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Detection of high-valent iron species in alloyed
oxidic cobaltates for catalysing the oxygen
evolution reaction
Nancy Li1, Ryan G. Hadt 2,3✉, Dugan Hayes 2,4✉, Lin X. Chen 2,5 & Daniel G. Nocera 1✉

Iron alloying of oxidic cobaltate catalysts results in catalytic activity for oxygen evolution on

par with Ni-Fe oxides in base but at much higher alloying compositions. Zero-field 57Fe

Mössbauer spectroscopy and X-ray absorption spectroscopy (XAS) are able to clearly

identify Fe4+ in mixed-metal Co-Fe oxides. The highest Fe4+ population is obtained in the

40–60% Fe alloying range, and XAS identifies the ion residing in an octahedral oxide ligand

field. The oxygen evolution reaction (OER) activity, as reflected in Tafel analysis of CoFeOx

films in 1 M KOH, tracks the absolute concentration of Fe4+. The results reported herein

suggest an important role for the formation of the Fe4+ redox state in activating cobaltate

OER catalysts at high iron loadings.
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D imensional reduction of first row metal oxides gives rise
to metallate oxygen evolving catalysts (M-OECs) that
exhibit high activity for the oxygen evolution reaction

(OER)1–5. Electrodeposition of oxidic cobaltates and nickelates in
the presence of phosphate and borate (CoPi6,7, CoBi8,9, NiBi10,11,
MnPi12,13) results in clusters of 10–60 metal atoms, as determined
from in situ pair distribution functional analysis9,14–19. The self-
healing property of the M-OECs2,20–22 allows them to promote
water-splitting under benign conditions. Under such conditions,
the catalysts may be easily interfaced with materials for direct
conversion of water to oxygen and hydrogen at high
efficiency23–26, as well as interfaced with biological organisms to
perform artificial photosynthesis27 at efficiencies greatly exceed-
ing natural photosynthesis28,29. The metallate clusters possess a
high edge-to-area ratio that engenders high activity, as revealed
by isotopic labelling studies30 that show the critical O–O bond
formation step to occur by proton-coupled electron transfer
(PCET) at cluster edge sites8,31–36. Moreover, the electronic
charge in M-OECs can delocalize within the clusters37,38 giving
rise to electron/hole transport39 that can maximally couple to the
ion transport needed to support the OER40,41.

Iron doping of metal oxide films has long been known to
increase overall OER activity of metal oxide OER catalysts42,43.
The behaviour of Fe in Ni-OECs has been revisited44, and the role
of Fe has been ascribed to various factors, including active site Fe4
+ or higher valent species45–47, near neighbour Fe effects on Ni
resulting from strain on the oxide lattice48–51, active oxygen
intermediates at Ni–Fe sites52–54, Fe induced partial-charge-
transfer to Ni sites55,56, and Fe acting as a Lewis acid that pro-
motes charge transfer character and favourable energetics for Ni
oxyl formation57,58. Quizzically, though detected by Mössbauer
spectroscopy, the presence of Fe4+ does not correlate with the
observed catalytic activity59. Iron loading has also been shown to
affect the OER activity of Co-OECs60–62, but at very different
alloying loads. Whereas Ni-OECs show maximal activity with Fe
loadings of ~5 mol% Fe42,55, the maximal activity of Co-OECs is
observed for Fe loadings of >40 mol% Fe61. These higher loadings
suggest different roles for Fe in enhancing M-OEC activity at high
versus low alloying.

We now report the zero-field 57Fe Mössbauer and X-ray
absorption spectroscopy (XAS) of Co-OEC alloyed with Fe from
0 to 100% and show that, unlike Fe alloyed in Ni-OECs, the

presence of Fe4+ tracks OER activity, suggesting that Fe4+ is
intimately involved as a redox activator of OER. The results
suggest different roles for Fe in alloyed M-OEC catalysts. At low
loadings such as in (Ni:Fe)-OECs, OER is performed by Ni active
sites and Fe promotes the PCET activation of OER. At high
loadings, as is observed here for Fe-alloyed Co-OEC catalysts, the
redox properties of Fe appear to play a prominent and more
direct role in promoting OER.

Results
A series of CoFeOx films with varying Fe content were prepared
by cathodic deposition upon the reduction of nitrate to induce a
high local basic pH near the electrode, resulting in the electro-
deposition of a Co:Fe hydroxide film13, which was then converted
to CoFeOx with the application of an anodic potential. Metal
elemental compositions were determined by inductively coupled
mass spectrometry (ICP-MS) of digested films after electro-
chemical measurements. Previous studies have shown that Fe and
Co deposit homogeneously as detected by SEM/EDS analysis63.
As Fe content increases, both the cathodic and anodic features of
the Co2+/3+ couple are shifted towards higher potentials (Sup-
plementary Fig. 1). CoFeOx films with 40–80 mol% Fe in 1M
KOH that was scrubbed of trace metal contaminants display Tafel
slopes of ~30 mV/dec (Supplementary Fig. 2), similar to pre-
viously published results61. We note that the lowest Tafel slopes
in CoFeOx films are obtained at much higher Fe:Co ratios than
observed for NiFeOx films.

The electronic structure of Fe centres in CoFeOx films was
probed with zero-field 57Fe Mössbauer spectroscopy. A repre-
sentative 57Fe Mössbauer spectrum is given in Fig. 1; the spectra
of all CoFeOx film samples are given in Supplementary Fig. 3 and
Supplementary Fig. 4. The spectra are reproducible and sensitive
to Fe population changes between samples with 10 mol% Fe
differences (Supplementary Fig. 5). Two species of Fe are detected
in the 57Fe Mössbauer spectra. Fits of the spectra furnish corre-
sponding isomer shifts (δ) and quadrupole splittings (|ΔEQ|) for
one species with δ ~ 0.3 mm/s and |ΔEQ| ~ 0.7 mm/s and the
other species with δ ~ –0.2 mm/s and |ΔEQ| less than the resolved
linewidth (~0.3 mm/s). These values, which are somewhat sen-
sitive to total Fe alloying concentrations and fittings (Supple-
mentary Fig. 7), do not correspond to either Fe2O3

64,65 or
metallic Fe66,67. One species matches the Mössbauer parameters
of high spin (HS) Fe3+ in the oxide ligand field of NiFeOx

5,68,69

and FeOOH70. The Mössbauer parameters of the second Fe
species correspond to those observed previously for Fe4+ in
NiFeOx

70, and is consistent with theoretical calculations showing
the persistence of Fe4+ in NiFeOx

71. The Fe3+:Fe4+ ratio, which
may be determined from the Mössbauer parameters, shifts
towards Fe3+ at low and high Fe concentrations (Supplementary
Fig. 6) with a maximal absolute Fe4+ concentration observed
between 40 and 60% Fe loading (Fig. 2). Strikingly, as Fig. 2
illustrates, the population of Fe4+ in CoFeOx films tracks OER
activity as reflected in Tafel slopes. We observe a direct correla-
tion between absolute Fe4+ content and low Tafel slopes (30 mV/
dec), implicating the important role of Fe4+ in enhancing OER
activity in CoFeOx films at high Fe alloying concentrations. The
maximum in activity is likely a result of Fe becoming the
dominant compositional metal. Unary Fe oxide films are inferior
OER catalysts even as ultrathin sub-monolayer films72. Thus the
observed maximum in activity is consistent with the active site for
OER becoming dominated by an Fe-only composition at high
iron loadings in excess of 50% loading.

The assignment of Fe3+ and Fe4+ as deduced by Mössbauer
spectroscopy is supported by Fe K-edge XAS of CoFeOx samples
with varying Fe content. The X-ray absorption near edge

Fig. 1 Mössbauer spectra of CoFeOx. Zero-field 57Fe Mössbauer spectra
for CoFeOx films with the composition 40% Fe:60% Co. Raw data (black
circle), fit for Fe3+ species (blue line), Fe4+ species (green line), and overall
fit (red line).
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structure (XANES) spectra and the k-space and R-space data are
given in Fig. 3 for CoFeOx with a 50% Fe:50% Co (black line)
composition. Analogous data for several other compositions are
given in Supplementary Fig. 8. As the proportions of Fe3+ and
Fe4+ are known from Mössbauer, the individual XANES spec-
trum for each Fe3+/Fe4+ species may be ascertained from linear
combination fitting. The resulting Fe3+ and Fe4+ spectra are
reproducible for specific linear combinations (Supplementary
Figs. 9 and 10); the spectrum for the 50% Fe:50% Co sample

(black line) and corresponding linear combinations for the Fe3+

and Fe4+ (blue and green line, respectively) contributions are
given in Fig. 3. Several important observations can be made
between the Fe3+ and Fe4+ species. There is a large edge shift
from ~7124 to ~7128 eV between the Fe3+ and Fe4+ species.
Additionally, the 1s→ 3d pre-edge intensity of the Fe3+ species is
significantly higher than that for Fe4+ (inset of Fig. 3a). The R-
space amplitude of the Fe3+ species is significantly lower than the
Fe4+ species (Fig. 3c). This decreased amplitude suggests a lower
coordination number. There is also a clear contraction of the first
and second shell scattering distances for Fe4+. The pre-edge
region reflects transitions to the many-electron excited states of
the metal centre. The spectral intensity of the pre-edge derives
from both electric quadrupole and electric dipole mechanisms. In
a centrosymmetric ligand field (e.g., Oh), the electric dipole
contribution is parity forbidden, and only the quadrupole
intensity is present. Conversely, deviation from centrosymmetry
(e.g., Td) results in a significant increase in the pre-edge intensity.
This increase in intensity derives from electric dipole allowedness,
which tracks with the amount of 3d–4p mixing in a non-
centrosymmetric ligand field73. These observations, together with
a low coordination number from the low amplitude R-space data,
suggest that Fe3+ is present in a distorted ligand field lacking
inversion symmetry—either Td or square pyramidal ligand field
geometries are likely possiblities.73 Along similar lines for Fe4+,
the low pre-edge intensity suggests a more symmetric Oh ligand
field, which will largely exhibit electric quadrupole intensity. A
more symmetric ligand field is also consistent with the higher
amplitude R-space data and small |ΔEQ|.

The combination of Mössbauer, XAS, and EXAFS data support
the assignment of a high-valent Fe4+ species in a symmetric Oh

ligand field. An alternative scenario to consider is a low-spin Fe3+

centre, though it must be in a strongly electron withdrawing
environment. For instance, negative isomer shifts can be obtained
in low-spin Fe3+ complexes in the presence of strong back-
bonding (e.g., K3[Fe3+(CN)6] or Na2[Fe3+(CN)5NO])74. Addi-
tionally, when [Fe3+(CN)6]3– is coordinated in supramolecular
assemblies (e.g., Prussian blue analogues) involving metal–metal
interactions. Such second-sphere coordination of the Fe–CN
bonds by another metal ion can shift the Fe δ by ~–0.1 mm/s.
Thus, metal–metal or charge transfer interactions in CoFeOx

could effectively decrease the Fe-based s electron density and give
rise to a negative δ and high Fe K-edge energy. However, this
scenario would result in an isomer shift that gradually shifts more
negative as this Fe species is surrounded by more Co centres. This
is not observed here; the isomer shift of the Fe species remains
relatively constant at δ ~ –0.2 mm/s and in fact becomes slightly
less negative with increasing Co concentration (Supplementary
Fig. 7). Similarly, the Fe4+ XAS spectra obtained from linear
combination fits using different Co:Fe ratios are very similar
(Supplementary Fig. 9). These considerations, together with the
weak ligand field imposed by oxide coordination and the con-
sistency between the Mössbauer and Fe K-edge XAS data, suggest
that the Fe species observed here can be assigned to a high-valent
Fe4+ centre in an Oh ligand field.

Discussion
Iron activates M-OECs for OER but its role appears to differ with
the nature of the M-OEC and the condition under which it
operates. Although most OER is performed in concentrated base,
the large-scale deployment of renewable energy storage has
prompted interest in performing OER in neutral water
sources75,76. For this line of investigation, M-OECs excel owing to
their stability arising from their self-healing properties22. At
neutral pHs, Fe3+ plays a role in OER that appears to be derived

Fig. 2 Correlation of Tafel slope with Fe4+ composition. Overlay of Tafel
slope (red circle) with absolute Fe4+ (green triangle) population in CoFeOx

films with increasing Fe content. Tafel measurements were run in triplicate,
and the average value is shown on the graph at 95% confidence limits.

Fig. 3 X-ray absorbance spectra of CoFeOx. a Fe K-edge X-ray absorbance
spectra and corresponding b k-space and c R-space for CoFeOx with the
composition 50% Fe:50% Co (black line), and calculated Fe3+ (blue line)
and Fe4+ spectra (green line). Inset of a highlights the pre-edge region.
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from non-redox properties. PCET activation of water is impaired
since water is a poor proton acceptor; Fe may act as a Lewis acid77

to increase the acidity of OHx (aqua/hydroxo) moieties that are
coordinated to M-OECs and thereby lower the reduction
potential for the M3+/4+ couple and lead to a greater population
of M4+ in the Fe-doped catalysts. This in turn gives rise to
increased oxyl character (M(IV)⋯ O↔M(III)–O•). This Lewis
acidity behaviour is supported by the observation that Fe doping
in NiPbOx shows no enhancement in OER at solution pH values
commensurate with the pKa of Fe3+. Moreover, OER enhance-
ment may be replicated by non-redox active, Lewis acidic cations
in Fe-free Ni-OECs78. In concentrated base, OH– can adequately
serve the role of a proton acceptor and the influence of the Fe3+ is
diminished. When Fe4+ is implicated in OER, as has been pro-
posed in numerous studies, OER appears to occur at the M (Co or
Ni) metal centre with Fe4+ promoting the activation of OER at
the M of the M-OEC. Such proposals are consistent with the
electronic structure of first row transition metal centres con-
fronting the “oxo-wall”79. Moving to the right in the periodic
table, the d-electron count for the M4+ formal oxidation state
increases and in a tetragonal oxide ligand field, the dxz and dyz
orbitals are populated, preventing electron donation from term-
inal oxygen to the metal centre. Consequently, the M–O bond
strength is much weaker for Co4+ than for Fe4+, which formally
accommodates a kinetically more inert metal-oxo double bond.
From a kinetics perspective, we believe that Fe4+ is not the active
site from which OER occurs but rather OER occurs from Co
centres with the Fe4+ participating as a redox cooperative centre
where Fe4+ enhances the oxidizing power of a Co:Fe active site
(Supplementary Fig. 1) versus a Co4+-only active site. Thus, we
believe that for both NiFeOx and CoFeOx systems, Fe3+ functions
as a Lewis acid in promoting PCET reactivity for the OER.
However, unlike NiFeOx, OER activity in CoFeOx tracks the Fe4+

alloying concentration, suggesting that the redox properties of the
Co4+ centre is further enhanced by the presence of redox active
Fe4+ centres.

In conclusion, we have spectroscopically detected and char-
acterized a high-valent Fe4+ centre in CoFeOx thin film OECs.
Spectroscopic data suggest that this Fe4+ centre is located in a
symmetric Oh oxide ligand field. The correlation between Fe4+

content and OER activity in CoFeOx thin films suggests an
important role of this high-valent state in the mechanism of O–O
bond formation and oxygen evolution and supports the merits of
exploring mixed-metallate oxygen evolution catalysts.

Methods
Materials. Catalysts with specific Fe:Co ratios were prepared by electrodeposition
from metal nitrate salt solutions that were degassed. After deposition, the film
was rinsed briefly in Type I water and then submerged in KOH buffer. Films were
held at a constant potential of 0.84 V in 1M KOH pH 14 or 1.0 V in 0.1 M KOH
pH 13 for 3 h to convert the film to the oxyhydroxide form before further elec-
trochemical analysis. To obtain films of various thicknesses, the total deposition
time was altered between 30 and 120s and the current held during deposition was
changed between 0.5, 1.0 and 5.0 mA/s. The exact film loading was obtained from
ICP-MS analysis of the films.

Electrochemistry. All electrochemical experiments were conducted at room
temperature (23 ± 1 °C). Electrode potentials were converted to the NHE scale
using E(NHE)= E(Ag/AgCl)+ 0.197 V. Overpotentials for the OER from water
were computed using η= E(NHE)− (1.23 V− 0.059 V × pH).

Spectroscopy. CoFeOx catalyst with natural 57Fe abundance were prepared for
Mössbauer spectroscopy at 77 K. The data were calibrated and fit to linear com-
binations of symmetric pairs of Lorentzian peaks. Fe K-edge XANES spectra were
collected at beamline 12BM-B at the Advanced Photon Source at Argonne National
Laboratory. Reconstructed spectra of the pure Fe3+ and Fe4+ species were obtained
through linear combinations of the XAS spectra of the various CoFeOx films.

Data availability
Experimental procedures, characterization of compounds electrochemical and spectral
data are available in the Supplementary Information. All data are available from the
authors on reasonable request.
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