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Extensions of kernel methods for the class imbalance problems have been extensively studied. Although they work well in coping
with nonlinear problems, the high computation and memory costs severely limit their application to real-world imbalanced tasks.
.e Nyströmmethod is an effective technique to scale kernel methods. However, the standard Nyströmmethod needs to sample a
sufficiently large number of landmark points to ensure an accurate approximation, which seriously affects its efficiency. In this
study, we propose a multi-Nyström method based on mixtures of Nyström approximations to avoid the explosion of subkernel
matrix, whereas the optimization to mixture weights is embedded into the model training process by multiple kernel learning
(MKL) algorithms to yield more accurate low-rank approximation. Moreover, we select subsets of landmark points according to
the imbalance distribution to reduce the model’s sensitivity to skewness. We also provide a kernel stability analysis of our method
and show that the model solution error is bounded by weighted approximate errors, which can help us improve the learning
process. Extensive experiments on several large scale datasets show that our method can achieve a higher classification accuracy
and a dramatical speedup of MKL algorithms.

1. Introduction

Real-world problems in computer vision [1], natural lan-
guage processing [2, 3], and data mining [4, 5] present
imbalanced traits in their data, which may be developed by
the inherent properties of the data or some external factors
such as sampling bias or measurement error. Unfortunately,
most traditional learning algorithms are designed based on
balanced data and target the overall classification accuracy,
leading theminority class to be overwhelmed by themajority
class. However, the minority class in these real-world
problems is usually more important and expensive than the
majority class.

In the past few decades, many algorithms have been
proposed to solve the class imbalance problems [6–8]. .e
data-level methods artificially balance the skewed class
distributions by data sampling [9, 10]. .e algorithm-level
methods lift the importance of minority instances via the
modification of existing learners [11, 12]. However, there
usually exist complex nonlinear structures in these real-

world imbalanced data. In this case, the extensions of kernel
methods for the class imbalance problems have been proven
very effective [13–15]. In [16], Mathew et al. overcome the
limitations of the synthetic minority oversampling tech-
nique (SMOTE) for nonlinear problems by oversampling in
the feature space of the support vector machine. In [17], a
kernel boundary alignment algorithm is proposed to adjust
the class boundary by modifying the kernel matrix according
to the imbalanced data distribution. .e kernel-based
adaptive synthetic data generation (KernelADASYN) for
imbalanced learning is proposed in [18], which uses kernel
density estimation (KDE) to estimate the adaptive over-
sampling density. However, with the development of data
storage and data acquisition equipment, the scale of data
continues to grow. .e existing kernel-based class imbal-
anced learning (kernel CIL) methods suffer from serious
challenges that the cost of calculating and storing a vast
kernel matrix is very expensive.

A general technique for making kernel methods scalable
is kernel approximation, of which the Nyström method is
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the most popular one [19]. .e Nyström method constructs
a low-rank approximation of the original kernel matrix from
a subset of l≪ n landmark points, where n is the data size.
Computationally, it only needs to decompose a smaller
matrix (denoted as W ∈ Rl×l). However, according to the
approximation error bound O(n/

�
l

√
) for the Nyström

method in [20], there is a trade-off between accuracy and
efficiency. .e more landmark points sampled provide
improved approximation accuracy but require more com-
puting resources, which results in the rapid expansion of the
subkernel matrix W as the data size increases and seriously
affects the efficiency of the Nyström method.

Some works study the efficacy of a variety of fixed and
adaptive sampling schemes for the Nyström method. For
example, Musco et al. presented a new Nyström algorithm
based on recursive leverage score sampling, which runs in
linear time in the number of training points [21]. An en-
semble Nyström method has been proposed to yield more
accurate low-rank approximations by running mixtures of
the Nyström method based on several subsets of landmark
points randomly sampled [22]. However, the mixture
weights of the ensemble Nyström method are defined
according to the approximation error of each Nyström
approximation, which may lead to the performance not as
expected when applied to practical classification or regres-
sion applications. Recently, there emerges a fast and accurate
refined Nyström-based kernel classifier to improve the
performance of the Nyström-based kernel classifier [23].
Although the Nyström method has been studied extensively,
there still exists a potentially large gap between the per-
formance of learner learned with the Nyström approxi-
mation and that learned with the original kernel.

In this study, we propose a novel method, multi-
Nyström, for large scale imbalanced classification. We in-
corporate the multi-Nyström method and multiple kernel
learning to learn an improved low-rank approximation
kernel superior to any one of each multi-Nyström ap-
proximation, where each approximation is defined by dif-
ferent kernel functions and subsets of landmark points.
Moreover, unlike existing sampling schemes for the multi-
Nyström method, our method selects subsets of landmark
points according to the imbalance distribution to deal with
the problem of skewed data. Without computing and storing
the full kernel matrix, our method can scale to large scale
scenarios. .e main contributions of this study are sum-
marized as follows:

(1) We propose a multi-Nyström method to overcome
the computational constraints of the Nyström
method. Due to our method parallelized easily, it can
generate more accurate approximates in large scale
scenarios.

(2) We optimize the mixture weights according to the
data and the problem at the hand, so that the
combined approximation kernel matrix can produce
better performance. Moreover, the low-rank

approximation can significantly speed up the exist-
ing MKL algorithms process.

(3) We provide a stability analysis of our method,
showing us the impact of kernel approximation error
on the model solution and help determine the ac-
ceptable approximation error in the approximation
of the kernel matrix.

.e rest of this study is organized as follows. Section 2
introduces some related concepts. Section 3 then describes
the proposed multi-Nyström approximation algorithm in
detail. Experimental results and analysis compared with
other algorithms are presented in Section 4. Finally, Section
5 summarizes the full work.

2. Related Work

2.1. KernelMethods. Kernel methods such as support vector
machines (SVMs) have become one of the most popular
technologies of machine learning [24]. It can extend linear
learners to nonlinear cases by introducing kernel trick.
Consider a binary-class dataset D � (xi, yi)􏼈 􏼉

n

i�1, where
xi ∈ X⊆Rs denotes an s-dimensional vector and
yi ∈ +1, − 1{ } denotes its label. Define a nonlinear descriptor
as

Φ: X⟶H xi↦Φ xi( 􏼁. (1)

.e input data are mapped to a high-dimensional or
even infinite-dimensional feature space, and the inner
product in the feature space is calculated implicitly through
the kernel function defined in the input space.

K x, x′( 􏼁 �〈Φ(x),Φ x′( 􏼁〉H � Φ(x)
TΦ x′( 􏼁, (2)

where K: Rs × Rs↦R is the kernel function that satisfies
Mercer’s theorem [25], and H is the corresponding
reproducing kernel Hilbert space (RKHS). K can simply be a
classical kernel like the radial basis function (RBF) kernel.
Unfortunately, the kernel matrix K ∈ Rn×n expands qua-
dratically with the increase of data scale. .e poor scalability
limits the applicability of kernel methods in large scale
scenarios.

2.2. Multiple Kernel Learning. Due to different kernels
corresponding to different similarity concepts or using
features from different views, MKL can obtain more com-
plete representations of the input data by combining mul-
tiple kernels. In MKL, each instance (xi, yi) is mapped into
different feature spaces by a series of descriptors [26]:

ΦH xi( 􏼁 �

��

d1

􏽱

ΦT
1 x1i􏼐 􏼑, . . . ,

���

dM

􏽱

ΦT
M xM

i􏼐 􏼑􏼔 􏼕
T

, (3)

where xm
i represents feature from themth view of instance xi,

dm ≥ 0, m � 1, . . . , M is the corresponding weight, and M is
the total number of predefined kernels. .en, substitute any
dot product term with kernels:
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K x, xi( 􏼁 �〈Φ(x),Φ xi( 􏼁〉H

� 􏽘
M

m�1
dm〈Φm xm

( 􏼁,Φm xm
i( 􏼁〉Hm

� 􏽘
M

m�1
dmKm xm

, xm
i( 􏼁,

(4)

where each base kernel function Km(·, ·): Rs × Rs⟶ R is a
positive definite kernel associated with an RKHS Hm. .e
purpose of MKL is to learn a resulting discriminant function
of the form f(x) � 􏽐mfm(xm) + b with
Hm ≔ fm|fm(x) � 􏽐

∞
i�1 αiKm(xm, xm

i )􏼈 􏼉.
Based on the aforementioned definition, the seminal

work in MKL proposes the following structural risk mini-
mization framework as MKL primal problem with kernel
weights on a simplex [27].

min
fm{ },b,ξ,d

:
1
2

􏽘

M

m�1

1
dm

fm

����
����
2
Hm

+ C 􏽘

N

i�1
ξi

s.t.

yi 􏽘

M

m�1
fm xm

i( 􏼁 + b⎛⎝ ⎞⎠≥ 1 − ξi

ξi ≥ 0, i � 1, . . . , N

􏽘

M

m�1
dm � 1, dm ≥ 0, m � 1, . . . , M,

(5)

whereC is the regularization parameter of the error term. ξ is
the slack variable. .e L1-norm constraint on the weight
vector d enforces the kernel combination to be sparse. We
assume ‖fm‖2Hm

� 0 whenever dm � 0 in order to reach a
finite objective. .at implies if the weight of a certain kernel
reaches dm � 0, stop the optimization of fm since the so-
lution is known fm � 0 [28].

Although MKL is an ideal candidate for combining
multiview data, scalability is a key issue for MKL: (1) the
computation and memory costs for maintaining several
kernel matrices are heavy and (2) the computational effi-
ciency of MKL solvers is not high.

2.3. Standard Nyström Method. Let L � c1, . . . , cl􏼈 􏼉, where
ci ∈ Rs denotes a set of l landmark points randomly selected
from D uniformly without replacement, C ∈ Rn×l denotes
the subkernel matrix between all instances and the landmark
points, and W ∈ Rl×l be a symmetric positive semidefinite
(SPSD) subkernel matrix among the points in L. .en, the
Nyström method uses W and C to generate a rank-k ap-
proximation 􏽥Kk of kernel matrix K for k≤ l [20]:

K ≈ 􏽥Kk ≔ CW
+
kC

T
, (6)

where Wk ∈ Rl×l is the best rank-k approximation to W with
respect to the Frobenius norm, that is,
Wk � argminrank(V)�k‖W − V‖F, and W+

k denotes the pseu-
doinverse of Wk. Given the matrix Wk, the feature of each
instance xi can be evaluated as

ϕ xi( 􏼁 �

���

W
+
k

􏽱

K xi, c1( 􏼁, . . . , K xi, cl( 􏼁( 􏼁
T
. (7)

Calculate the singular value decomposition (SVD) of W

as W � UΛUT, where U is the orthonormal and
Λ � diag(σ1, . . . , σm) is the diagonal with σ1 ≥ · · · ≥ σm ≥ 0.
.en, the final approximate decomposition of K is denoted
as the following form:

K ≈ 􏽥Uk
􏽥Λk

􏽥U
T

k , with 􏽥Uk �

�

l

n

􏽳

CUkΛ
− 1
k , 􏽥Λk �

n

l
Λk, (8)

whereΛk ∈ Rk×k is the diagonal formed by the top k singular
values of Λ, and Uk ∈ Rl×k is formed by the associated
singular vectors.

.e total time complexity of the Nyström method is
O(l3 + nlk) including O(l3) for SVD on W and O(nlk) for
matrix multiplication with C [29]. For l≪ n, it is much lower
than the O(n3) complexity taken by SVD on K.

3. Proposed Algorithms

3.1. Multi-Nyström Method. We divide the imbalance
dataset D � (xi, yi)􏼈 􏼉

n
i�1 into the minority class set

D+ � (xi, +1)􏼈 􏼉
n+

i�1 and the majority class set
D− � (xi, − 1)􏼈 􏼉

n−

i�1. When there are irregularities in the
imbalanced data (such as small disjuncts, overlapping, and
noise [30]) and the data scale is large, applying a single
kernel may make the model biased, skew, or misleading.
Inspired by theMKL algorithm [31], we construct a low rank
approximate multiple kernel framework as follows:

K x, xi( 􏼁 ≈ 􏽘
M

m�1
dm

􏽥Km,k xm
, xm

i( 􏼁, with dm ≥ 0, (9)

where 􏽥Km,k corresponds to the rank-k approximation of
each base kernel matrix Km, and dm is the corresponding
mixture weight. As for the Nyström method, a key aspect is
the sampling scheme [32]. For reducing the sensitivity to
skewness in data, we adopt the stratified undersampling of
the majority class to select M subsets of landmark points
written as L � Lm􏼈 􏼉

M
m�1 with each Lm � cm,1, . . . , cm,l􏽮 􏽯. .e

subkernel matrix between all instances and the landmark
points can be expressed as

C � C1, . . . , CM􏼂 􏼃 ∈ Rn×Ml
, (10)

where Cm ∈ Rn×l. .en, we perform the standard Nyström
method on each Cm independently to get a rank-k ap-
proximation 􏽥Km,k � CmW+

m,kCT
m of each base kernel matrix

Km. Finally, by linearly combining these approximations, we
can get the general form of approximation multiple kernel
􏽥K:

􏽥K � C1, . . . , CM􏼂 􏼃

d1W
+
1,k

⋱

dMW
+
M,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C
T
1

⋮

C
T
M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

Given themixture weight dm, the feature of each instance
xi can be evaluated as
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􏽥ϕ xi( 􏼁 �

������
d1W

+
1,k

􏽱
K1 xi, c1,1􏼐 􏼑, . . . , K1 xi, c1,l􏼐 􏼑􏼐 􏼑

T

⋮
��������
dMW

+
M,k

􏽱
KM xi, cM,1􏼐 􏼑, . . . , KM xi, cM,l􏼐 􏼑􏼐 􏼑

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(12)

Similarly, for the convenience of subsequent calcula-
tions, formula (11) can be rewritten as

􏽥K � 􏽥U1,k, . . . , 􏽥UM,k􏽨 􏽩

d1
􏽥Λ1,k

⋱

dM
􏽥ΛM,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽥U
T

1,k

⋮
􏽥U

T

M,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(13)

where 􏽥Um,k ∈ Rn×k, and 􏽥Λm,k ∈ Rk×k denotes the approxi-
mate decomposition of Km obtained by (8). Figure 1 shows
the proposed multi-Nyström method and includes an op-
timization process of the mixture weights detailed futher in
next subsection.

When the mixture weight dm is fixed or known, the total
time complexity of the multi-Nyström method is
O(Ml3 + Mnlk). Although our method requires M times
more CPU resources than the standard Nyström method,
M≪ n is typically O(1) for large scale data, and our method
can compute in parallel in the distributed computing en-
vironment. Moreover, the SVD on the subkernel matrix W is
decomposed into that on M much smaller matrices would
also accelerate the calculation process.

3.2. Optimization to Mixture Weights. .e purpose of MKL
is to learn an optimal convex combination of a series of
kernels during training. Based on the aforementioned def-
inition, we propose an approximate multiple kernel learning
framework for large scale imbalanced classification by
modifying the original MKL framework in [26]

min J(d) such that ‖d‖
2
1 � 1, dm ≥ 0, m � 1, . . . , M,

(14)

where

J(d) �

min
α

1
2
αT

Y 􏽥KYα − eTα

s.t.
yTα � 0

0≤ α≤C,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where α is the Lagrange multipliers vector, and
Y � diag(y1, . . . , yn). To avoid numerical instability caused
by ill-conditioning [19], we substitute 􏽥Km,k⟵ 􏽥Km,k + σI,
where σ is a small positive constant called jitter factor.
Moreover, to calculate the inverse of the approximate matrix
􏽥K

− 1 and avoid storing the complete n × n matrix 􏽥K, we
iteratively perform the following series of operations:

T
− 1
0 �

1
σ

I,

T
− 1
1 � T0 + d1

􏽥K1,k􏼐 􏼑
− 1

� T0 + d1
􏽥U1,k

􏽥Λ1,k
􏽥U

T

1,k􏼒 􏼓
− 1

· · ·

T
− 1
M � TM− 1 + dM

􏽥KM,k􏼐 􏼑
− 1

� TM− 1 + dM
􏽥UM,k

􏽥ΛM,k
􏽥U

T

M,k􏼒 􏼓
− 1

,

(16)

where T− 1
m is calculated using the SMW formula according to

the last result T− 1
m− 1. After performing the series of M + 1

operations, we can obtain 􏽥K
− 1

� T− 1
M .

Lemma 1 (see [33]). Let A and C both be invertible; then,
Sherman–Morrison–Woodbury (SMW) formula gives an
explicit formula for the inverse of matrices A + UCV if C− 1 +

VA− 1U is invertible.

​ ​ (A + UCV)
− 1

� A
− 1

− A
− 1

U C
− 1

+ VA
− 1

U􏼐 􏼑
− 1

VA
− 1

.

(17)

We can find that when the mixture weight is known,
formula (15) is same as the dual problem of SVM. Hence, we
have

J �
1
2
α∗TY 􏽥KYα∗ − eTα∗, (18)

where α∗ is the optimal solution minimizing (15). With α∗
considered a constant in J, J can be regarded as a function of
d, and we calculate the gradient of the objective J with
respect to dm.

zJ

zdm

�
1
2
α∗TY 􏽥Um,k

􏽥Λm,k
􏽥U

T

m,k + σI􏼒 􏼓Yα∗

�
1
2
α∗TY 􏽥Um,k

􏽥Λm,k
􏽥U

T

m,k􏼒 􏼓Yα∗ +
σ
2
α∗Tα∗.

(19)

We use the reduce gradient method in [27] to deal with
problem (14). First, for satisfying the L1-norm constraint on
the weight vector d in (14), we calculate the reduced gradient
of d:

∇redJ􏼂 􏼃m �
zJ

zdm

−
zJ

zdμ
,∀m≠ μ, μ � argmax

m

dm,

∇redJ􏼂 􏼃μ � 􏽘
m≠μ

zJ

zdμ
−

zJ

zdm

􏼠 􏼡, μ � argmax
m

dm,

(20)

where ∇redJ denotes the reduced gradient of J(d). Let dμ be
the largest element of the vector d, and μ be the
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corresponding index. Obviously, − ∇redJ would be a descent
direction. However, if ∃m that makes dm � 0 with
− [∇redJ]m< 0, then dm⟶ 0− , which does not meet the
nonnegative restriction. .erefore, − [∇redJ]m needs to be set
to 0. Update descent direction is as follows:

Dm �

0, dm � 0, ∇redJ􏼂 􏼃m> 0,

− ∇redJ􏼂 􏼃m, dm > 0, m≠ μ,

− ∇redJ􏼂 􏼃μ, m � μ.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

In general, MKL uses a two-step training method. It
requires frequent calls to support vector machine solvers,
which is prohibitive for large scale problems..erefore, after
each update on d, we are not eager to substitute it into
support vector machine solvers to update α∗, but continue to
look for the maximum allowable step length in this descent
direction until the objective function value stops declining.
Finally, we get the optimal step length by the line search
method. .e complete algorithm of the multi-Nyström
method with MKL is summarized in Algorithm 1.

3.3. Kernel Stability Analysis. In some previous related
works, Nyström is usually considered as a preprocessing
method and mostly only study the approximate error
bounds without considering the impact of the approximate
on the performance of the kernel machine. In the following,
we analyze the kernel stability of our method, bounding the
relative performance based on the weighted kernel ap-
proximation error. It provides performance guarantees for
our multi-Nyström approximate method in the context of
large scale imbalanced classification.

Proposition 1. Let α∗ be the optimal solution for kernel SVM
with kernel K and 􏽥α be the solution of kernel SVM with kernel
􏽥K obtained by Nyström approximation. >en,

􏽥α − α∗
����

����2 ≤ θ
21 +‖ 􏽥K‖2

λmin
Δ withΔ � 􏽘

M

m�1
dm

􏽥Km − Km( 􏼁
����

����2 α∗
����

����2,

(22)

where λmin is the smallest eigenvalue of 􏽥K, and θ is the
constant from Hoffman’s bound independent on α∗ and 􏽥α.

Proof. Define ∇+f(x) ≡ x − [x − ∇f(x)]+
X be the projected

gradient, where X is the bounded constraint and
[x]+

X ≡ argminy∈X‖x − y‖ is the convex projection operator.
It can be used to define an error bound according to the
following theorem: □

Theorem 1 (see [34]). Let 􏽥x be the nearest optimal solution of
the convex optimization problem:

min
x∈X

f(x) � g(Ex) + bTx, (23)

with g(t) being σg strongly convex, ∇f(x) being ρ Lipschitz
continuous, and X � x|Ax ≤d{ } is a polyhedral set. >e
optimization problem admits a global error bound:

‖x − 􏽥x‖≤ θ2
1 + ρ
σg

∇+
f(x)

����
����, ∀x ∈ X, (24)

where θ is the constant from Hoffman’s bound.

Considering now the problem minα∈Ω􏽥f(α) �

􏽥g(CTYα) − eTα with 􏽥g(x) � (1/2)xTW+
kx and bounded

constraint Ω � α | yTα � 0, 0≤ α≤C􏼈 􏼉, then

min
α∈Ω

􏽥f(α) �
1
2
αT

YCW
+
k C

T
Yα − eTα. (25)

Note that the above problem is equivalent to problem
(15) with the equality 􏽥K � CW+

k CT (W+
k is SPSD), and we

have

λmin W
+
k( 􏼁‖x − y‖

2 ≤ (∇􏽥g(x) − ∇􏽥g(y))
T
(x − y)

� (x − y)
T
W

+
k (x − y)

⟹ σg � λmin W
+
k( 􏼁,

‖∇􏽥f(x) − ∇􏽥f(y)‖ � YCW
+
k C

T
Y(x − y)

����
����

≤ CW
+
kC

T
����

����‖x − y‖

� ‖ 􏽥K‖‖x − y‖

⟹ ρ � ‖ 􏽥K‖2.

(26)

Let f be the dual objective function of multiple kernel
learning problem (5) with the original kernel K � 􏽐mdmKm,
and 􏽥f be the objective function of approximate multiple
kernel learning problem (9) with kernel 􏽥K � 􏽐mdm

􏽥Km

MKL

Cat

Dog

Landmark
points

L1

Subkernel
matrix

C1

Imbalanced input 

The minority class D+

The majority class D– Landmark
points

LM Subkernel
matrix

CM

SPSD subkernel
matrix
W+

M,k

SPSD subkernel
matrix

W+
1,k

Approximation
base kernel~K1,k

Approximation
base kernel~KM,k

Multi–Nyström
approximation

Classification result 

Loss J (d)

Descent direction D, maximal admissible step size γmax

~K

Stratified undersampling

Figure 1: Architecture of the proposed multi-Nyström method. M subsets from the majority class are sampled to construct balanced
landmark points and then the Nyström method is used to obtain the approximate base kernel matrices and the multiple kernel learning
(MKL) algorithm is applied to optimize the mixture weights and train classifier. Finally, the trained kernel classifier based onmulti-Nystrom
is obtained.
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obtained by our multi-Nyström method (13). Consider now
α∗ and 􏽥α as the optimal solutions of f(α) and 􏽥f(α), re-
spectively. We have

∇􏽥f α∗( 􏼁 � Y 􏽥KYα∗ − YKYα∗ + YKYα∗ − e

� Y( 􏽥K − K)Yα∗ + ∇f α∗( 􏼁,
(27)

where we use the fact that ∇f(α∗) � 0 and∇􏽥f(􏽥α) � 0;
therefore,

∇􏽥f α∗( 􏼁
����

����2 � 􏽘
M

m�1
dmY 􏽥Km − Km( 􏼁Yα∗

���������

���������2

≤ 􏽘
M

m�1
dm

􏽥Km − Km( 􏼁α∗
����

����2

≤ 􏽘

M

m�1
dm

􏽥Km − Km( 􏼁
����

����2 α∗
����

����2,

(28)

where ‖( 􏽥Km − Km)‖2 is the spectral norm error of the mth

Nyström approximate based on the mth subset of landmark
points.

Furthermore, we use the inequality ‖∇+ 􏽥f(α∗)‖2 ≤
‖∇􏽥f(α∗)‖2 of the kernel SVM given by [35] (proof of
.eorem 2) along with.eorem 1 to upper bound the norm
difference between the optimal solutions of f(α) and 􏽥f(α):

α∗ − 􏽥α
����

����2 ≤ θ
21 + ρ
σ􏽥g
∇+ 􏽥f α∗( 􏼁

����
����2

≤ θ2
1 + ρ
σ􏽥g
∇􏽥f α∗( 􏼁

����
����2

≤ θ2
1 + ρ
σ􏽥g

􏽘

M

m�1
dm

􏽥Km − Km( 􏼁
����

����2 α∗
����

����2.

(29)

.eproposition shows us the norm difference ‖α∗ − 􏽥α‖2 is
controlled by a weighted Nyström approximate error. And it
guides us to focus on approximating the kernel matrices with
greater weights for getting a better learning performance.

4. Experiments

In this section, in order to validate the efficiency of the
proposed method in solving large scale imbalanced prob-
lems, we compare our method against kernel methods in-
cluding SVM andMKSVM (multiple kernel SVM), as well as
the Nyström approximation method. All experiments are
implemented on a PC with Intel quad-core i7-8565U CPU@
1.80GHz and 8GB memory.

4.1. Implementation. We implement our experiments on five
real-world imbalanced datasets from the KEEL data reposi-
tory (https://keel.es/) and the LIBSVM archive (https://www.
csie.ntu.edu.tw/cjlin/libsvmtools/datasets/) (Table 1). For a
fair comparison, we perform 10 times stratified 5-fold cross-
validation and report the average result. We use LIBSVM
(https://www.csie.ntu.edu.tw/cjlin/libsvm/index.html) and
SimpleMKL (https://asi.insa-rouen.fr/enseignants/arakoto/
code/mklindex.html) to run kernel SVM and MKSVM, re-
spectively. As the kernel type, all experiments use the
Gaussian kernel with bandwidth σ in the range of
log10 σ � − 1, 0, 1, 2{ }. Because we are interested in relative
performance, we empirically set the trade-off parameter
C� 100. In this study, we adopt the following three evaluation
measures of the classification performance on imbalanced
datasets: F1 score, G-mean, and area under ROC curve
(AUC).

Input. Dataset D; number of landmark points l; rank k; number of kernels M; predefined kernel function km(·, ·).
Output. Classification result for instance x
(1) Draw M subsets of balanced landmark points L � Lm􏼈 􏼉

M
m�1 with each Lm � cm,1, . . . , cm,l􏽮 􏽯

(2) Calculate subkernel matrices Cm ∈ Rn×l between the instances in D and Lm and Wm ∈ Rl×l among the instances in Lm with kernel
km(·, ·)

(3) Calculate the singular value decomposition on Wm � UmΛmUT
m

(4) Approximate 􏽥Km,k � Um,kΛm,kUT
m,k according to (8)

(5) Initialize mixture weights dm � (1/M) form � 1, 2, . . . , M

(6) While stopping criterion not met do
(7) Calculate J(d) by SVM solver with 􏽥K � 􏽐mdm

􏽥Km,k according to (15)
(8) Calculate descent direction D according to (19)–(21)
(9) Set μ � argmaxmdm, J∗ � 0,d∗ � d,D∗ � D
(10) While (J∗ < J(d)) do
(11) Set d � d∗, D � D∗
(12) Set ] � argmin m|Dm < 0{ } − (dm/Dm), cmax � − (d]/D])

(13) Set d∗ � d + cmaxD, D∗μ � Dμ − D], D∗] � 0
(14) Calculate J∗ with 􏽥K � 􏽐md∗m

􏽥Km,k

(15) end while
(16) Line search along D for optimal c∗ ∈ [0, cmax]

(17) Assign d⟵d + c∗D
(18) end while

ALGORITHM 1: .e proposed MKLMO algorithm.
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PRE �
TP

TP + FP
,

REC �
TP

TP + FN
,

SPE �
TN

TN + FP
,

F1 score �
2 × PRE × REC
PRE + REC

,

G − mean �
���������
REC × SPE

√
,

(30)

where TP, TN, FP, and FN represent the number of true-
positive, true-negative, false-positive, and false-negative
instances, respectively. F1 score measures the classification
performance on the minority class. G-mean reflects the
overall classification performance. AUC works well for
comparing performance between algorithms [36].

4.2. Experimental Results. Table 2 provides the average ex-
perimental results of the proposed method and the other
three algorithms on the four imbalanced datasets using the
above three measures. We first compare SVM and the
standard Nyström method. .e Nyström method uses
uniform sampling without replacement to approximate the
kernel matrix, which relieves the model’s sensitivity to class
imbalance to a certain extent. For example, on the Poker-8-
9_vs_5 dataset, in terms of G-mean, the Nyström method
improves nearly 7 times more than SVM. However, we can
also see that in terms of AUC and F1 score, there still exits a
large gap in model accuracy as compared with SVM.

Next, we compare our multi-Nyström method with the
standard Nyström method. .e experimental results clearly
demonstrate that our method outperforms the Nyström
method, especially in the context of extreme imbalance. .is
mainly benefits from the use of undersampling of the ma-
jority class, which can effectively balance the class distri-
bution. Moreover, it can be seen that multi-Nyström can
improve the accuracy of the model. For example, with the
same number of landmark points, the F1 score and AUC
value of multi-Nyström on the USPS dataset are closer to
that of SVM or even higher on Poker-8-9_vs_5 and Page-
blocks0 datasets.

Note that our method is also a type of approximation of
MKL, and finally, we also examine the performance of MKL-
based MKSVM. From the results, we can see the effect of
using MKL to represent input data, which also implicitly
explains how our method achieves better accuracy at the
expense of more computations.

4.3. Discussion. In this part, we further discuss the impact of
different parameters on performance. In the first experi-
ment, in order to study the impact of the number of
sampling landmark points on the classification performance,
we fix the approximate rank parameter and successively
increase the number of sampling landmark points, and then
train and test the SVM model on four datasets, with results
as shown in Figure 2. We can see that as the number of
sampling landmark points increases, although there are
some fluctuations, the performance of our method and
Nyström still presents a rising trend. Moreover, except for
few cases, our method uses fewer landmark points and can
still yield higher G-mean.

In the second experiment, we study the performance
with the variance of the rank parameter. Figure 3 shows the
G-mean on four datasets by varying the approximate rank.
.ey show us that with the same approximate kernel rank,
our method can achieve better classification performance
than others.

Finally, we further compare the running time of our
method and MKSVM. We report the results on two datasets
USPS and Page-blocks in Figure 4. .e results show that our
method can significantly speedup the MKL process under
guaranteed performance. For example, on the USPS dataset,
our method can reduce the running time by more than one
order of magnitude. .e main reason is due to the low-rank
attribute of the approximate kernel matrix that speeds up the
MKL algorithm process.

For further analysis of the experimental results, we
perform the Friedman test with respect to the F1 score. First,
we calculate the average ranks of SVM, Nyström, multi-
Nyström, and MKSVM as shown in Figure 5. It can be
noticed that MKSVM gives the best performance. Mean-
while, the SVM and the proposed multi-Nyström rank
similarly. In a comparison of k algorithms on N datasets,
considering ri as the average ranking of the i th algorithm, the
Friedman variable FF can be calculated as follows:

FF �
(N − 1)χ2F

N(k − 1) − χ2F
, (31)

with

Table 1: Datasets used in experiments

Dataset # feature # instance IR
Poker-8-9_vs_5 10 2075 82
Abalone19 8 4174 129.44
Page-blocks0 10 5472 8.79
USPS (class 9 against all) 256 9298 12.13

Table 2: F1 score,G-mean, and AUC results of different algorithms
on four datasets

Datasets Measures SVM Nyström Multi-
Nyström MKSVM

Poker-8-
9_vs_5

F1 0.0571 0.0327 0.0585 0.1906
G-mean 0.0399 0.3357 0.5140 0.1589
AUC 0.8107 0.6106 0.7953 0.7942

Abalone19
F1 0.0611 0.0200 0.0334 0.0569

G-mean 0.0661 0.2914 0.3500 0.0661
AUC 0.7487 0.5203 0.6094 0.7263

Page-
blocks0

F1 0.8061 0.7954 0.8171 0.8342
G-mean 0.7018 0.7292 0.7115 0.7381
AUC 0.9857 0.9753 0.9585 0.9904

USPS
F1 0.8991 0.6688 0.8853 0.9102

G-mean 0.8788 0.8593 0.8408 0.8807
AUC 0.9939 0.9608 0.9874 0.9963
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Figure 2: Classification performance with different numbers of instances sampled on four datasets.
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Figure 3: Continued.

8 Computational Intelligence and Neuroscience



χ2F �
12N

k(k + 1)
􏽘

k

i�1
r
2
i −

k(k + 1)
2

4
⎛⎝ ⎞⎠, (32)

where FF is distributed to (4 − 1) and (4 − 1)(4 − 1) degrees
of freedom. For our experiments, FF � 10.3333. .e critical

value of F(3, 9) is 3.8625 for α � 0.05. Since FF >F(3, 9), we
can reject the null hypothesis that all the algorithms have the
same performance. .en, we perform the Nemenyi test to
compare algorithms pairwise. .e critical difference is cal-
culated as follows:

CD � qa

�������

k(k + 1)

6N

􏽳

, (33)

considering α � 0.05 and CD � 2.3452. .e difference be-
tween the average ranking of the SVM, Nyström, and
multi-Nyström with MKSVM is 1.0, 2.75, and 1.25, re-
spectively. Hence, we can state that the best MKSVM is
significantly better than Nyström at α � 0.05. However, the
difference between the best MKSVM and the proposed
multi-Nyström is not significant, which indicates the
proposed method achieves better performance than the
standard Nyström kernel classifier and more efficiency than
the best MKSVM.
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Figure 3: Classification performance with different ranks of the kernel approximation on four datasets.
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5. Conclusions

In this study, we propose a novel method to overcome the
time and memory limitations of the standard Nyström
method and extend it to the case of large scale imbalanced
classification. In general, kernel approximation and model
training are carried out separately. To obtain more accurate
results, our method mixes multiple Nyström approxima-
tions and embeds them in the model training process to
learn the model parameters and mixture weights simulta-
neously. In particular, the approximate kernel matrix yielded
by our method is low rank and balanced. We also provide an
error bound of themodel solution based on our approximate
method to guide us in improving the learning process.
Experimental results show that our method can achieve a
higher classification accuracy. On the other hand, it can
dramatically improve the efficiency of exiting MKL
algorithms.

Potential improvements: there are still some caveats in
our current solution. For example, due to the curse of
kernelization, the number of support vectors grows in an
unbounded manner when suffered the nonzero loss. .is
significantly increases the computational cost and can be
infeasible for large scale problems. Future work will chiefly
focus on more efficient variants of multi-Nyström involving
budget kernel learning to address the issue.
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