting

that additional constraints on CoM moment and force were

necessary to predict the observed force patterns in a quadruped. It

is possible that CoM and CoP control are indistinguishable in

sagittal plane balance control in humans where force generation is

primarily in the vertical direction [76,77]. However, the

predictions of CoP control are likely to break down when

significant horizontal place forces are required such as in our

quadrupedal model, or in medial-lateral human balance control.

Further, CoP control in human and robot walking has been

limited to quasi-static conditions [57,78,79], whereas more

dynamic conditions suggest that angular momentum about the

CoM due to CoM moments is an important control variable

[80,81,82,83,84,85]. Importantly, these results demonstrate that

the observed muscle activity patterns and forces could result from

an optimization framework in which task-level goals are specified,

independent of individual limb forces.

We noted that different cost functions produced qualitatively

different patterns of limb forces, demonstrating that the experi-

mentally measured patterns are not simply due to musculoskeletal

constraints, but indeed depend upon the nature of the optimiza-

tion framework. Prior studies have found that multiple cost

functions could produce similar results [13,86], suggesting that

solutions may be qualitatively determined by biomechanical

constraints, independent of any optimization framework or control

policy. In contrast, our study and other recent studies demonstrate

that some cost functions can be eliminated based on their

robustness across a wider range of experimental conditions

[12,25]. Here, minimization of muscle effort (MMe) versus energy

(MMm) predicted similar horizontal plane forces in the preferred

postural configuration, but not in short or long stance configura-

tions. In order to more precisely determine a physiological cost

function inverse optimization approaches could be used

[25,87,88]. However, it is unlikely that composite cost functions

based on weightings between MMe and MMm [25,89] would

improve fits to recorded muscle activity (e.g. absent flexors, SOL

recruited rather than MG), as both cost functions strongly penalize

muscle coactivation. Neither are these differences likely to be

resolved using alternative cost functions such as minimization of

signal dependent noise, which predicts muscle activity patterns

similar to minimization of control effort [90].

To further investigate either the task-level variable or the cost

function would require implementation of task-level control within

a dynamic musculoskeletal model. Although balance control is a

dynamic task, we were able to use a static musculoskeletal model

to examine the force-sharing problem at a specific instant in time

during the postural response that is most amenable to description

by a quasi-static model (see Methods). Here we sought only to

reproduce the net CoM forces and moments observed in the initial

postural response, which in turn can be predicted by an optimal

feedback control model in a low-dimensional biomechanical

model [22,23,24]. Integrating an optimal controller with a realistic

musculoskeletal model would allow us to test various optimal

control models for dynamic balance control, which might

implicate criteria relevant to the balance task beyond the control

cost formulations presented here. Specifically, considering the

longer time constants required to deactivate versus activate muscle

[91] would likely improve model predictions by encouraging

activation of the flexors. Similarly, rewarding recruitment of

muscles with fast fiber types would likely encourage the ankle

extensor function of MG (primarily fast muscle fibers), over that of

SOL (primarily slow muscle fibers; [92]). Other criteria such as

those related to mechanical stability might also be used to explain

the absent coactivation [16]. For example, arm impedance is

increased in unstable environments, likely requiring additional

coactivation [93]. It is possible that these costs could be

incorporated within an optimal control formulation penalizing

response time in a tradeoff with costs such as control effort, as

optimal control models without fixed terminal time have recently

been developed for motor tasks [94,95,96]. A dynamic model

would also allow for further refinement of the task variable.

Although we were able to differentiate between CoM and CoP,

the current model cannot differentiate between CoM and some

other candidate task-level variables – for example, translations of

the CoM along the anterior-posterior axis – since a static model

ignores inertial contributions such that an equivalent moment can

be computed about any point.

We consider it unlikely that adding additional detail to either

the hindlimb or the forelimb models would appreciably influence

the forces predicted here. Based on the high level of similarity in

the force production capability between the static hindlimb model

used here and previous dynamic models, it is unlikely that

including a linearized dynamic model with the mass matrix would

appreciably influence the results. Previous linearized and fully

dynamic versions of the hindlimb model that include the mass

matrix have demonstrated nearly identical force production

capability to the static model used here [20], with force production

capability biased along the anterior-posterior axis [74,97]. Based

on earlier versions of the present model and experimental results,

it is also unlikely that including a detailed forelimb model would

appreciably influence the predicted forces. A previous model that

included forelimbs as hindlimbs with reflected anterior-posterior

force production capability did not fundamentally change the

forces predicted by model MMe [98] in the preferred and long

postures. However, as the stance distance shortens, the geometry

of the forelimbs in a real animal becomes increasingly like that of a

vertical strut, whereas the hindlimbs remain flexed, breaking the

symmetry of the forces between the fore- and hind-limbs Although

the fore-hind force asymmetry in the shorter postures was not very

pronounced in these particular animals modeled here, in some

cases the forelimb forces are not elongated at all [14,18],

suggesting that the forelimbs can be very well approximated as

vertical struts in these conditions.

Neural implications for muscle synergies and hierarchical
control

Significant electrophysiological evidence exists for the neuroan-

atomical substrates required for the hierarchical, task-level neural

control mechanisms investigated by this and other studies. While

we and others have demonstrated that muscle activity and

movements can be described by mathematical tools like optimi-

zation, these techniques do not explain how such relationships and

computations are achieved within the nervous system [99].

Importantly, electrophysiological evidence from both cortically-
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mediated as well as brainstem-mediated motor tasks exists to

support the idea that the hierarchical, task-level control frame-

works suggested here may describe aspects of the organization of

the neural substrates for motor control. For example, electrophys-

iological evidence demonstrates that task-level variables such as

the direction of the limb endpoint are represented in motor cortex

during reaching [100,101]. Although lesion studies demonstrate

that the balance task considered here does not require the cortices

[102,103], similar task-level representations are found in brain-

stem, where neurons in the pontomedullary reticular formation

respond equivalently to perturbations of different limbs [104,105].

Electrophysiological evidence also demonstrates that increasingly

abstract representations of the motor periphery are assembled in

increasingly higher levels of the nervous system. For example,

higher-level representations of limb length and orientation, rather

than individual joint angles, are encoded in the dorsal root ganglia

and dorsal spinocerebellar tract [106,107]. Muscle synergies may

describe how task-level representations are mapped to execution-

level activity of motoneurons, via the divergent projections to

multiple muscles that have been identified at various levels of the

nervous system [108,109,110,111]. For example, both cortical and

brainstem neurons project to multiple motoneurons, or to spinal

interneurons [112] whose activity has been shown to reflect the

patterns of muscle synergies rather than individual muscles [113].

These results support the hypothesis that muscle synergies may be

important physiological mechanisms for the implementation of

near-optimal motor solutions with a reduced number of controlled

variables. The original concept of the muscle synergy hypothesis

was that it would offer computational ‘‘simplification’’ due to the

large numbers of independent variables that must be simultaneously

controlled by the nervous system [114]. In our study, using muscle

synergies significantly decreased the search time the optimization

algorithm required to identify a motor solution, similar to a previous

report [64]. This search time decrease illustrates the possible

benefits of a reduced dimension solution space during gradient-

based searches, although the computational mechanisms in the

nervous system are certainly different than a computer. Stochastic

search approaches, for example, might realize less benefit from

reducing the dimension of the solution space. Moreover, the results

do not imply that the nervous system is re-optimizing the cost

function de novo every time the motor task is presented [25], but

instead are consistent with the idea that optimal motor solutions

could be refined over the course of motor learning and adaptation.

Such refined solutions could be encoded within the nervous system

in sparse representations that use small number of neurons at any

given time. Sparse representations have been hypothesized to

increased storage capacity in associative memories and increased

energy efficiency [115] as well as accelerate motor learning. For

example, a neural-network model demonstrated accelerated motor

learning with decreases in the number of independent neural

commands [38]. However, this interpretation may be somewhat

controversial, as other evidence demonstrates that sparse motor

representations based on muscle synergies may slow the learning of

motor tasks for which the library of available muscle synergies is

inappropriate [116]. We speculate that muscle synergies implement

a transformation from task-level goals to muscle activation patterns

that is computationally similar to a lookup table that is assembled

over motor learning, the structure of which likely reflects the

statistics of the behavioral repertoire as well as the motor system

[117]. Similar to the arguments advanced for sparse coding of

sensory inputs, we speculate that muscle synergies are reinforced

over the course of motor learning through biologically-plausible

local learning rules (e.g. ‘‘cells that fire together wire together’’).

Through such learning rules, simple model neurons can learn the

principal components of their synaptic input weightings [118]. We

speculate that groups of muscles would be reinforced, rather than

individual muscles, because the function of individual muscles (in

this case, the output force) may vary depending on the activity of the

other muscles in the limb [119].

We speculate that the increased control effort required when

using experimentally-derived muscle synergies versus individual

muscles may be physiologically reasonable, particularly if

considerations beyond energy efficiency are important in balance

control. Whereas prior work demonstrated that similar efficiency

could be found by controlling individual muscles or muscle

synergies developed from optimality criteria [64,65], we show that

controlling experimentally-derived muscle synergies requires

additional control effort. Although minimizing energetic cost

may be critical in some contexts, particularly in ongoing

movement tasks like locomotion over evolutionary timescales

[28,29,30], we speculate that in discrete tasks like the balance

responses presented here strictly effort-minimal solutions may not

be necessary. For example, in discrete arm posture tasks, subjects

can be cued to maintain high levels of coactivation out of habit

even at levels of muscle activation that are considerable

proportions of maximal voluntary contraction [120]. The forces

observed during balance are well within the boundaries of the

absolute musculoskeletal capabilities [21], and the magnitudes of

the individual muscle activations predicted by model MMe were

moderate, as proportions of MVC (notice that the scale maxima in

Figure 8 vary between 0.002 and 0.4). Thus the additional effort

cost predicted by muscle synergy control may be physiologically

plausible. The fact that experimentally measured co-activation is

absent in the MMe model predictions further suggests that the

physiological state does not necessarily correspond to the

minimum effort solution. We speculate that muscle synergies

may be organized to implicitly account for criteria related to the

dynamic response described above (e.g. fiber type, etc.). Particu-

larly in balance control, using more than the absolute minimum

amount of muscle activation required to achieve stability may be

advantageous.
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