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Previous studies have observed impairments in both brain function and neurometabolite

levels in schizophrenia. In this study, we investigated the relationship between brain

activity and neurochemistry in off-medication patients with schizophrenia and if this

relationship is altered following antipsychotic medication by combining proton magnetic

resonance spectroscopy (1H-MRS) with functional magnetic resonance imaging (fMRI).

We used single voxel MRS acquired in the bilateral dorsal anterior cingulate cortex

(ACC) and fMRI during performance of a Stroop color-naming task in 22 patients with

schizophrenia (SZ), initially off-medication and after a 6-week course of risperidone, and

20 matched healthy controls (HC) twice, 6 weeks apart. We observed a significant

decrease in ACC glutamate + glutamine (Glx)/Creatine (Cr) levels in medicated SZ

patients compared to HC but not compared to their off-medication baseline. In off-

medication SZ, the relationship between ACC Glx/Cr levels and the blood oxygen level-

dependent (BOLD) response in regions of the salience network (SN) and posterior default

mode network (DMN) was opposite than of HC. After 6 weeks, the relationship between

Glx and the BOLD response was still opposite between the groups; however for both

groups the direction of the relationship changed from baseline to week 6. These results

suggest a mechanism whereby alterations in the relationship between cortical glutamate

and BOLD response is disrupting the modulation of major neural networks subserving

cognitive processes, potentially affecting cognition. While these relationships appear to

normalize with treatment in patients, the interpretations of the results are confounded by

significant group differences in Glx levels, as well as the variability of the relationship

between Glx and BOLD response in HC over time, which may be driven by factors

including habituation to task or scanner environment.
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INTRODUCTION

Schizophrenia is a disorder characterized by cognitive
impairment. The anterior cingulate cortex (ACC) has been
identified as being involved in cognitive processes, including
mediating executive functioning and conflict monitoring.
Functional magnetic resonance (fMRI) studies have shown
alterations in ACC function and its associated cognitive network
during cognitive processes (1–4). Proton magnetic resonance
spectroscopy (1H-MRS) allows for in vivo measurement of
brain metabolites such as glutamate, an amino acid involved in
excitatory neurotransmission (5) and metabolism (6, 7). There
is increasing evidence suggesting that abnormal functioning
in the glutamatergic system may influence the pathogenesis of
schizophrenia (8–11). Previous 1H-MRS schizophrenia studies
report abnormal glutamatergic levels (12–17) that appear to vary
depending on voxel location, illness stage, and medication status
(18). Studies in the ACC have reported increased glutamate
(or the combination of glutamate and glutamine, Glx) levels
in medication naïve (19) and minimally treated patients (20)
and decreased levels in medicated first episode (21) and chronic
patients with schizophrenia (15, 22, 23).

Using functional MRI (fMRI), several large-scale brain
networks have been identified and defined in terms of the
processes they are thought to subserve (24, 25). Of particular
interest are the salience network (SN) and posterior default mode
network (DMN). The SN which comprises the anterior insula
and dorsal ACC is involved in the detection and processing
of salient events (26) as well as switching between cognitive
networks and the DMN (27). The posterior DMN is comprised of
a set of regions (precuneus, inferior parietal gyrus, hippocampus,
posterior cingulate (PCC), and medial prefrontal gyrus) that are
active during rest and internal referencing tasks and deactivate
during external goal-driven tasks (24, 28, 29). A balance between
the activation of task positive networks and the deactivation
of the DMN appears necessary for cognitive functioning (30).
Previous fMRI studies report disrupted task-state and resting-
state blood-oxygen level-dependent (BOLD) signal in the SN
and posterior DMN and the networks’ relationship with other
networks in schizophrenia (31–34). These studies strongly
suggest that brain activity in the SN and posterior DMN is altered
in patients with schizophrenia.

Brain glutamate metabolism has been linked to the fMRI
BOLD signal response (35). Glutamate is strongly involved in
the brain’s energy turnover as the majority of resting energy

consumption in the awake brain is tightly coupled with neuronal

activity (36). Indeed, some MRS-fMRI studies have reported
evidence for a positive correlation between glutamate and the

BOLD response both within the measured region as well as

within distant regions from the source region, suggesting that
glutamate is also related to long-range connections between
regions (37). Combining MRS-fMRI analyses, especially when
brain function is evaluated in terms of neural networks,
may provide additional insights into the relationship between
glutamate and neuronal response during resting state or task
performance (38–40). In addition, combining MRS with fMRI
in the same subjects, rather that measuring a single variable in
isolation, allows us to concurrently investigate several (possibly

connected) mechanisms involved in schizophrenia which may
contribute to a better understanding of the disease mechanisms.
Previous studies reported significant correlations betweenGlx/Cr
levels and BOLD signal in healthy controls that was not
present or reversed in medicated patients with schizophrenia (41,
42). Importantly, two studies identified a negative relationship
between ACC glutamate and the BOLD response in the posterior
DMN in healthy controls and this relationship was found to be
opposite in patients with schizophrenia (40, 43).

However, the majority of combined MRS-fMRI schizophrenia
studies enrolled patients treated with antipsychotic drugs (APD),
all dopamine (DA) receptor antagonists. Because the neural basis
of cognitive control relies on fronto-cortical-striatal circuitry
known to be under DA modulation (44, 45), modulation of
cognitive control functional activity with DA antagonists is
expected. Indeed, APDs have been shown to affect brain function
(46, 47) In addition, as stated previously, glutamate levels have
been shown to be affected by APD treatment (18). Therefore,
it is important to investigate the abnormalities in patients with
schizophrenia prior to APD exposure.

The purpose of this study was to investigate the relationship
between brain function and neurochemistry of the ACC
in off-medication patients with schizophrenia and matched
healthy controls using 1H-MRS and fMRI during performance
of a cognitive control task, as well as evaluate the effect
of antipsychotic treatment on these measures and their
relationships.

Based on prior findings, we hypothesized that Glx levels would
be reduced in patients with schizophrenia following 6 weeks of
treatment. We also hypothesized to find a significant relationship
between ACC Glx levels and BOLD signal in the ACC and
regions of the posterior DMN in healthy controls that would
be altered in off-medication patients (40). Finally, to the extent
that we expected a change in glutamate level with treatment, we
also hypothesized that, following 6 weeks of APD, patients with
schizophrenia would present a relationship between Glx and the
ACC and posterior DMN BOLD signal more reflective of healthy
controls.

MATERIALS AND METHODS

Subjects
Twenty-eight subjects with schizophrenia and schizoaffective
disorder (SZ) were recruited from the outpatient psychiatry
clinics and emergency room at the University of Alabama at
Birmingham to participate in the study based on being off
antipsychotic medication for at least 10 days (medication was
not discontinued to meet this criterion). None of the patients
had been on depotmedication prior to discontinuingmedication.
Twenty-five healthy control subjects (HC), without personal or
family history in a first-degree relative of significant DSM-IV-
TR Axis I disorders were recruited using advertisement in flyers
and the university’s newspaper. Exclusion criteria were major
medical conditions, substance abuse or dependence (except for
nicotine) within 6 months of imaging, previous head injury,
a neurologic disorder, loss of consciousness for more than
2min, and pregnancy. The Institutional Review Board of the
University of Alabama at Birmingham provided approval for
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the study and all subjects gave written informed consent prior
to participating. Before signing consent, each subject with
schizophrenia completed an Evaluation to Sign Consent Form
(48).

Diagnoses were established using subjects’ medical records
and the Diagnostic Interview for Genetic Studies (DIGS) (49).
General cognitive function for each subject was characterized by
the Repeatable Battery for the Assessment of Neuropsychological
Status (RBANS) (50).

Patients were scanned while off-medication, and then entered
into a 6-week trial with risperidone (flexible dosing regimen), at
the end of which they received a second scan. Symptom severity
was assessed with the Brief Psychiatric Rating Scale (BPRS) (51)
and its positive and negative subscales. Medication compliance
was monitored by pill counts. HC were scanned twice at 6-week
intervals. Prior to each scanning session, all subjects underwent a
urine drug screen.

Controlling for Movement
Four SZ and two HC subjects were excluded due to movement
during scanning. Subjects were excluded when the motion
parameters showed >2mm translation or 2◦ rotation within
a run. A linear mixed model of the mean scan-to-scan head
movement for the six movement parameters (linear movement
in the x, y, and z axes and rotational movement of pitch,
roll, and yaw) indicated no significant differences for group
(HC vs. SZ), time (baseline vs. week 6), or group × time
(See Supplement Table 1). Two SZ subjects and three HC were
excluded for lack of complete task data/performance. A total of 22
SZ and 20 HC subjects remained in the off-medication baseline
analyses. Two SZ subjects did not perform the task at the 6-week
scan, leaving 20 SZ, and 20 HC subjects at the 6-week analyses
(Table 1).

Functional Task
Subjects performed a computerized version of the Stroop
color-naming task (52). Stimuli consisted of three words: “RED,”
“GREEN,” or “BLUE,” displayed in one of the corresponding
colors. Trials were designated as either “congruent” or
“incongruent,” where incongruent trials reflected a difference
between the word and the color of the word. Subjects were
instructed to indicate the color and ignore the word. They were
instructed to respond as quickly and as accurately as possible and
responses were recorded by button press. An IFIS-SA system
(in vivo, Orlando, Florida) running E-Prime software (version
1.2; Psychology Software Tools, Pittsburgh, Pennsylvania) was
used to control stimulus delivery and record responses and
reaction times. The event-related design consisted of three runs
of 88 trials per run (∼30% incongruent, 70% congruent; to
increase conflict effect, the numbers of incongruent trials were
less than congruent trials). The 3 s trials were comprised of a
word stimulus for 1.5 s and a fixation cross for 1.5 s. Both SZ and
HC completed a baseline session and a second session, 6 weeks
later, corresponding to pre and post antipsychotic medication in
SZ. All participants completed a practice run in the laboratory
before each scanning session.

Image Acquisition
All imaging was performed on a 3T head-only MRI scanner
(Magnetom Allegra, Siemens Medical Solutions, Erlangen,
Germany), with a circularly polarized transmit/receive head coil.
MRS sequences were always acquired prior to the functional
ones.

MRS
A series of sagittal, coronal, and axial T1-weighted anatomical
scans serving as MRS-localizers were acquired for spectroscopic
voxel placement. Slices were aligned to anatomical midline to
control for head tilt. The MRS voxel was placed in a region
of the bilateral dorsal ACC on the basis of the sagittal and
coronal images. Manual shimming was performed to optimize
field homogeneity across the voxel, and chemical shift selective
(CHESS) pulses were used to suppress the water signal. Spectra
were acquired using the point-resolved spectroscopy sequence
(53) (PRESS; TR/TE = 2,000/80ms to optimize the glutamate
signal, number of averages = 256, voxel size 2.7 × 2 × 1 cm3).
All of the 22 off-medication baseline patients with schizophrenia
that completed the Stroop task also had ACC Glx measurements.
Of the 20 patients with schizophrenia with 6 weeks medication
that completed the Stroop task, 20 had ACC Glx measurements.
Of the 20 HC, 20 had ACC Glx measurements at baseline and 19
at 6 weeks.

fMRI
fMRI data were acquired using the gradient recalled echo-planar
imaging (EPI) sequence (repetition time/echo time [TR/TE]
= 2,100/30ms, flip angle = 70◦, field of view = 24 × 24 cm2,
64 × 64 matrix, 4-mm slice thickness, 1-mm gap, 26 axial
slices). A high-resolution structural scan was acquired for
anatomical reference using the three-dimensional T1-weighted
magnetization prepared rapid acquisition gradient-echo
sequence (TR/TE/inversion time [TI]= 2,300/3.93/1,100ms, flip
angle= 12◦, 256× 256 matrix, 1-mm isotropic voxels).

Statistical Analyses
Behavior and Demographics
Analyses were conducted using SPSS 20 (IBM SPSS Inc., Chicago,
IL). Group comparisons were performed using chi-square or
analysis of variance, as appropriate. Analyses of reaction time
(RT) for correct trials [congruent, incongruent, and Stroop
(incongruent—congruent)] and errors (congruent, incongruent)
were analyzed using linear mixed models comparing fixed effects
of group (HC vs. SZ), time (off-medication vs. week six),
condition (congruent vs. incongruent), and interactions. Post-
hoc analyses were performed where appropriate with Bonferroni
correction.

Stroop BOLD fMRI
Data analyses were implemented in SPM8 (Wellcome Trust
Centre for Neuroimaging). Preprocessing included slice-timing
correction, realignment, reslicing to 1.5mm isotropic voxels,
motion/artifact correction using ArtRepair (54), DARTEL
normalization, and smoothing (4mm full width at half maximum
Gaussian kernel). Analysis for the Stroop task consisted of
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TABLE 1 | Demographics, clinical, and behavioral measuresa.

SZ (n = 22) HC (n = 20) t/x2 P-value

Age, years 33 (9.78) 33.05 (9.31) −0.002 0.99

Sex, M/F 17/5 14/6 0.63 0.54

Parent SESb 7.89 (5.85) 5.68 (3.92) 1.34 0.19

Smoking Status (Smoker/Non-smoker) 19/3 10/10 1.72 0.06

Smoking, packs per day 0.73 (0.54) 0.39 (0.57) 1.97 0.06

Medication naïve n = 9

Months off medication 27.75 (49.99)

Diagnosis (Schizophrenia/schizoaffective) (19/3)

Age of onset, years 21.86 (3.38)

RBANS Totalc 70.55 (12.67) 93.5 (14.81) −2.89 0.006

SZ 0 SZ 6d HC 0 HC 6

BPRSe

Total 48.59 (10.32) 29.52 (8.14) 8.88 <0.001

Positive 8.86 (2.48) 4.52 (2.58) 7.82 <0.001

Negative 7.05 (2.38) 5.14 (2.31) 3.01 0.007

ACC Glx/Cr 0.67 (0.07) 0.68 (0.05) 0.70 (0.07) 0.72 (0.07)

Group 0.047

Time 0.183

Interaction 0.895

TASK REACTION TIME, SEC

Congruent 0.91 (0.18) 0.90 (0.19) 0.80 (0.10) 0.79 (0.13)

Incongruent 1.04 (0.18) 1.03 (0.23) 1.00 (0.14) 0.91 (0.10)

Stroop 0.13 (0.07) 0.13 (0.07) 0.19 (0.09) 0.14 (0.08)

MISSING TRIALS

Congruent 8.45 (11.86) 6.80 (13.76) 2.85 (8.38) 2.75 (5.30)

Incongruent 4.32 (7.08) 4.20 (7.85) 1.05 (2.63) 1.25 (2.61)

TASK ERRORS

Congruent 10.71 (15.83) 8.06 (12.49) 2.75 (4.28) 4.30 (7.14)

Incongruent 4.52 (5.23) 3.28 (3.75) 4.25 (5.46) 3.90 (5.09)

SZ, schizophrenia; HC, healthy control. SZ 0, off-medication baseline schizophrenia; SZ 6, 6 weeks medicated schizophrenia. HC 0, healthy controls baseline; HC 6, healthy controls 6

weeks. ACC, Anterior cingulate cortex; Glx/Cr, Glutamate + Glutamine/Creatine.
aMean (SD) unless indicated otherwise.
bRanks determined from Diagnostic Interview for Genetic Studies (1–18 scale); higher rank (lower numerical value) corresponds to higher socioeconomic status; data not available for

4 SZ subjects.
cRepeatable Battery for Neuropsychological Status. Data not available for 5 SZ subjects.
dn = 20.
e Brief Psychiatry Rating Scale (1–7 scale); positive (conceptual disorganization, hallucinatory behavior, and unusual thought content); negative (emotional withdrawal, motor retardation,

and blunted affect); data not available for 1 SZ subject.

a single-subject voxel-by-voxel general linear model. Five
conditions were included: incongruent trials, congruent trials,
stimulus repetitions [exact repetition of a previous trial (55)],
error, and no response trials. The conditions were convolved with
the canonical hemodynamic response function with temporal
derivatives. The contrast of interest was correct incongruent trials
minus correct congruent trials, subsequently referred to as the
Stroop effect. A contrast z-map of the BOLD signal during the
Stroop effect was generated for each participant at each time
point.

MRS
MRS data were analyzed in jMRUI (version 3.0) (56). The
residual water peak was removed using the Hankel-Lanczos

singular values decomposition (HLSVD) filter (57). Spectra were
quantified in the time domain using the AMARES (advanced
method for accurate, robust, and efficient spectral fitting)
algorithm (58). Prior knowledge derived from in vitro and in
vivo metabolite spectra was included in the model. A phantom
solution of 20mM glutamate in buffer was imaged using the
MRS parameters from the in vivo study. The resulting spectrum
was quantified in jMRUI, and this model was used to fit the in
vivo data. The model consisted of peaks for NAA, choline (Cho),
creatine (Cr), and 3 peaks for glutamate + glutamine (Glx),
which correspond to the H-4 resonance of Glu. Amplitude, line
width, and chemical shift were optimized for each peak. Cramer-
Rao lower bounds (CRLB) (59–61) were calculated for each peak.
Exclusion criteria were CRLB >20% or failure of the fitting
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algorithm. NAA, Glx, and Cho were quantified with respect to
Cr and compared across groups using one-way ANOVA with an
alpha level of 0.05.

Behavior/MRS Correlations
The relationships between glutamate levels, Stroop task
behaviors, RBANS total index, and BPRS positive and
negative subscales were analyzed by Pearson correlation
(see in Supplement Results).

fMRI/MRS Relationship
ACC Glx/Cr levels were included as a regressor in the Stroop
BOLD activation for each corresponding participant at both
groups and both timepoints, separately (e.g., baseline HC ACC
Glx/Cr correlation with baseline HC Stroop BOLD signal). A
multiple regression analysis was used to test for an interaction
between the BOLD Stroop effect Group (HC vs. SZ) and Glx.
Tests for voxels where the relationship between the BOLD Stroop
effect and Glx between groups (HC vs. SZ) were made using two-
sample t-tests at both time points separately (baseline; 6 weeks)
at p < 0.05.

fMRI analyses were corrected for multiple comparisons using
small-volume correction (SVC) in accordance with Gaussian
random field theory (p < 0.05). In order to limit observable
findings to the networks of interest, results were restricted to
two separate inclusive masks containing regions that comprise
the (1) SN and (2) posterior DMN. The SN mask contained the
bilateral insula and ACC and the posterior DMNmask contained
the bilateral PCC, precuneus, and inferior parietal lobule, and
hippocampus from the automated anatomical labeling (AAL)
atlas in the WFU Pickatlas (62). For illustration purposes, the
signal was extracted from significant regions using REX (CIBSR
Stanford University, CA) with a 6mm ROI and the extracted
first eigenvariate signal was then plotted against each participant’s
associated ACC Glx/Cr value.

RESULTS

Demographics and Behavior
No significant differences were observed between HC and SZ for
matching criteria: age, gender, parental occupation, or smoking
packs per day. At the time of baseline fMRI acquisition, SZ
had been off antipsychotic medication for a mean of 832 days,
median: 240 days. Mean baseline BPRS positive subscale score
of 8.8 ± 2.5 indicated a high burden of psychotic symptoms
in patients. Over the course of 6 weeks of risperidone SZ
demonstrated a significant reduction in symptoms as indicated
by the BPRS. Risperidone dose at the end of the study was
4.17± 1.92mg. Patients also received the following psychotropic
medications: benztropine (n= 11), trazodone (n= 2), divalproex
sodium (n= 1), and amitriptyline (n= 1).

Reaction Times (RTs) for correct responses are presented in
Table 1. There was a significant effect of Group (HC vs. SZ),
F(1, 40) = 4.47, p < 0.05, Condition (Incongruent vs. Congruent),
F(1, 116) = 122.88, p < 0.001, and Group × Time interaction,
F(1, 116) = 4.00, p < 0.05. Post-hoc analyses demonstrated both
HC and SZ had faster reaction times during congruent trials than
incongruent trials (p < 0.01), demonstrating the Stroop effect

as expected. HC had significantly faster reaction times than off-
medication SZ during congruent trials, and significantly faster
reaction times than medicated SZ during both congruent and
incongruent trials. No significant differences in reaction times
were observed within SZ between off-medication baseline and
week 6 of risperidone. Task related behavioral measures are
presented inTable 1. No significant differences were observed for
Group, Time, or interactions.

fMRI
Results of Stroop task-based BOLD fMRI signal in off-medication
SZ patients and the longitudinal differences after 6 weeks of
medication have been previously published (63). In the SN,
off-medication SZ showed significantly less BOLD response in
the ACC and insula compared to baseline HC during Stroop
task performance. In the posterior DMN, off-medication SZ
showed significantly less BOLD response in the PCC, inferior
parietal, precuneus, and hippocampus compared to baseline HC.
Inspection of group deactivation patterns indicated that there
was limited deactivation in the posterior DMN in both HC and
SZ at both time points during the Stroop task than would be
expected (Supplement Figure 1).

MRS
MRS results for the HC and SZ groups are presented in Table 1.
ACC Glx/Cr showed a significant effect of group [F1, 40 = 4.25, p
< 0.05]. Medicated SZ showed decreased ACC Glx/Cr relative
to HC at week 6 (p < 0.05). There was no significant group
difference at baseline.

Combined fMRI and MRS
Off-Medication/Baseline
In the SN, there was a relationship between ACC Glx and Stroop
BOLD signal in right ACC and bilateral insula in baseline HC,
and in bilateral ACC and right insula in off-medication SZ
(PSVC < 0.05, Figure 1A; Supplement Table 2). In each group,
the signals extracted from the most significant ACC and insula
clusters were plotted against each other. In both group, the signals
from these regions were highly correlated (HC: r = 0.86; off-
medication SZ: r = 0.73). Significant Stroop BOLD group ×

Glx interactions were observed in the bilateral ACC and insula
(PSVC < 0.05, Figure 1B). A descriptive plot of the extracted
interaction signal from the ACC shows a significant positive
correlation between ACC Glx and ACC BOLD signal in baseline
HC that was not observed in the off-medication SZ group
(Figure 1C). The between-group analysis revealed significant
group differences within bilateral insula and left ACC (PSVC <

0.05, Table 2).
In the posterior DMN, there was a relationship between

ACC Glx and Stroop BOLD signal in bilateral hippocampus,
precuneus, inferior parietal lobule, and PCC in both groups
(Figure 1D; Supplement Table 2). Significant Stroop BOLD
group × Glx interactions were observed in the precuneus and
inferior parietal lobule (PSVC < 0.05, Figure 1E). A descriptive
plot of the extracted interaction signal from the precuneus shows
a significant positive correlation between ACC Glx and BOLD
signal in the precuneus in baseline HC that was not observed
in the off-medication SZ group (Figure 1F). The between-group
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FIGURE 1 | Baseline relationship between ACC Glx and Stroop BOLD signal. (A) In the salience network, relationship between Glx levels and Stroop BOLD signal in

healthy controls (HC) and off-medication patients with schizophrenia (SZ) in the ACC and insula. (B) Baseline BOLD Stroop group × ACC Glx interaction significant in

bilateral insula and ACC in the salience network. (C) Descriptive plot of ACC Glx and ACC Stroop BOLD signal (MNI coordinates 2, 30, 14) reflecting the significant

positive correlation in HC and the lack of correlation in off-medication SZ. (D) In the posterior default mode network (DMN), relationship between Glx levels and Stroop

BOLD signal in HC and off-medication SZ in the precuneus, posterior cingulate cortex (PCC) and inferior parietal lobule (Inf. Parietal). (E) Baseline BOLD Stroop group

× ACC Glx interaction significant in the precuneus and inferior parietal lobule in the posterior DMN. (F) Descriptive plot of ACC Glx and Precuneus Stroop BOLD signal

(MNI coordinates 3, −63, 38) reflecting the significant positive correlation in HC and the lack of correlation in off-medication SZ. x and z coordinates refer to Montreal

Neurological Institute (MNI) space. Color bar on bottom indicates t-score. All analyses were thresholded at PSVC < 0.05.

analysis revealed significant group differences within bilateral
inferior parietal lobule, precuneus, right hippocampus and right
PCC (PSVC < 0.05, Table 2).

6 Weeks
In the SN, there was a relationship between ACC Glx and
Stroop BOLD signal in bilateral insula in HC and, in
medicated SZ in bilateral insula and bilateral ACC (PSVC <

0.05, Figure 2A; Supplement Table 3). In medicated SZ the
signals extracted from the most significant ACC and insula

clusters were highly correlated (medicated SZ: r = 0.96).
Significant Stroop BOLD group × Glx interactions were
observed in the ACC and insula (PSVC < 0.05, Figure 2B).
A descriptive plot of the extracted interaction signal from
the ACC shows a significant positive correlation between
ACC Glx and ACC BOLD signal in medicated SZ that
was not observed in the HC group at week 6 (Figure 2C).
The between-group analysis revealed significant group
differences within bilateral insula and ACC (PSVC < 0.05,
Table 2).
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TABLE 2 | Differences in the relationship between anterior cingulate cortex (ACC)

Glx and the Stroop BOLD signal in schizophrenia compared to healthy controls.

Region Hemisphere x, y, z Voxels Peak

t-value

BASELINE

Salience Network

HC vs. SZ

Cluster 1 (ACC) L −8, 31, 18 1069 4.94

Cluster 2 (Insula) L −30, 25, −7 110 3.83

Cluster 3 (Insula) R 43, 18, 2 346 3.69

Cluster 4 (Insula) L −36, 0, −9 126 3.49

Cluster 5 (Insula) L −42, 9, −7 96 3.29

Cluster 6 (Insula) R 42, −15, −3 111 3.16

Cluster 7 (ACC) L −4, 1, 29 75 2.62

Posterior DMN

HC vs. SZ

Cluster 1 (Inf. Parietal) R 36, −47, 53 258 4.05

Cluster 2 (Inf. Parietal) L −28, −45, 47 379 3.98

Cluster 3 (Precuneus) R 8, −63, 56 1184 3.97

Cluster 4 (PCC) R 4, −36, 29 54 3.79

Cluster 5 (Inf. Parietal) R 45, −41, 45 76 3.11

Cluster 6 (Precuneus) L −8, −66, 36 99 3.10

Cluster 7 (Hippocampus) R 26, −38, 2 49 2.95

6 WEEKS

Salience Network

HC vs. SZ

Cluster 1 (ACC) R 0, 6, 26 66 3.59

Cluster 2 (Insula) L −36, 10, −2 241 3.44

Cluster 3 (ACC) R 3, 39, 21 77 3.26

Cluster 4 (Insula) R 43, 15, −6 481 3.25

Cluster 5 (Insula) R 36, −19, 9 85 3.04

Cluster 6 (ACC) L −9, 30, 22 87 2.93

Cluster 7 (Insula) R 33, 16, 7 54 2.90

Cluster 8 (Insula) L −37, −4, 12 112 2.75

Cluster 9 (ACC) R 6, 27, 21 70 2.68

Posterior DMN

HC vs. SZ

Cluster 1 (Inf. Parietal) L −38, −59, 45 592 4.29

Cluster 2 (Precuneus) L −12, −72, 34 606 3.41

Cluster 3 (Inf. Parietal) R 38, −45, 45 105 3.25

Cluster 4 (Hippocampus) R 21, −33, −2 73 3.11

Cluster 5 (Inf. Parietal) R 40, −38, 51 51 3.09

Cluster 6 (Precuneus) R 6, −55, 54 125 2.58

Cluster 7 (PCC) R 9, −40, 21 66 2.53

Cluster 8 (Precuneus) R 10, −51, 22 61 2.50

Cluster 9 (Precuneus) L −4, −48, 61 125 2.41

Cluster 10 (Inf. Parietal) R 27, −55, 49 68 2.35

Cluster 11

(Hippocampus)

L −33, −30, −12 95 3.57

Cluster 12 (Precuneus) L −6, −54, 33 62 2.86

HC, Healthy Control; SZ, schizophrenia; L, left; R, right; ACC, anterior cingulate cortex;

Inf. Parietal, inferior parietal cortex; PCC, posterior cingulate cortex; DMN, default mode

network. x, y, z, refer to Montreal Neurological Institute coordinates.

In the posterior DMN, there was a ACC Glx and Stroop
BOLD signal relationship in the left inferior parietal cortex in
HC and bilateral hippocampus, inferior parietal lobule, and right
precuneus in medicated SZ (Figure 2D; Supplement Table 3).
Significant Stroop BOLD group×Glx interactions were observed

in the precuneus, PCC, and inferior parietal lobule (PSVC <

0.05, Figure 2E). A descriptive plot of the extracted interaction
signal from the precuneus shows a significant positive correlation
between ACC Glx and precuneus BOLD signal in medicated SZ
that was not observed in HC at week 6 (Figure 2F). The between-
group analysis revealed significant group differences within
bilateral precuneus, inferior parietal lobule, right hippocampus,
and right posterior cingulate (PSVC < 0.05, Table 2).

DISCUSSION

The current study combined fMRI and 1H-MRS to investigate
the relationship betweenACCGlx and task-based BOLD signal in
off-medication patients with schizophrenia and after 6 weeks of
medication. The main findings are: (1) A significant decrease in
ACCGlx levels in medicated SZ patients compared to HC but not
compared to their off-medication baseline. (2) In off-medication
SZ, the relationship between ACC Glx and the BOLD response
in regions of the SN and posterior DMN was opposite than that
of HC. (3) After 6 weeks, these relationships were still opposite
between the groups; however for both groups the direction of the
relationship had changed from baseline to week 6.

Over 6 weeks of treatment, we observed a significant decrease
in ACC Glx compared to HC, but not compared to their off-
medication baseline. There are a limited number of longitudinal
studies evaluating the effect of short-term antipsychotic
treatment on glutamatergic metabolites. In medication-naïve/
minimally treated first episode psychosis patients, Egerton
reported a reduction in ACC glutamate after 4 weeks of
treatment with amisulpride (64). In chronic patients washed out
of medications, Szulc reported a decrease in temporal lobe Glx
following 4 weeks of treatment with a variety of antipsychotic
medications (65). In medication-naïve FEP subjects compared to
healthy controls, de la Fuente-Sandoval observed higher baseline
striatal glutamate and a significant reduction in striatal glutamate
after 4 weeks of risperidone treatment (66). We acknowledge
that the size of our sample was limited and there is a need to
address this question in the future with larger sample size.

In HC, at baseline, interindividual differences in ACC Glx
predicted the strength of the ACC BOLD response; those with
higher ACC Glx levels showed greater ACC BOLD response,
suggesting local resting state neurochemical concentrations
are modulating local neural activity generated during task
performance. We also identified a correlation between ACC
Glx and the BOLD response in the insula, bilaterally; these
results are in agreement with those of Duncan who identified
a similar correlation between ACC glutamate and insula
BOLD response during task performance (67). Suggestive of a
network basis for concomitant identification of the ACC and
the insula in this analysis, we identified strong correlations
(r > 0.7) between the signal extracted from the ACC and
the signal extracted from the insula. In addition, we found
that ACC Glx levels were also positively and significantly
correlated with the BOLD response in regions of the posterior
DMN. These results are in contrast to two prior studies (40,
43) where ACC Glx was found to negatively correlate with
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FIGURE 2 | Six weeks relationship between ACC Glx and Stroop BOLD signal. (A) In the salience network, relationship between Glx levels and Stroop BOLD signal in

the insula in healthy controls (HC) and in the ACC and insula in medicated patients with schizophrenia (SZ). (B) Six weeks BOLD Stroop group × ACC Glx interaction

significant in bilateral insula and ACC in the salience network. (C) Descriptive plot of ACC Glx and ACC Stroop BOLD signal (MNI coordinates 0, 6, 25) reflecting the

significant positive correlation in medicated SZ and the lack of correlation in HC. (D) In the posterior default mode network (DMN), relationship between Glx levels and

Stroop BOLD signal in the inferior parietal lobule (Inf. Parietal) in HC and in the precuneus, inferior parietal lobule in medicated SZ. (E) Six weeks BOLD Stroop group

× ACC Glx interaction significant in the precuneus, PCC, and inferior parietal lobule in the posterior DMN. (F) Descriptive plot of CC Glx and Precuneus Stroop BOLD

signal (MNI coordinates 5, −71, 41) reflecting the significant positive correlation in medicated SZ and the lack of correlation in HC. x and z coordinates refer to

Montreal Neurological Institute (MNI) space. Color bar on bottom indicates t-score. All analyses were thresholded at PSVC < 0.05.

the BOLD response in posterior DMN: higher levels of Glx
measured in the ACC predicted greater deactivation of the
DMN during task performance. Inspection of our BOLD data
indicates that there was a limited deactivation of the DMN
during Stroop performance in the region of the precuneus (see
Supplement Figure 1); this could be explained by differences in
task difficulty between our and the before mentioned studies
(68) and, indeed, task difficulty has been shown to alter the
relationship between ACC Glx and posterior DMN BOLD

(69). There have been now a number of studies demonstrating
correlations between glutamate and the BOLD signal in regions
outside that in which glutamate is measured (40–42, 67, 69).
It can be argued that local neurometabolites are likely to
contribute to the activity of distant projections areas; this
likely involves complex synaptic transmission where a number
of neurotransmitters, including glutamate, tune the neuronal
projections and thus affect the BOLD signal in distant regions.
Known glutamatergic projections between the ACC and the
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insula and posterior DMN are hypothesized to support this
modulation (70).

The group by Glx by BOLD response analysis identified
significant interactions in the relationship between Glx and
BOLD in regions of the ACC, insula, and posterior DMN. In these
regions, off-medication SZ showed an altered pattern compared
to HC: higher ACC Glx predicted lower BOLD response.
Importantly, these alterations were found in the absence of a
group differences in Glx levels. Like Falkenberg andOverbeek, we
observed an opposite relationship between ACC Glx and regions
of the posterior DMN between the groups; however in contrast to
them, the relationship was in the opposite direction. Again, this
discrepancy might be explained by the limited deactivation in the
DMN seen in our study. Another major difference between this
and the other studies is that our patients were off-medication.
Together, our results suggest alterations in the relationship
between Glx and the BOLD response locally, in the ACC, as
well as in the long-range connections between the ACC, the
insula, and the posterior DMN that are modulated by glutamate.
Group differences might emerge as a consequence of altered
overall regional ratio of excitation over inhibition, modulated by
a number of neurotransmitters, including glutamate and GABA
(71), as well as of known abnormal functional and structural
connectivity between these brain regions (34, 72).

After 6 weeks, the group by Glx by BOLD analysis identified
again significant group interactions in regions of the ACC, insula,
and posterior DMN. However, in these regions, the relationships
between Glx and BOLD response were now positive in medicated
SZ and negative in HC. This is a complex picture as both SZ and
HC show differences in the direction of the relationship between
baseline and week 6. Thus, this effect cannot be attributed to an
effect of medication alone. To complicate results’ interpretation,
medicated SZ had significantly lower level of Glx compared to
HC; in addition, because of habituation, it is possible that the task
became easier to perform the second time, and both Glx levels
and task difficulty have been showed to alter the relationship
between ACC Glx and posterior DMN BOLD (69).

Strengths and Limitations
To avoid confounding medication effects and minimize data
variance, we only enrolled off-medication SZ, matched groups on
several key factors, and used a rigorous longitudinal design with
a single antipsychotic medication. Also, we attempted to control
for the effect of time by scanning a HC group 6 weeks apart.
Supporting the significance of controlling for time, a component
lacking in many studies, our results indicate variability of the
relationship between Glx and BOLD response in HC over
time, which may be driven by factors including habituation to
task or scanner environment. This combined MRS-fMRI study
obtained neurometabolite levels that, given the spectroscopy
sequence in the 3T MRI scanner, were unable to distinguish the

overlapping glutamate, glutamine, and GABA peaks from each
other. As studies have shown differences in these metabolites in
schizophrenia (73, 74), future studies should attempt to obtain
spectroscopy data from MRI scanners that are able to separate
these metabolites. Spectroscopy was done during a resting state,
thus the correlations with the BOLD signal obtained during task

cannot be interpreted as being causal. Further studies combining
fMRI with functional MRS, where changes in neurometabolites
are measured during task performance, might provide a more
fine grained understanding of the link between metabolites and
cognitive processes. Finally, at baseline patients made more
errors during the congruent trials of the Stroop task than during
the incongruent trials, which is unusual.

CONCLUSION

In off-medication patients, we observed an altered relationship
between ACC Glx and BOLD response in regions of the salience,
including the ACC, and posterior DM networks compared to
HC. These results suggest a mechanism whereby alterations in
the relationship between cortical glutamate and BOLD response
is disrupting the modulation of major neural networks sub
serving task-negative rest and task-positive cognitive processes,
potentially affecting cognition. While these relationships appear
to normalize with treatment in patients, the interpretations of the
results are confounded by significant group differences in Glx
levels, as well as the variability of the relationship between Glx
and BOLD response in HC over time, which may be driven by
factors including habituation to task or scanner environment.
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