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Impact of deep ocean mixing on the 
climatic mean state in the Southern 
Ocean
Hiroaki Tatebe   1, Yuki Tanaka2, Yoshiki Komuro   1 & Hiroyasu Hasumi3

The Southern Ocean is of great importance for the global stratification and biological carbon storage 
because it is connected to the global ocean conveyor by which atmospheric information absorbed in the 
Southern Ocean is redistributed globally and buffered over centuries. Therefore, understanding what 
controls the Southern Ocean climate, the global ocean conveyor, and links between them is a key to 
quantifying uncertainties in future climate projections. Based on a set of climate model experiments, 
here we show that the tide-induced micro-scale mixing in the Pacific deep ocean has significant impacts 
on the wintertime Southern Ocean climate through basin-scale reorganization of ocean stratification 
and resultant response of the global ocean conveyor. Specifically, Pacific deep water, which is modified 
by the deep ocean mixing while travelling south, reinforces the subsurface stratification and suppresses 
deep convection in the Southern Ocean. Resultant increase of the Ross Sea sea-ice leads to decrease 
of incoming shortwave radiation and strengthening of the westerly and storms. Because the Southern 
Ocean could regulate the global warming progress through its role as heat and carbon sink, our study 
implies that better representation of deep ocean mixing in climate models contributes to reliability 
improvement in regional-to-global climate projections.

The Southern Ocean dominates the global ocean heat and carbon uptake through wintertime mixed layer deep-
ening and the resultant subduction of surface waters to the thermocline and intermediate layers1–3. Atmospheric 
heat and carbon taken into the Southern Ocean are redistributed to all of the world’s oceans by the global merid-
ional overturning circulations (MOC), namely, the global ocean conveyor4,5, which controls the global ocean 
stratification and biological carbon storage2,6–9. For these reasons, the Southern Ocean is of great importance in 
determining Earth’s climatic mean state as well as climate responses to increasing anthropogenic greenhouse gas 
emissions10–13.

As has been widely recognized, there are several common problems which are encountered when modeling 
the Southern Ocean. For example, poor representations of mixed layer depths and open ocean deep convection 
are well-known issues in global ocean modeling, and they are due to lack of mesoscale processes in the Antarctic 
Circumpolar Current14,15, uncertainties in surface fluxes16, and other missing physics in the ocean. Another issue 
is overestimation of incoming solar radiation (ISR) mainly due to cloud radiative processes in atmospheric mod-
eling17,18. These systematic errors commonly found in climate models cause a warm sea surface temperature (SST) 
bias in the Southern Ocean and associated underestimation of sea-ice area. Sea-ice acts as an insulator at the sea 
surface and, together with wind-speed, air-sea temperature differences, and carbon concentration16, is one of the 
controlling factors which determine air-sea heat and carbon exchange amounts. Therefore, the underestimation 
of the sea-ice area in the Southern Ocean constitutes serious obstacles to reducing errors and uncertainties in 
global warming projections.

The oceanic hydrographic structure and sea-ice distribution in the Southern Ocean are influenced by var-
ious water masses of the global ocean. Deep waters of polar ocean origin gain buoyancy in the interior ocean 
by micro-scale vertical mixing of sea water due to the breaking of tide-induced internal waves around rough 
bottom bathymetry19–21. In the Pacific, this tide-induced mixing causes buoyancy-forced basin-wide upwelling 
of Circumpolar Deep Water (CDW)22,23. This upwelling and associated southward flow directed to the Southern 
Ocean, which compose the Pacific MOC and constitute a part of the global ocean conveyor. The modified 
CDW then joins the thermocline and intermediate layers along the path of the Pacific MOC. After reaching 
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the Southern Ocean, it is brought to the sea surface by wind-induced upwelling5. The upwelled water is then 
transformed to thermocline and intermediate waters in the Southern Ocean by surface buoyancy fluxes5,24. The 
stratification in the Southern Ocean, which is determined by the above-mentioned processes, is an important 
controlling factor for heat exchange between sea-ice and subsurface water through isolating the relatively cold 
surface water from the warm deep water25. Therefore, the strength of the stratification can significantly influence 
SST and ISR in the Southern Ocean.

In the present study, focusing on the Pacific part of the global ocean conveyor, possible impacts of the deep 
ocean mixing on the wintertime sea-ice area of the Southern Ocean and the resultant atmospheric responses are 
explored based on a set of climate model experiments. A special emphasis is laid on the representation of deep 
ocean mixing in climate models, which can be a crucial factor for quantifying uncertainty in the driving processes 
of the Southern Ocean climate.

Results
Sea-ice and ISR in the southern ocean.  Climate model experiments are conducted with two different 
representations for the tide-induced deep ocean mixing. The first is called the TED experiment, where a global 
map for the tidal energy dissipation rate (Fig. S1) obtained from a global three-dimensional tide model26,27 is 
employed when estimating eddy vertical diffusivity, Kv. The other is called the CTRL experiment, where a ver-
tical one-dimensional empirical profile is prescribed for Kv. This empirical profile was introduced to obtain the 
observed strength of the Pacific MOC while taking account of the observed bottom-intensified mixing features28. 
Experimental setting details are described in the Methods section.

As shown in Fig. 1, there are significant differences between TED and CTRL in the Southern Ocean climate. 
The wintertime (July-September) sea-ice area in the Ross Sea for TED extends further northward than in CTRL. 
This increased sea-ice area leads also to an increase of the surface albedo, which results in an ISR decrease. The 
annual-mean ISR bias with respect to Earth Radiation Budget Experiments (ERBE29) is 10.6 Wm−2 downward in 
TED and 14.3 Wm−2 downward in CTRL over the Southern Ocean to the south of 50°S. This indicates a 30% bias 
reduction in TED.

The larger sea-ice area in TED results in the lower surface air temperatures over the Ross Sea (Fig. 2a) because 
the sea-ice cap reduces turbulent heat fluxes from the ocean to the atmosphere. The area-mean wintertime surface 
air temperature to the south of 50°S is 2.9 K colder in TED than in CTRL. This temperature difference reaches 
the middle troposphere. The wintertime westerly jet and the activity of the sub-weekly storms over the Ross Sea 
are enhanced in TED (Fig. 2b,c). Note that these differences have little impact on the mean climate outside the 
Southern Ocean. Although the surface air temperature difference between the two experiments extends north-
ward and spreads in the Southern Hemisphere, the precipitation difference outside the Southern Ocean does not 
correspond to the surface air temperature difference (Fig. S2a,b). In addition, the Pacific zonal-mean precipita-
tion difference apart from the Southern Ocean is within one standard deviation in CTRL and is not significant 
(Fig. S2c). It is probable that a difference in the ISR between the two experiments is compensated by that in a 

Figure 1.  Impact of deep ocean mixing on the Southern Ocean climate. (a–c) Wintertime sea-ice 
concentrations (SIC). (d,e) Annual-mean ISR bias (shades; upward positive) with respect to observations shown 
in (f). Climatological ISR is indicated by contours. This figure was prepared with GFD-Dennou Common 
Library version 7.1 (Free Software - http://www.gfd-dennou.org/library/dcl/LICENSE).

http://www.gfd-dennou.org/library/dcl/LICENSE
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meridional ocean heat transport, not by atmospheric heat and moisture transports. Correspondingly, the atmos-
phere outside the Southern Ocean might be insensitive to the difference in the climatic mean state in the Southern 
Ocean. Because detailed investigation of oceanic compensation mechanisms is reported in previous modeling 
studies30,31, we will not discuss the issue here.

Systematic errors in cloud radiative processes in climate modeling have been considered to be the main can-
didates for the ISR bias over the Southern Ocean32,33. More specifically, underestimation of low- and mid-level 
clouds associated with the cold fronts of transient cyclones in the mid-latitude westerly jet could be responsible 
for the ISR bias up to 50% compared with observations32,33. Here, we show that deep ocean mixing also has signif-
icant impacts on the climatic mean state in the Southern Ocean, along with cloud processes in the atmosphere. In 
the remainder of this paper, we investigate how the deep ocean mixing can influence the Southern Ocean climate 
through the modification of the global ocean conveyor.

Deep ocean mixing and global ocean conveyor.  Firstly, we summerize the difference in vertical mix-
ing between TED and CTRL. Strong tidal energy dissipation occurs mainly around rough bottom topographies 
and continental slopes (Fig. S1). Correspondingly, zonal-mean Kv is bottom-intensified in TED and exceeds 
10−2 m2 s−1 below the 4000 m depth (Fig. 3a). Kv in TED takes its minimum at the intermediate depths, 500–
1000 m and around the density surfaces of 26.8–27.2 σθ in the region between 60°S and 60°N, which is clearly 
seen in the Pacific basin-average of Kv (Fig. 3c). The main reason for this is that the distance between intermediate 
depths and the sea floor is significantly larger than the vertical decay scale of the internal tidal energy dissipa-
tion. Due to the smaller Kv, the zonal-mean temperature in the Pacific is warmer (colder) above (below) the 
1000 m depth in TED than in CTRL (Fig. 4a). In particular, the deep water warming in TED is restricted below 
the 4000 m depth to the north of 30°S, consistent with the observed view of the abyssal overturning shaped by 
bottom-intensified turbulent mixing along the seafloor34. The zonal mean salinity is fresher in TED than in CTRL 
around the 750 m depth due to reduced vertical mixing with relatively saline waters in the surface layers (Fig. 4b).

Figure 2.  Indirect influence of deep ocean mixing on atmospheric circulations over the Southern Ocean. (a) 
Wintertime difference of the surface air temperature (shades) between TED and CTRL. (b,c) Same as in (a), but 
for the 500 hPa height and storm track activity. Storm track activity is measured as the meridional eddy heat 
flux at the 850 hPa level. To extract atmospheric transient eddies, a high-pass-filter with a cut-off period of 8 
days is applied to daily-mean data. In (a–c) values in CTRL are denoted by contours. This figure was prepared 
with GFD-Dennou Common Library version 7.1 (Free Software - http://www.gfd-dennou.org/library/dcl/
LICENSE).

Figure 3.  Pacific Kv. (a,b) Pacific zonal-mean Kv (shades) and density (contours). The unit is 10−4 m2 s−1 in log10. 
(c) Pacific basin average of Kv for TED (red line) and CTRL (black line). Note that Kv above the 500 m depth is 
estimated based on the turbulent closure model of ref.51. This figure was prepared with GFD-Dennou Common 
Library version 7.1 (Free Software - http://www.gfd-dennou.org/library/dcl/LICENSE).

http://www.gfd-dennou.org/library/dcl/LICENSE
http://www.gfd-dennou.org/library/dcl/LICENSE
http://www.gfd-dennou.org/library/dcl/LICENSE
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Figure 4c,d shows the global MOC as an indicator of the global ocean conveyor. The lower cell of the global 
MOC is weaker in TED than in CTRL, thereby indicating a weakened equatorward intrusion of CDW in the 
Pacific Sector. The CDW transport across 30°S in the Pacific is 4 Sv (1 Sv ≡ 106 m3 s−1) in TED and 12 Sv in CTRL, 
respectively. Any contributions from parameterized eddy bolus velocities are not included in the global MOC. 
In order to take account of the eddy contributions and to remove spurious circulations, such as the Deacon cell 
in the Southern Ocean, the global and Pacific MOCs are evaluated on the potential density coordinate (Fig. S3). 
The CDW intrusions on the potential density coordinate in both experiments are qualitatively consistent with 
those on the z coordinate, and so is its difference between TED and CTRL. The Deacon cell is much weaker on 
the potential density coordinate than on the z coordinate, suggesting that spurious circulations are removed. 
Therefore, the Pacific MOC is primarily controlled by the buoyancy gain of CDW due to deep vertical mixing of 
sea water28.

The influences of spatially varying and bottom-intensified tide-induced mixing on the Pacific MOC have 
been also reported in previous studies, many of which described Pacific MOC differences among cases with 
three-dimensional Kv which is diagnosed from tidal energy dissipation and vertically one-dimensional Kv. In gen-
eral, the basin average of Kv in deeper layers below the intermediate depths is much larger in the former case than 
in the latter case. However, the Pacific MOC is not necessarily strengthened in the former case because negatively 
increased vertical gradient of Kv in the intermediate and deep layers inhibits upwelling of CDW, thereby a weaker 
Pacific MOC9,28,35,36. Also in the present study, the Pacific basin average of Kv and its vertical gradient in TED is 
much larger than in CTRL (Fig. 3c). Correspondingly, the Pacific MOC becomes weaker in TED than in CTRL.

Figure 4.  Sensitivity of ocean hydrography, global MOC, deep convection in the Southern Ocean on deep 
ocean mixing. (a) Pacific zonal-mean differences of temperature (TED minus CTRL). Values in CTRL are 
denoted by contours. (b) Same as in (a), but for salinity. (c,d) Global overturning streamfunction. (e,f) 
Wintertime mixed layer depth which is defined as the depth where the density is higher than that at the sea 
surface by 0.125 kg m−3. This figure was prepared with GFD-Dennou Common Library version 7.1 (Free 
Software - http://www.gfd-dennou.org/library/dcl/LICENSE).

http://www.gfd-dennou.org/library/dcl/LICENSE
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On the other hand, the maximum North Atlantic Deep Water (NADW) transport in TED is 16 Sv, which is 
as large as in CTRL (18 Sv). From the view point of global MOC closure5, the wind-induced upwelling in the 
Southern Ocean brings deep water to the ocean surface. A large part of the upwelled water is altered to interme-
diate and thermocline waters, which are then transported to the North Atlantic in the upper branch of the global 
MOC and feed the Atlantic MOC. Therefore, as reported in previous studies, NADW intensity strengthens as the 
wind-induced upwelling and northward Ekman transport in the Southern Ocean increase37–39. Since the westerly 
wind is stronger in TED than in CTRL (Fig. 2b), upwelling around 60°S is correspondingly stronger as well, as 
shown in Fig. 4c,d. However, as mentioned above, the maximum NADW transport in TED is comparable with 
that in CTRL. As shown in Fig. 4b, the salinity in the surface layer of the Southern Ocean is lower in TED than in 
CTRL, and this less salty water is exported northward by the wind-induced Ekman processes in TED, resulting 
in smaller salinity supply to the North Atlantic. This process possibly counteracts the influence of the stronger 
westerly wind on the NADW transport. For this reason, the NADW transports in the two experiments remain 
unchanged.

Deep convection in the southern ocean.  While the empirical Kv ensures the observed strength of the 
Pacific MOC23,28, it could also be a cause of the artificial open ocean deep convection in CTRL. Focusing on the 
Ross Sea, wintertime deep convection is inhibited as seen in the shallower mixed layer depth in TED than in 
CTRL (Fig. 4e,f). The open ocean deep convection, which is apparent in CTRL, is rarely observed in the real 
ocean and is considered to be an artifact of numerical models40,41.

Since the wintertime deep convection works to mix the relatively cold and fresh water of the surface layer with 
warm and saline CDW, the weakening of the convection in TED makes the upper layer temperature and salinity 
in the Pacific sector of the Southern Ocean colder and fresher in TED than in CTRL (Fig. 4a,b). These differences 
are the most striking in the surface layer above the 200 m depth. The SST is more than 3.0 K colder in TED than 
in CTRL, and the sea surface salinity is fresher by more than 0.4 psu.

On the other hand, sea water in the layers below the 2000 m depth becomes warmer and more saline in 
TED. Because the contribution of salinity is dominant over that of temperature in determining the density in 
high-latitudes, the upper ocean is more strongly stratified in TED than in CTRL. Buoyancy frequency in the 
subsurface layer around the 150 m depth is 4.0 × 10−5 s−2 in TED, which is much larger than 1.0 × 10−5 s−2 in 
CTRL. The stronger stratification and the resultant weaker deep convection lead to the colder SST in the Pacific 
sector of the Southern Ocean and thus the larger sea-ice area in TED than in CTRL. This relationship between the 
sea-ice area and the stratification is detected also in the observed long-term changes in the Ross Sea25. In the next 
subsection, causes for the above-mentioned differences in the Southern Ocean stratification and deep convection 
are explained in association with the Pacific MOC.

Influence of Pacific part of global conveyor to the southern ocean climate.  Although Kv to the 
south of 65°S is larger in TED than in CTRL in the entire water column (Fig. 3a,b) because of the remarkable tidal 
energy dissipation in the coastal region of the Antarctica (Fig. S1), the wintertime deep convection is suppressed 
in TED due to reinforcement of stratification in the Southern Ocean (Fig. 4). It is expected that the stratification 
reinforcement is caused not by the local ocean mixing in the Southern Ocean but by the Pacific MOC which 
brings temperature and salinity influenced by the deep ocean mixing to the Southern Ocean. In order to eluci-
date whether the differences of the wintertime deep convection, and thus, the climatic mean differences in the 
Southern Ocean between TED and CTRL can be attributed to the Pacific MOC, two additional experiments, 
TED-SO and TED-exSO, were carried out. In TED-SO (TED-exSO), the tidal energy dissipation rate used in TED 
is adopted when estimating Kv to the south (north) of 55°S, and the empirical profile of Kv in CTRL is adopted to 
the north (south) of 55°S. This latitude is chosen because it is apart from the northern edge of active convective 
areas in TED around the Antarctic coast.

As shown in Fig. 5a,b, the sea-ice area in the Southern Hemisphere in TED-exSO is as large as that in TED 
after more than 1000 years of integration, but the sea-ice area in TED-SO does not increase and remains nearly 
the same as that in CTRL. This demonstrates that the Pacific MOC is primarily controlled by buoyancy gain of 
CDW caused by deep turbulent vertical mixing and influences the climatic mean state in the Southern Ocean. 
Looking at the time-evolution of the Pacific MOC and zonal-mean density anomalies in TED, density is lowered 
(raised) above (below) the 1000 m depth and a clockwise anomaly of the Pacific MOC appears first (Fig. 5c). These 
anomalies continue to develop and the Pacific MOC anomaly works to reduce the northward transport of dense 
bottom water of the Southern Ocean origin. Accordingly, density in the Southern Hemisphere becomes higher 
below the 3000 m depth, leading to stratification strengthening, as can be seen in Fig. 5d,e.

Deep ocean mixing brings about significant impacts on the wintertime climate in the Southern Ocean, espe-
cially in the Pacific sector. The underestimation of the sea-ice area and the persistent overestimation of ISR in the 
present climate model can be reduced depending on the representation of the deep ocean mixing.

Discussion
The Southern Ocean dominates the global ocean heat and carbon uptake; hence, a better understanding for the 
formation processes of the Southern Ocean climate is essential for reducing uncertainty in transient climate 
response (TCR) to increasing greenhouse gas emissions42, and thus, the global warming projections43,44. As men-
tioned earlier, many of current climate models are suffering from persistent overestimation of ISR and associated 
underestimation of sea-ice area in the Southern Ocean. In addition, the lack of oceanic mesoscale eddies and 
errors in surface fluxes in most of climate models cause an unrealistically deep mixed layer distribution and open 
ocean convections in the Southern Ocean. These systematic climate model errors are obstacles to reducing uncer-
tainty in TCR because they are directly linked to the ocean uptake of heat and carbon45,46.
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The westerly jet and storm tracks, clouds, and associated radiation budgets over the Southern Ocean are sug-
gested to contribute to uncertainty in TCR18,47. Apart from these atmospheric candidates, the present study has 
demonstrated that the Southern Ocean climate is also sensitive to parameterizations of micro-scale deep ocean 
mixing. Altering the parameterizations can lead to basin-scale reorganization of the ocean stratification and the 
resultant Pacific MOC response, resulting in changes in the wintertime sea-ice area, ISR, and the atmospheric 
circulations. These changes in model climatic mean state imply that ocean uptake of heat and carbon under 
increasing greenhouse gas emissions could be influenced by deep ocean mixing. In addition to oceanic mesoscale 
processes and atmospheric responses in a warming climate, micro-scale ocean mixing might be essential to quan-
tifying TCR uncertainties. Furthermore, better parameterizations for unresolved ocean mixing processes could 
contribute to reducing TCR uncertainties.

Methods
Climate model.  In the present study, the Model for Interdisciplinary Research on Climate (MIROC) ver-
sion 5.2, which is a minor upgrade version of MIROC548, is used for the global climate model. The horizontal 
resolution of the atmospheric component is a T42 spectral truncation (about 300 km), and there are 40 vertical 
levels up to 3 hPa. The warped bipolar horizontal coordinate system of the MIROC5 oceanic component has been 
replaced by a tripolar coordinate system. The oceanic component has 1° longitudinal grid spacing in the spherical 
coordinate portion south of 63°N. The meridional grid spacing varies from about 0.5° near the equator to 1° in the 
mid-latitudes. There are 63 vertical levels, the lowermost level of which is located at the 6300 m depth.

The ocean component incorporates eddy parameterization for isopycnal tracer diffusion49 and isopycnal layer 
thickness diffusion50. The tracer and thickness diffusivities are 103 m2 s−1 and 3.0 × 102 m2 s−1, respectively. In 
addition, the turbulence closure scheme of ref.51 is utilized above the 500 m depth to evaluate vertical viscosity 
and diffusivity in the surface mixed layer. Details for the subgrid-scale parameterizations are described in ref.48. In 
the land surface model, the parameterization for a subgrid-scale snow cover distribution52,53 and a simple wetland 
scheme54 have been newly implemented into MIROC5.2. Improved treatment of turbulent kinetic energy input 
from the atmosphere55 are also adopted in the Arctic Ocean sea-ice area.

Experiments
Breaking of tide-induced internal waves occurring in the scale of a few meters is observed near rough topogra-
phy19,21, and the resultant mixing of sea water is considered to maintain the global meridional overturning cir-
culations20. Because the internal wave breaking cannot be resolved explicitly in ocean general circulation models 
(OGCMs), it has been parameterized as eddy vertical diffusivity, Kv. There are several previous approaches for 
parameterizing Kv, by simply prescribing it as a function of depths or bottom roughness22,56 or by assuming it 
to be a function of stability57. Recent advances in high-performance computing have enabled estimating global 
maps for tidal energy conversions from surface to and internal waves by using high-resolution tide models and 
corresponding maps for Kv have been proposed27,58. OGCM experiments which incorporate prescribed global 

Figure 5.  Results of additional experiments and time-evolution of Pacific MOC. (a,b) Wintertime sea-ice 
concentrations in additional experiments, TED-exSO and TED-SO. (c–e) Anomalies of Pacific MOC (contours) 
and zonal-mean density (shades) in TED with respect to an initial state when TED is branched from CTRL. This 
figure was prepared with GFD-Dennou Common Library version 7.1 (Free Software - http://www.gfd-dennou.
org/library/dcl/LICENSE).

http://www.gfd-dennou.org/library/dcl/LICENSE
http://www.gfd-dennou.org/library/dcl/LICENSE
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maps for tidal energy conversion have been conducted to address the impacts of sophisticated representation of 
seawater mixing on the global meridional overturning circulations9,35,36.

In the present study using MIROC5.2, we conducted two experiments of CTRL and TED. Kv in TED is param-
eterized based on a global three-dimensional map for the turbulent energy dissipation rate of the tide-induced 
internal waves (Fig. S1). The global map is obtained in the same manner described in ref.26, but a global 
three-dimensional model of ref.27 is used as a tide model. It is assumed that 30 (100) % of the internal tide energy 
dissipation for each tidal constituent occurs locally with the vertical decay scale of 500 m from the sea floor if 
the tidal frequency is super-inertial (sub-inertial) and that the remaining part radiates away to contribute to the 
background vertical diffusivity of the order of 10−6 m2 s−1. The tidal energy dissipation rate, ε, is converted to Kv 
following ref.59 as Kv = 0.2 ε N−2, where N is the buoyancy frequency. Kv above the 500 m depth is replaced by the 
eddy vertical diffusivity diagnosed using a turbulent closure model if the diagnosed value is larger than Kv. In 
CTRL, Kv is prescribed following an empirical vertical profile proposed in ref.28 as

. + .


 +

− 

 ≤

z z0 1 0 9 1 tanh 1500
750

for 1500,

− + .


 +

− 

 >

z z1 2 0 1 tanh 1500
2000

for 1500,

where the depth z is measured in meters, and the vertical profile is shown in Fig. 3c. This empirical profile con-
siders observed bottom-intensified mixing and ensures realistic reproducibility of the Pacific abyssal circula-
tion. In addition, following the observational fact that the turbulent energy dissipation rate is extremely small in 
low-latitudes60, Kv between 30°S and 30°N is reduced as a function of latitude.

CTRL run is integrated for 2000 years under the pre-industrial forcing at the year 1850, whereas TED run 
is integrated for 1500 years using the initial conditions of CTRL at the 1200-th year. The last 300-year-long data 
are analyzed in both of CTRL and TED. The two additional experiments descibed in the text, TED-exSO and 
TED-SO, are also branched from CTRL and integrated for 1500 years.
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