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Abstract (220 of 220 words) 28 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control in the United States remains 29 

hampered, in part, by testing limitations. We evaluated a simple, outdoor, mobile, colorimetric reverse 30 

transcription loop-mediated isothermal amplification (RT-LAMP) assay workflow where self-collected 31 

saliva is tested for SARS-CoV-2 RNA. From July 16 to November 19, 2020, 4,704 surveillance samples 32 

were collected from volunteers and tested for SARS-CoV-2 at 5 sites. A total of 21 samples tested 33 

positive for SARS-CoV-2 by RT-LAMP; 12 were confirmed positive by subsequent quantitative reverse-34 

transcription polymerase chain reaction (qRT-PCR) testing, while 8 were negative for SARS-CoV-2 35 

RNA, and 1 could not be confirmed because the donor did not consent to further molecular testing. We 36 

estimated the RT-LAMP assay's false-negative rate from July 16 to September 17, 2020 by pooling 37 

residual heat-inactivated saliva that was unambiguously negative by RT-LAMP into groups of 6 or less 38 

and testing for SARS-CoV-2 RNA by qRT-PCR. We observed a 98.8% concordance between the RT-39 

LAMP and qRT-PCR assays, with only 5 of 421 RT-LAMP negative pools (2,493 samples) testing 40 

positive in the more sensitive qRT-PCR assay. Overall, we demonstrate a rapid testing method that can 41 

be implemented outside the traditional laboratory setting by individuals with basic molecular biology 42 

skills and can effectively identify asymptomatic individuals who would not typically meet the criteria for 43 

symptom-based testing modalities.  44 

 45 
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Introduction 55 

More than 340,000,000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic 56 

tests have been performed in the United States as of February 22, 2021, yet it is estimated that 80-95% 57 

of infected individuals are not tested 1, 2. The availability of diagnostic testing for population surveillance 58 

around the United States has been limited because of testing supply shortages and guidelines set by 59 

public health officials 3, 4. Multiple studies have shown that asymptomatic and presymptomatic 60 

individuals infected with SARS-CoV-2 can be as infectious as symptomatic individuals 5–9, with recent 61 

estimates of up to 59% of transmission coming from asymptomatic or presymptomatic individuals 10. 62 

Virological assessments of SARS-CoV-2-positive individuals and coronavirus disease 2019 (COVID-63 

19) patients further support the reports of asymptomatic transmission, identifying no significant 64 

differences in viral loads found in the upper respiratory tracts of asymptomatic and symptomatic 65 

individuals 5, 7, 11–13. Furthermore, Arons et al. (2020) demonstrated that positive viral cultures can be 66 

isolated from presymptomatic patients up to 6 days before the onset of symptoms 5. 67 

 68 

Delays in reporting test results can prevent timely isolation of infected individuals. Most current testing 69 

programs fail to identify and efficiently notify infected individuals. Since transmission can occur before 70 

symptoms manifest, reporting delays create a major barrier to safely returning to workplaces and 71 

schools 14. Therefore, there remains an urgent need for rapid tests that identify presymptomatic and 72 

asymptomatic individuals while conserving diagnostic testing reagents. Non-diagnostic point-of-care 73 

(POC) testing, used in conjunction with the current clinical diagnostic testing regimen, may improve our 74 

ability to identify infectious individuals and limit their exposure to others while they are most contagious 75 

and conserve clinical diagnostic tests for those who require confirmatory testing. Incorporating active 76 

surveillance using POC tests as part of mitigation strategies for reopening K-12 schools could play an 77 

integral role in reducing SARS-CoV-2 transmission among students, teachers and staff members, 78 

families, and the surrounding community 15, 16.  79 

 80 

Loop-mediated isothermal amplification (LAMP) is a low-cost method for rapid target-specific detection 81 
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of nucleic acids 17. LAMP has long been used as an alternative to gold-standard quantitative reverse 82 

transcription polymerase chain reaction (qRT-PCR) to surveil populations for a variety of pathogens, 83 

especially in resource-limited settings 18–22. Reverse transcription LAMP (RT-LAMP) assays have 84 

recently been developed for rapid SARS-CoV-2 testing 23–29. RT-LAMP is an appealing candidate for 85 

POC SARS-CoV-2 testing because it is inexpensive, circumvents supply shortages by relying on 86 

different reagents than current diagnostic tests, requires minimal sample processing, and can be 87 

deployed outside of traditional laboratory settings. Recently, a number of studies have shown the 88 

correlation between the presence of virus in saliva and nasopharyngeal swabs, demonstrating that 89 

saliva specimens are a valid and reliable alternative to nasopharyngeal swab specimens for SARS-90 

CoV-2 testing 30–35. Saliva specimen self-collection is noninvasive, can be done at home, does not 91 

require swabs or personal protective equipment, and limits direct contact between test operators and 92 

testing populations. Here we describe our experience implementing a simple, rapid-turnaround, mobile, 93 

non-diagnostic SARS-CoV-2 testing workflow combining self-collected saliva and RT-LAMP in 94 

volunteers without symptoms of SARS-CoV-2 infection. Individuals were strongly encouraged to isolate 95 

and obtain follow-up diagnostic testing after receiving a positive result by RT-LAMP. This addresses a 96 

key knowledge gap of how on-site RT-LAMP testing performs in real-world conditions, since virtually all 97 

previous studies have only evaluated SARS-CoV-2 RT-LAMP in well-equipped molecular biology 98 

laboratories. 99 

 100 

Materials and Methods 101 

POC testing sites 102 

To begin operating voluntary POC testing, we developed a system of color-coded storage bins for 103 

equipment and supplies, as well as assembled folding tables, chairs, extension cords, and coolers that 104 

could be easily decontaminated and packed to fit in a Dodge Caravan (FCA US LLC., Auburn Hills, MI) 105 

or other, similarly sized minivan for transportation between testing sites and our base laboratory facility. 106 

On July 16, 2020, we launched our first mobile POC testing sites which ultimately expanded over 18 107 

weeks to include two workplaces, two K-12 schools, and an athletics program (Suppl. Table 1). With 108 
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the exception of the athletics program, sites were initially outdoors, sometimes under an overhang, but 109 

otherwise open to the environment. The athletics site was a climate-controlled, indoor practice field. At 110 

all sites, equipment and reagents were transported by minivan and surfaces were disinfected during 111 

assembly, breakdown, and frequently throughout testing. Participant consenting and volunteer sample 112 

collection were performed on-site but separated from the sample preparation and assay areas (most 113 

commonly on the other side of the building). In an effort to limit contamination, each assay area was set 114 

up with three separate folding tables: (1) sample heat-inactivation and preparation, (2) preparation of 115 

RT-LAMP reagents and assay set-up, and (3) RT-LAMP incubation and imaging. Individuals 116 

responsible for sample inactivation and performing assays wore appropriate personal protective 117 

equipment (PPE) including N95 face masks, face shields or safety glasses, disposable lab coats, and 118 

double gloves. In anticipation of wet and cold fall weather, by September 2020, assay workspaces were 119 

transitioned to biosafety hoods in a vacant indoor laboratory space for several POC testing locations. In 120 

October 2020, we received IRB approval for obtaining consent for repeat SARS-CoV-2 testing. This 121 

allowed us to transition away from consenting participants at each testing time point and instead 122 

allowed each enrolled participant to consent once regardless of the number of times they supplied a 123 

sample. Following reports that SARS-CoV-2 RNA is stable in saliva at room temperature for prolonged 124 

periods 36, we also transitioned away from in-person sample collection at some of the testing sites and 125 

instead distributed self-collection take-home kits for drop off at designated locations for same day 126 

processing.  127 

 128 

Sample collection and preparation 129 

We obtained approval from the University of Wisconsin-Madison Institutional Review Board (#2020-130 

0855 and #2020-1142). Participants were advised to avoid eating, or drinking anything except for water, 131 

for 30 minutes prior to providing a sample. After providing informed consent, volunteers self-collected at 132 

least 50 µl of saliva in a 1.5 ml “safe-lock” microcentrifuge tube using a 1000 µl unfiltered pipette tip to 133 

funnel the specimen into the tube. Each volunteer disinfected the outside of the tube with a pre-134 

moistened disinfectant wipe. Samples collected in-person were typically processed within 3 hours of 135 
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collection through our RT-LAMP mobile testing workflow, while samples collected using take-home kits 136 

were typically processed within 30 hours (Figure 1). Samples were first incubated in a heat block at 137 

65°C for 30 minutes to inactivate SARS-CoV-2 37 and then incubated in another preset heat block at 138 

98°C for 3 minutes to improve nucleic acid detection and inactivate salivary enzymes 38. The inactivated 139 

saliva was then centrifuged for 2 minutes in a benchtop microcentrifuge. Fifty microliters of the saliva 140 

supernatant were then added to 50 µl of 1x phosphate buffered saline, pH 7.4 (1x PBS).   141 

 142 

RT-LAMP reactions 143 

Three microliters of the saliva/PBS mixture for each sample was added in duplicate to 17 µl of a 144 

colorimetric RT-LAMP reaction mix containing WarmStart colorimetric LAMP mastermix (NEB, 145 

catalogue# M1800), water, and a set of six SARS-CoV-2-specific RT-LAMP primers designed against 146 

the N gene 38. The SARS-CoV-2 RT-LAMP primer set was previously designed by Broughton et al. and 147 

is currently used in an FDA emergency use authorized (EUA) COVID-19 test by Color Genomics (Table 148 

1) 39, 40. Reactions were incubated for 30 minutes at 65°C. A smartphone or tablet was used to record 149 

images of each reaction before (time = 0) and after the incubation period (time = 30). A color change 150 

from pink/orange to yellow in at least 1 of 2 replicates was scored relative to gamma-irradiated SARS-151 

CoV-2 (irSARS-CoV-2, BEI Resources, Manassas, VA) that was directly added to RT-LAMP reactions 152 

as a positive control in each batch of reactions at concentrations ranging from 220-3,333 copies/µl 153 

(2.2x105 - 3.33x106 copies/ml). irSARS-CoV-2 was diluted and aliquoted as ready-to-run positive 154 

control standards and stored at -80°C. On the day of testing, the positive controls were removed from 155 

the freezer and stored on ice at POC sites. Individuals whose samples were recorded as potentially 156 

positive for SARS-CoV-2 by RT-LAMP were contacted by an infectious disease clinician in accordance 157 

with the IRB protocol and urged to obtain a clinical diagnostic test to confirm findings and self-isolate in 158 

accordance with public health recommendations.  159 

 160 

Limit of detection (LOD) estimation using contrived saliva samples 161 

To estimate the limit of detection of the RT-LAMP assay, contrived positive saliva samples were 162 
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prepared by adding irSARS-CoV-2 diluted from 1x104-10 copies/µl (1x107-1x104copies/ml) or from 163 

5x104-50 copies/µl (5x107-5x104 copies/ml) directly into unaltered saliva collected from a total of 25 164 

SARS-CoV-2-negative individuals. Dilutions were based on two independent, in-house qRT-PCR 165 

experiments showing that the ir-SARS-CoV-2 stock concentration ranged from 7.89x106 - 8.23x106 166 

copies/µl (7.89x109 - 8.23x109 copies/ml). In two RT-LAMP experiments, four serial dilutions of irSARS-167 

CoV-2 were prepared for each saliva sample in duplicate. RT-LAMP reactions were set up as described 168 

previously. Negative controls consisting of 1x PBS and positive controls consisting of 1x104 copies/µl 169 

(1x107 copies/ml) irSARS-CoV-2 in water were also prepared in duplicate. Reactions were called 170 

positive if a color change from pre-amplification to post-amplification occurred in at least 1 of 2 171 

replicates that was consistent with that of the positive controls.  172 

 173 

Limit of detection (LOD) estimation using clinical samples 174 

De-identified discard saliva samples from 38 SARS-CoV-2-positive patients were provided by the 175 

University of Wisconsin Hospitals and Clinics (UWHC) for evaluation of RT-LAMP performance with 176 

known positive saliva samples. Clinical saliva samples were originally collected and stored at 4°C for up 177 

to 4 weeks prior to assessment by RT-LAMP. Additional 10-fold and 100-fold dilutions were prepared 178 

for 13 of the samples in saliva collected from a negative volunteer. Clinical samples and dilutions were 179 

prepared as described previously except that 20-50 µl of heat-inactivated sample, dependent on total 180 

sample volume, was added to an equal volume of 1x PBS in a clean 1.5 ml screw-top tube and pipetted 181 

gently to mix. For each sample, 3 µl was then added to duplicate colorimetric RT-LAMP reactions. 182 

Negative and positive control reactions (described previously) were also prepared in duplicate except 183 

that saliva collected from a negative volunteer was used as the negative control for these reactions. 184 

RT-LAMP reactions were prepared and images collected as described previously.  185 

 186 

Quantitative RT-PCR  187 

POC samples 188 
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We measured vRNA concentration using sensitive qRT-PCR in a subset of the inactivated saliva 189 

samples described above after initial evaluation using RT-LAMP. Saliva samples that were negative for 190 

SARS-CoV-2 by RT-LAMP were pooled into groups of 6 or fewer for qRT-PCR to balance cost 191 

effectiveness with reasonable estimated detection sensitivity. Ten additional, individual RT-LAMP-192 

negative samples were submitted as negative controls alongside samples identified as positive by RT-193 

LAMP. Saliva samples that were identified as positive for SARS-CoV-2 by RT-LAMP were tested by 194 

qRT-PCR individually to estimate our POC LOD. RNA was isolated from up to 150 µl saliva and 195 

combined with an equivalent volume of nuclease-free water using the Viral Total Nucleic Acid kit for the 196 

Maxwell RSC instrument (Promega, Madison, WI) following the manufacturer’s instructions. Viral load 197 

quantification was performed using a sensitive qRT-PCR assay developed by the CDC to detect SARS-198 

CoV-2 (specifically the N1 assay) and commercially available from IDT (Coralville, IA). The assay was 199 

run on a LightCycler 96 or LC480 instrument (Roche, Indianapolis, IN) using the Taqman Fast Virus 1-200 

step Master Mix enzyme (Thermo Fisher, Waltham, MA). The limit of detection of this assay is 201 

estimated to be 0.2 genome equivalents/µl (200 genome equivalents/ml) saliva. To determine the 202 

vRNA load, samples were interpolated onto a standard curve consisting of serial 10-fold dilutions of in 203 

vitro transcribed SARS-CoV-2 N gene RNA kindly provided by Nathan Grubaugh (Yale University) and 204 

described by Dudley et al. 35. 205 

 206 

Clinical samples 207 

qRT-PCR was performed using the conditions described above for each of the 38 SARS-CoV-2 208 

positive saliva samples individually; however, sample volume limitations required that for some 209 

samples, only 100 µl saliva was combined with 100 µl of nuclease-free water prior to RNA isolation. In 210 

addition, sample UWHC3 contained a lower volume than the remaining 37 samples so 50 µl saliva was 211 

combined with 50 µl nuclease-free water and used for RNA isolation as described previously. Viral 212 

loads in copies per microliter and corresponding cycle threshold numbers (Ct) are reported in Table 2.  213 

 214 

Results 215 
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LOD estimation using contrived saliva samples 216 

We assessed the LOD for minimally processed saliva samples collected from 25 volunteers over two 217 

RT-LAMP experiments using irSARS-CoV-2 spiked into negative saliva samples (Figure 2A and 2B). In 218 

our first experiment (S1-S3), we detected irSARS-CoV-2 in at least 1 of 2 replicates at 1x102 copies/µl 219 

(1x105 copies/ml) in all 3 samples (Figure 2A). In our second experiment (S4-S25), we detected 220 

irSARS-CoV-2 by RT-LAMP in 2/2 replicates at 5x104 copies/µl (5x107 copies/ml) for 95% of samples, 221 

at 5x103 copies/µl (5x106 copies/ml) for 62% of samples, and at 500 copies/µl (5x105 copies/ml) for 10% 222 

of samples. When we included samples called positive in at least 1 of 2 replicates (see Methods), the 223 

percentage of contrived samples positive by RT-LAMP at each of the aforementioned dilutions were 224 

100%, 90%, and 33.3% respectively (Figure 2B). One sample was omitted from the analysis because it 225 

turned yellow before the RT-LAMP reaction incubation began and was therefore uninterpretable. 226 

Because in POC testing we defined a positive RT-LAMP result as an observed post-incubation color 227 

change to yellow in at least 1 replicate, these results suggested that our 90% LOD is between 1x102 228 

and 5x103 copies/µl (1x105 - 5x106 copies/ml).  229 

 230 

LOD estimation using clinical samples 231 

To assess the performance of SARS-CoV-2 RT-LAMP in known SARS-CoV-2 positive saliva samples 232 

as opposed to contrived positive samples, we acquired deidentified, discarded saliva samples collected 233 

from 38 patients with laboratory confirmed SARS-CoV-2 from UWHC. Nineteen of 38 undiluted saliva 234 

samples were positive for SARS-CoV-2 in 2/2 replicates by RT-LAMP (Figure 3; Table 2). Two 235 

additional samples were positive in 1 of 2 replicates. Quantitative RT-PCR data showed that the viral 236 

RNA (vRNA) loads of the positive samples ranged from 131 copies/µl to 5.7x104 copies/µl (1.31x105-237 

5.71x107 copies/ml) which was consistent with our LOD range for contrived samples (Table 3). 238 

Furthermore, for the 13 samples diluted 10-fold and 100-fold, detection decreased with increasing 239 

dilution factor (Table 4). 240 

 241 

POC SARS-CoV-2 RT-LAMP testing   242 
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From July 16 to November 19, 2020, SARS-CoV-2 RT-LAMP was used to test a total of 4,704 samples 243 

collected from 5 locations. Participants were enrolled into the study regardless of their SARS-CoV-2 244 

symptom status on the day of testing. Seventy-one percent of the samples were obtained from 245 

individuals at two research facilities, 11% from two K-12 schools, and 18% from an athletics program 246 

(Supplemental Table 1). A total of 21 samples were identified as positive for SARS-CoV-2 by RT-LAMP 247 

based on a colorimetric change from pink/orange to yellow in at least 1 of 2 sample replicates. Similar 248 

to our experience with our contrived LOD samples, about 0.40% (19/4,704) of samples collected during 249 

POC testing exhibited a color change to yellow prior to RT-LAMP assay amplification and were 250 

therefore uninterpretable. Follow up qRT-PCR testing was conducted on each sample that appeared 251 

positive after the 30 minute amplification reaction throughout the study to determine vRNA load. Twelve 252 

of the 21 samples called positive in RT-LAMP had detectable SARS-CoV-2 RNA by qRT-PCR. Viral 253 

RNA loads of these samples ranged from 8.58 copies/µl to 3.62x105 copies/µl (8.58x103 copies/ml-254 

3.62x108 copies/ml) with a median of 504.5 copies/µl (5.04x105 copies/ml) (Table 4). Eight of the saliva 255 

samples identified as positive by RT-LAMP were negative by qRT-PCR, suggesting that they were 256 

false-positive RT-LAMP results. One RT-LAMP-positive sample was not tested by qRT-PCR because 257 

the participant did not consent to additional molecular testing. For volunteers who consented to 258 

additional research testing from July 16 to September 17, qRT-PCR testing was conducted for pools of 259 

6 or fewer for all residual, heat-inactivated samples that appeared unambiguously negative by RT-260 

LAMP. A total of 421 RT-LAMP-negative pools (2,493 samples) were tested to estimate the number of 261 

SARS-CoV-2-positive samples missed by RT-LAMP. Quantitative RT-PCR detected SARS-CoV-2 262 

nucleic acids in 5 pools of RT-LAMP-negative samples. Four out of five of the positive pools contained 263 

levels of SARS-CoV-2 that were below the estimated LOD range for RT-LAMP using crude samples 264 

with vRNA load estimates of 0.236, 0.444, 0.460, 37.5, and 142 copies/µl (236, 444, 460, 3.75x104, and 265 

1.42x105 copies/ml). Taken together, the low prevalence of SARS-CoV-2 in our volunteer testing 266 

population (0.36%, including RT-LAMP-negative, qRT-PCR-positive pools) and the low vRNA load of 267 

pools positive by follow-up qRT-PCR, suggest that these 5 pools likely contained only a single positive 268 

sample each and suggests a false-negative rate of 0.02% (5/2,493) (Table 4).  269 
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 270 

Discussion 271 

Strategic surveillance testing of asymptomatic individuals has been suggested as an important 272 

mitigation strategy for places at high risk for close contact, indoor SARS-CoV-2 transmission: schools, 273 

workplaces, places of worship, and prisons, among others. Decentralized, mobile RT-LAMP-based 274 

POC testing workflows can provide same-day results which can enable people with potential SARS-275 

CoV-2 infections to quickly self-isolate and then obtain confirmatory diagnostic testing. The low per-test 276 

cost (approximately $7 per sample tested in duplicate) allows for repeated testing to identify incident 277 

infections and reduce the duration of a potentially infected individual’s exposure to others. While RT-278 

LAMP is not as sensitive as diagnostic qRT-PCR tests in laboratory testing, qRT-PCR tests require 279 

centralized labs, which in turn leads to lengthy turnaround times. Over a period of 18 weeks, we 280 

performed 4,704 SARS-CoV-2 tests across 5 sites using a simple, saliva-based, direct RT-LAMP 281 

assay. This work demonstrates the scalability of decentralized, mobile RT-LAMP-based testing and 282 

addresses a key knowledge gap of how POC RT-LAMP testing performs outside of well-equipped 283 

molecular biology laboratories.  284 

 285 

Our initial experiments using direct RT-LAMP with contrived saliva samples from a total of 25 donors 286 

demonstrated a LOD that ranged from 1x102 copies/µl (100% in at least 1 replicate for S1-S3) to 5x103 287 

copies/µl (90% in at least one replicate for S4-S25). Taken together, these data suggest that the actual 288 

LOD for RT-LAMP without RNA isolation may be dependent on the individual sample due to 289 

heterogeneity of saliva pH and composition 41–43. Overall, the RT-LAMP results for 38 clinical saliva 290 

samples obtained from SARS-CoV-2-positive individuals at the UWHC, were consistent with those for 291 

the contrived samples. We recognize that more clinical samples are required for a comprehensive 292 

clinical validation, but the LOD observed in clinical samples is further supported by the low vRNA loads 293 

obtained from qRT-PCR-confirmed SARS-CoV-2-positive samples identified in our volunteer population 294 

(Table 4). The performance of our RT-LAMP POC testing workflow demonstrates that inexpensive, 295 

mobile testing can be successfully performed outdoors or in other non-traditional laboratory settings to 296 
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identify SARS-CoV-2-positive individuals regardless of whether or not symptoms are present. Our 297 

observed SARS-CoV-2 RT-LAMP positivity rate was 0.25% (12/4,704) for samples confirmed by follow-298 

up qRT-PCR.  Interestingly, the positivity rate of 0.25% in our volunteer population was lower than 299 

expected given the disease activity in our region during this period of time was listed as “critically high”, 300 

particularly between September 1 and November 19, 2020 when the county had a 5.42% positivity rate 301 

(19,031 positive tests out of 350,722) 44, 45. The low positivity rate in our volunteer population may be 302 

partly explained by the fact that 71% of tested saliva specimens came from two research facilities 303 

where mask wearing and physical distancing guidelines were implemented early in the pandemic and 304 

followed relatively stringently (Supplemental Table 1). Volunteers for nonsymptomatic research testing 305 

might also have a different risk profile from the overall population.  306 

 307 

Potential drawbacks of colorimetric RT-LAMP-based surveillance for SARS-CoV-2 as described here 308 

include the fact that minimally-processed saliva can result in variable reaction color change without the 309 

presence of the target RNA. However, modifications of RT-LAMP-based SARS-CoV-2 assays to 310 

reduce saliva sample variability, improve result ambiguity, and increase throughput have recently been 311 

reported elsewhere and may improve the implementation of RT-LAMP-based assays for POC use 46–50. 312 

In addition, we relied on a manual RT-LAMP format during POC testing. Reading assays “by eye” 313 

inevitably results in a somewhat subjective determination of positives. Reducing false-positive results in 314 

our POC volunteer populations required consistent use of duplicate reactions for each individual, which 315 

reduced assay throughput and increased the per-sample cost. Furthermore, the testing landscape 316 

changed dramatically during the months we performed RT-LAMP testing. The first non-instrumented 317 

antigen test, the Abbott BinaxNOW COVID-19 Ag CARD, received FDA EUA approval in the United 318 

States on August 26, 2020 51. While the sensitivity of RT-LAMP is broadly comparable to the Abbott 319 

BinaxNOW antigen test (reported as 1.6x104 - 4.3x104 vRNA copies; Ct 30.3-28.8), because the former 320 

is technically straightforward and can be used as a SARS-CoV-2 diagnostic at testing sites operating 321 

under a Clinical Laboratory Improvement Amendments (CLIA) waiver, it is likely a better choice for 322 

rapid turnaround, on-site testing in most circumstances 52. However, even with the existence of antigen 323 
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tests, RT-LAMP surveillance programs still have a place as part of a comprehensive SARS-CoV-2 risk 324 

mitigation strategy, especially in areas where access to antigen tests is limited.  325 

 326 

There are advantages to continuing saliva-based RT-LAMP surveillance testing. Importantly, the supply 327 

of diagnostic antigen tests remains tightly constrained, and in the United States, these tests are 328 

available only through government contracts. Widespread testing of individuals without symptoms with 329 

such a scarce resource may not be a wise use of these limited tests. Furthermore, recent studies have 330 

shown that antigen test performance may differ between asymptomatic and symptomatic populations. 331 

Compared to qRT-PCR, the sensitivity of FDA-approved antigen tests, BinaxNOW and the Quidel Sofia 332 

SARS Antigen Fluorescent Immunoassay, were 35% and 41% in asymptomatic individuals and 64% 333 

and 80% in symptomatic individuals, respectively 53, 54. BinaxNOW is currently only approved for use in 334 

symptomatic individuals, within 7 days of symptom onset, and samples are required to be tested within 335 

an hour of collection 55. In contrast, RT-LAMP reagents do not require a government contract and can 336 

be acquired readily from commercial and non-commercial sources, and they can also be used more 337 

flexibly for surveillance purposes because RT-LAMP is not limited to use in symptomatic individuals 56. 338 

Additionally, user acceptance of testing may also favor saliva-based RT-LAMP as it is less invasive 339 

than nasal swab-based tests. While an individual BinaxNOW test is rapid, performing several tests 340 

during a single day could cumulatively take as long as processing a batch of tests by RT-LAMP. For 341 

these reasons, RT-LAMP may still be the preferred testing method to incorporate into a local program. 342 

In Madison, WI, two local schools have implemented RT-LAMP surveillance programs modeled on the 343 

program described here. Implementation of each program required approximately 50 hours of hands-on 344 

training by our group. School staff were trained in adherence to regulations pertaining to non-diagnostic 345 

testing and to competently perform RT-LAMP assays. Each school also needed time and resources to 346 

acquire the modest lab infrastructure necessary to perform RT-LAMP. In addition, a larger saliva-based 347 

RT-LAMP surveillance program has been successfully implemented in school districts in the greater 348 

Chicago suburbs 57, 58.  349 

 350 
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A looming question for both RT-LAMP and antigen testing programs is whether the real-world 351 

effectiveness of frequently testing individuals without symptoms mirrors the theoretical benefits. Several 352 

important considerations that we factored into the design of RT-LAMP testing remain true: 353 

nonsymptomatic individuals account for up to 59% of all transmission (24% asymptomatic and 35% 354 

presymptomatic); low-sensitivity tests are able to effectively identify those with high levels of virus 355 

shedding, and individuals with high viral loads are likely to be responsible for a significant fraction of 356 

onward community transmission; and the duration of peak infectiousness is short, so lengthy lags in 357 

reporting test results could miss a critical window of high transmissibility 10, 59. Conversely, high-quality, 358 

exceptionally well-resourced testing programs such as those at the White House and among 359 

intercollegiate athletic programs have failed to stop outbreaks 60. The latter deserves special note: 360 

outbreaks in these programs occurred in spite of 100% adherence to daily testing. Data from daily 361 

sampling of individuals with incident SARS-CoV-2 infection suggests that the mean duration of time 362 

from infection to peak viral shedding is approximately three days, but some individuals potentially reach 363 

peak viral shedding in under one day 61. The potential for an extremely rapid increase in viral load, 364 

which likely parallels shedding of infectious virus, means that in some cases, even daily testing might 365 

be insufficient to protect a community from someone who is newly infected.  366 

 367 

Perhaps more importantly, the benefit of frequent testing of individuals without symptoms with RT-368 

LAMP or other assays may be substantially undermined by risk disinhibition. When people are tested 369 

frequently, they may both underestimate their own risk of becoming infected in the interval between 370 

tests and overestimate the possibility that their similarly tested contacts are uninfected; anecdotal 371 

evidence of this phenomenon is perhaps most vividly seen in the September 26, 2020 White House 372 

Rose Garden reception for Justice Amy Coney Barrett, in which many attendees were photographed 373 

not wearing masks nor following guidelines for physical distancing 62. If infections among people without 374 

symptoms are rare (~0.4% of tests in this study, when combining RT-LAMP and pooled qRT-PCR 375 

positives), but 10% of the tested population views testing as license for increased risk-tasking, is 376 

frequent testing of symptomless people a net positive? Appropriate messaging to the community is 377 
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essential with any testing program to ensure the population understands the meaning of a test result. 378 

Such issues will require an optimization of messaging to mitigate the impact of risk disinhibition to the 379 

extent possible. 380 

 381 

Ultimately, this study provides proof of concept and guidance for how decentralized rapid testing could 382 

be implemented in a mobile testing scenario, which may be especially useful in resource-limited 383 

settings. Despite the caveats presented above, we identified 12 SARS-CoV-2-positive individuals and 384 

likely prevented onward transmission from those individuals who otherwise would not know they were 385 

positive. Rapid tests, although less sensitive than qRT-PCR, have shorter turnaround times and could 386 

bridge the gap between SARS-CoV-2 surveillance and diagnostic testing. POC testing can be effective 387 

for identifying asymptomatic individuals but must be used in conjunction with appropriate messaging 388 

and other mitigation strategies to effectively reduce SARS-CoV-2 transmission.  389 
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 670 
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 673 

Figure legends 674 

 675 

Figure 1: Point-of-care RT-LAMP SARS-CoV-2 testing workflow. Steps 1-5. Saliva sample 676 

preparation. Steps 6-7. RT-LAMP reagent preparation. Steps 8-10. RT-LAMP reactions and results 677 

interpretation. A reaction color change from pink/orange to yellow after 30 minutes in at least 1 of 2 678 

sample replicates was scored as positive. Figure was created using BioRender.com. 679 

 680 

Figure 2: Detection of SARS-CoV-2 in contrived saliva samples by direct RT-LAMP. A. Initial limit 681 

of detection (LOD) assessment with contrived saliva samples from 3 volunteers (S1, S2, S3). RT-LAMP 682 

reactions determined to be negative are pink and those determined to be positive are yellow. 683 

Quantitative RT-PCR vRNA loads are presented as copies/µl above the replicates for each sample. B. 684 

Bar graph showing an expanded assessment of RT-LAMP LOD for 22 additional contrived saliva 685 

samples (S4-S25). Gamma-irradiated SARS-CoV-2 (irSARS-CoV-2) vRNA load is shown as copies/µl 686 

on the x-axis, number of samples positive in 2 (black), 1 (dark gray), or 0 (light gray) replicates is shown 687 

on the y-axis.  688 
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 689 

Figure 3: Detection of SARS-CoV-2 in 38 clinical saliva specimens by direct RT-LAMP. The vRNA 690 

load of each clinical sample is plotted on the x-axis relative to the in-house CDC N1 qRT-PCR assay 691 

cycle threshold (Ct) on the y-axis. Black, dark gray, and light gray indicate 2, 1, and 0 positive replicates 692 

respectively.  693 

 694 

 695 

 696 

 697 

 698 

 699 

 700 

 701 

Table 1. RT-LAMP N-gene primers 702 

Primer  Sequence 5’->3’ Concentration 

Outer forward primer (F3) AACACAAGCTTTCGGCAG 0.2uM 

Outer backward primer (B3) GAAATTTGGATCTTTGTCATCC 0.2uM 

Forward inner primer (FIP) TGCGGCCAATGTTTGTAATCAGCCAAGGAAATTTTGGGGAC 1.6uM 

Backward inner primer (BIP) CGCATTGGCATGGAAGTCACTTTGATGGCACCTGTGTAG 1.6uM 

Loop forward primer (LF) TTCCTTGTCTGATTAGTTC 0.8uM 

Loop backward primer (LB) ACCTTCGGGAACGTGGTT 0.8uM 
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Table 2. RT-LAMP evaluation of SARS-CoV-2 positive clinical saliva samples. 

Sample Ct (N1 assay) Positive by 
RT-LAMP 

vRNA load 
(copies/µl) 

Sample Ct (N1 assay) Positive by 
RT-LAMP 

vRNA load 
(copies/µl) 

UWHC1 27.65 0/2 3.25x102 UWHC20 25.80 2/2 9.48x102 

UWHC2 32.7 0/2 10.9 UWHC21 20.18 2/2 4.40x104 

UWHC3 20.98 2/2 5.17x104 UWHC22 28.92 0/2 1.13x102 

UWHC4 24.07 2/2 3.57x103 UWHC23 21.26 2/2 2.10x104 

UWHC5 26.53 2/2 6.81x102 UWHC24 29.92 0/2 57.2 

UWHC6 30.85 1/2 37.4 UWHC25 36.71 0/2 0.796* 

UWHC7 36.96 0/2 0.701 UWHC26 25.96 2/2 1.31x102 

UWHC8 26.28 1/2 8.10x102 UWHC27 29.99 0/2 54.1 

UWHC9 37.59 0/2 0.402 UWHC28 24.34 2/2 2.58x103 

UWHC10 24.01 2/2 3.72x103 UWHC29 20.55 2/2 4.72x104 

UWHC11 22.39 2/2 1.10x104 UWHC30 33.18 0/2 7.89 

UWHC12 35.46 0/2 1.75 UWHC31 22.87 2/2 9.57x103 

UWHC13 36.09 0/2 1.14 UWHC32 23.07 2/2 8.33x103 

UWHC14 23.11 2/2 5.96x103 UWHC33 26.85 2/2 6.20x102 

UWHC15 23.38 2/2 4.95x103 UWHC34 20.33 0/2 5.49x104 

UWHC16 33.86 0/2 3.99 UWHC35 23 2/2 8.88x103 

UWHC17 n/a 0/2 0 UWHC36 32.26 0/2 14.9* 

UWHC18 23.02 2/2 6.34x103 UWHC37 33.94 0/2 4.33 

UWHC19 37.31 0/2 0.612 UWHC38 25.96 2/2 1.74x103 

*Sample only positive in one qRT-PCR replicate.  
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Table 3. RT-LAMP results for 10- and 100-fold dilutions of 13 SARS-CoV-2-positive samples from UWHC. 

Sample 1:10 dilution result 1:100 dilution result Undiluted vRNA load (copies/µl) 

UWHC1 1/2 0/2 3.25x102 

UWHC2 0/2 0/2 10.9 

UWHC3 2/2 2/2 5.17x104 

UWHC4 2/2 2/2 3.57x103 

UWHC5 1/2 0/2 6.81x102 

UWHC6 0/2 0/2 37.4 

UWHC7 0/2 0/2 0.701 

UWHC8 1/2 0/2 8.10x102 

UWHC9 0/2 0/2 0.402 

UWHC10 2/2 0/2 3.72x103 

UWHC11 2/2 1/2 1.10x104 

UWHC12 0/2 0/2 1.75 

UWHC13 0/2 0/2 1.14 
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Table 4. Samples identified as potentially positive for SARS-CoV-2 by RT-LAMP during point-of-need testing.  

RT-LAMP-positive sample qRT-PCR viral load copies/µl 

POC1 8.53 

POC2 2.15x104 

POC3 neg 

POC4 neg 

POC5 neg 

POC6 neg 

POC7 3.62x105 

POC8 neg 

POC9 n/a* 

POC10 2.12x103 

POC11 neg 

POC12 1.04x103 

POC13 2.06x102 

POC14 neg 

POC15 52.8 

POC16 6.02x102 

POC17 87.3 

POC18 1.17x103 

POC19 neg 

POC20 1.38x102 

POC21 4.07x102 

*Volunteer did not consent to follow-up testing.  
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