
INTRODUCTION

Autophagy is an evolutionarily conserved, major intracellular 
degradation pathway [1]. Autophagy is initiated by phagophore 
formation and its expansion to generate autophagosomes [2, 
3]. Upon completion of autophagosome formation with cargos 
inside, autophagosome fuses with a lysosome to become autol-
ysosome, where its contents are degraded by acidic proteases [4]. 

Subsequently, degraded products are transported back to the 
cytoplasm to be reused as a source of energy [5]. There are several 
methods to monitor autophagy. Microtubule-associated protein 
light chain 3 (LC3, a mammalian homologue of yeast Atg8) is the 
most widely used autophagy-related protein used to measure au-
tophagosome formation [6]. LC3 is a ubiquitin-like protein that is, 
upon synthesis, cleaved by Atg4 protease to generate the cytosolic 
form [7]. Then, at sites of autophagosome formation, LC3 is conju-
gated to phosphatidylethanolamine through the action of the E1-
like activating enzyme Atg7 and the E2-like conjugating enzyme 
Atg3 [3, 7, 8]. The non-conjugated, cytosolic form is referred to as 
LC3-I and the phosphatidylethanolamine-conjugated, autopha-
gic form as LC3-II [3]. An increase in LC3-II level as a marker of 
autophagosome formation can be measured by Western blotting 
for autophagy examination [9]. The appearance of puncta- or dot-
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like signals of a fluorescent-tagged LC3 protein is also indicative 
of autophagosome formation [6, 10]. p62 is an autophagy adaptor 
protein regulating the packaging and delivery of organelles and 
polyubiquitinated, misfolded proteins into autophagosomes for 
clearance [11]. During autophagic degradation, p62 is also de-
graded with the substrates, so a decrease in p62 protein amount is 
regarded as another marker of autophagy induction [11-13].

Increased autophagy flux includes not only more autophago-
some formation, but also efficient fusion of autophagosomes and 
lysosomes for delivery of autophagic substrate cargos and their 
degradation [14]. Therefore, blocking the late autophagy steps, 
such as fusion between autophagosomes and lysosomes, with 
bafilomycin A1 (Baf.A1) can be used to distinguish whether an 
increase in autophagy markers is due to genuine up-regulation 
of autophagy flux (on-rate) or impaired autophagy flux (off-rate) 
[5, 15]. Blocking of autophagosome fusion under high autophagy 
flux conditions is expected to increase accumulation of LC3-II 
and p62, while an increase in autophagy markers such as LC3-II or 
LC3 puncta resulting from impaired autophagy will not be affect-
ed by additional blocking of autophagy with Baf.A1 [6, 15]. Since 
the pH inside autophagosomes differs from that inside autolyso-
somes, several assay methods based on pH have been developed to 
assess autophagy flux, including LC3 tagged with two fluorescent 
proteins, monomeric RFP and GFP, arranged in tandem (mRFP-
GFP-LC3). Monitoring autophagy flux with mRFP-GFP-LC3 is 
based on different pH stability of mRFP and GFP proteins. The 
presence of GFP and RFP in autophagosomes gives yellow fluores-
cent signals; however, since GFP is easily quenched under acidic 
conditions, such as those in lysosomes, only RFP signals are re-
tained after fusion of autophagosomes with lysosomes. Therefore, 
an increase in both the total number of puncta and red-to-yellow 
signal ratio indicates an increase in autophagy flux [16].

Since autophagy is readily inducible in response to various en-
vironmental cues and cellular stressors, autophagy is highly active 
during differentiation and development [17]. The critical role of 
autophagy in mammalian development has been well document-
ed in mice lacking the Atg genes including Atg5, Atg7, and Beclin1, 
which show embryonic or perinatal lethality due to defective au-
tophagy and nutrient depletion and starvation during embryonic 
development [18-20]. Autophagy is essential for the development 
of the nervous system and neurogenesis [21-25]. However, it is not 
known whether autophagy plays a role in differentiation of neural 
stem cells (NSCs) into other neural lineages, such as astrogenesis 
or oligodendrogenesis. Astrocytes far exceed neurons in cell num-
ber, and cellular diversity and functions [26]. Recently, astrocytes 
are gaining attention for their roles in regulation of synaptic plas-
ticity and cognition, which have been regarded for a long time as 

functions specialized to neurons [27, 28]. Therefore, differentiation 
of NSC or progenitors to astrocytes plays an essential role in the 
normal structure and function of brain, and dysregulated astro-
cytes might underlie various neurodevelopmental and neurologi-
cal diseases [28, 29].

To address the role of autophagy in astrocyte differentiation, 
we used murine adult NSCs, which were derived from the hip-
pocampus of a 2-month-old male rat. The discovery of persistent 
generation of new neurons in the brain throughout adulthood has 
sparked interest in the role of adult neurogenesis in brain func-
tion and plasticity [30, 31]. Hippocampus is one of the two well-
established regions of adult neurogenesis [32]. Since hippocampus 
is deeply involved in learning and memory, mood regulation, 
reward-seeking and other neurobehaviors, understanding the 
pathophysiological roles of adult hippocampal neurogenesis and 
its underlying neural mechanisms are of great interest [33, 34]. 
Various in vitro  and in vivo  methods have been developed to 
study hippocampal NSCs, including labeling of dividing cells with 
nucleotide analogs, infection and tracing of NSCs with retrovirus, 
and cell type–specific gene knockout [35, 36]. Isolation of murine 
NSCs from the adult hippocampus and subsequent monolayer or 
neurosphere culture have also been widely used for molecular and 
genetic studies [37]. We have previously used this cellular model 
to elucidate the role of autophagy in survival and death of adult 
NSCs, which we call hereafter adult hippocampal neural stem 
(HCN) cells [38-42]. Here, we report the dynamic regulation of 
autophagy flux during astrogenesis and requirement of autophagy 
genes for proper differentiation of HCN cells into astrocytes.

MATERIALS AND METHODS

Materials

Baf.A1 (BML-CM110, Enzo, USA), pepstatin A (PepA, P5318, 
Sigma-Aldrich, USA), E64d (E8640, Sigma-Aldrich), puromycin 
(NC9138068, Invitrogen, USA), hygromycin B (H0192, Duchefa, 
The Netherlands), fetal bovine serum (FBS, #101, Tissue Culture 
Biologicals, USA), forskolin (BML-CN100, Enzo), and retinoic 
acid (RA, #BML-GR100, Enzo) were purchased from the indicat-
ed companies. Horseradish peroxidase–conjugated β-actin (SC-
47778, Santa Cruz Biotechnology, USA) and antibodies against 
ATG7 (#8558, Cell Signaling Technology, USA), LC3 (NB100-
2220, Novus Biologicals, USA), p62 (P0067, Sigma-Aldrich, USA), 
sex-determining region Y-box 2 (Sox2, ab97959, Abcam, UK), 
microtubule-associated protein 2 (MAP2, ab5392, Abcam), recep-
tor interaction protein (RIP, MAB1580, Merck, USA), glial fibril-
lary acidic protein (GFAP, NBP1-05198, Novus Biologicals), nestin 
(bs-0008R-A555, Bioss, USA), and GFP (SC-9996, Santa Cruz 
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Biotechnology) were purchased from the indicated companies.

Media for maintenance and differentiation of HCN cells 

HCN cells were maintained at 37℃, 5% CO2 on dishes coated 
with poly-L-ornithine (#3655, Sigma-Aldrich) and laminin 
(#35432, Corning, USA) in chemically composed HCN cell me-
dium, as previously described [41, 42]. For differentiation studies, 
HCN cells were plated onto coated dishes at a density of 1×105/
cm2; 24 h later, medium was changed to differentiation medium 
and the cells were cultured for 4 days (Fig. 1A). Differentiation 
medium composition was Dulbecco’s modified Eagle’s medium/
F-12 with the following additions: for neurons, 1 µM RA, 5 µM 
forskolin, 0.1% FBS; for oligodendrocytes, 1 µM RA, 2 ng/ml basic 
fibroblast growth factor, 1% FBS; for astrocytes, 1 µM RA, 5% FBS.

Generation of stable cell lines 

Lentiviral shRNA clones targeting rat Atg7 (TRCN0000092164, 
TRCN0000369085) were purchased from the Mission Library 
(Sigma-Aldrich). Lentiviruses were produced following published 
protocols and were used to infect HCN cells [43]. For stable ex-
pression of mRFP-GFP-LC3, HCN cells were infected with lenti-
virus expressing pLjm1-mRFP-GFP-LC3. For stable knockdown 
or overexpression, HCN cells were infected with the virus for 24 h 
and then the medium was replaced with fresh medium. After 72 h, 
HCN cells were treated with puromycin (5 µg/ml) for 6 h and then 
maintained in medium containing puromycin (1 µg/ml). The rat 
p62 (AGCTGAAGCGGCGGATCTCGCGG) single guide (sg) 
RNA was designed by using an online program (http://crispr.mit.
edu) and cloned into the plenti-CRISPR-v2 vector (#52961, Ad-
dgene, USA).

RNA extraction and qPCR 

Cells were rinsed with phosphate-buffered saline (PBS), and 
cell lysis and RNA isolation were performed using the QIA-
zol Lysis Reagent (#79306, Qiagen, Germany) following the 
manufacturer’s instructions. cDNA was synthesized using the 
ImProm-II Reverse Transcriptase kit (#A3800, Promega, USA) 
and oligo dT primers, and was used for qPCR with TOPreal 
qPCR 2X PreMIX (#RT500, Enzynomics, Korea) and the follow-
ing primers: rat Sox2 (F-ATAACATGATGGAGACGGAGC, 
R-CATTCATGGGCCTCTTGACG), NeuN  (F-GAGGAGTG-
GCCCGTTCTG, R-AGG CGGAGGAGGGTACTG), GalC 
(F-GTGTCGCGGTGCC CT TGT TG, R-CTAGAAGCC-
GGGAGGTTGCC), Gfap  (F-GACCTGCGACCTTGAGTCCT, 
R-TCTCCTCCTTGAGGCT TTGG), and 18S (F- GTAACCC-
GTTGAACCCCATTC, R-CCA TCCAATCGGTAGTAGCGA). 
For all primers, 45 cycles of amplification were used in a CFX96 

Real-Time System (Bio-Rad, USA).

Immunocytochemistry 

Cells were rinsed in PBS, fixed in 4% paraformaldehyde for 
10 min, rinsed twice with PBS, and blocked for 5 min at room 
temperature in 0.2% Triton X-100 in antibody diluent solution 
(#003218, Thermo Fisher Scientific, USA); Triton X-100 was 
added for permeabilization. Cells were incubated with primary 
antibodies diluted in antibody diluent solution overnight at 4℃ 
and then with secondary antibodies prepared in antibody dilution 
solution for 1 h at room temperature. Secondary antibodies con-
jugated to Alexa Fluor 488 (#A11034, Thermo Fisher Scientific) 
or 647 (#703-605-155, Jackson Immuno Research Laboratories, 
USA) were used to visualize primary antibodies. Following in-
cubation with antibodies, cells were rinsed twice with PBS, and 
the nuclei were stained for 10 min with Hoechst 33342 (#H3570, 
Thermo Fisher Scientific) at a 1:1000 dilution. Fluorescence im-
ages were obtained under an LSM700 or 780 confocal microscope 
(Carl Zeiss, Germany) and analyzed in Zen software (Carl Zeiss).

Western blotting 

Cells were harvested and lysed for 30 min on ice in lysis buffer 
(50 mM Tris-HCl, pH 7.5, 250 mM sucrose, 1 mM EDTA, 1 mM 
EGTA, 1 mM dithiothreitol, 50 mM NaF, 1 mM phenylmethyl-
sulfonyl fluoride, 1 mM benzamidine, 1% Triton X-100, supple-
mented with protease and phosphatase inhibitor cocktails (#78429, 
#1862495, Thermo Fisher Scientific). The samples were run on an 
SDS-polyacrylamide gel and transferred to a polyvinylidene fluo-
ride membrane in a semi-dry electrophoretic transfer cell (Bio-
Rad). Membranes were blocked with 5% nonfat dry milk powder 
dissolved in Tris-buffered saline with 0.1% Tween 20 (TBST) for 
1 h at room temperature. The membranes were then incubated 
with appropriate primary antibodies overnight at 4℃ in a shaking 
incubator. Next day, membranes were washed with TBST 3 times, 
10 min each and incubated with peroxidase-conjugated second-
ary antibodies diluted in blocking solution for 1 h at room tem-
perature. After washing, proteins of interest were detected using a 
chemiluminescence detection kit (Thermo Fisher Scientific).

Cell death assay 

HCN cells were seeded in a 96-well plate with 1.0×105 cells 
per well and stained with propidium iodide (PI) (P4170, Sigma-
Aldrich) and Hoechst 33342 (P3566, Invitrogen) at the indicated 
time points. The stock solutions of PI (10 mg/ml) and Hoechst (1 
mg/ml) were diluted 1:1000 in PBS, and after incubation in the 
dark at 37℃ for 20 min, blue and red signal positive cells were 
counted under a fluorescence microscope (Axiovert 40 CFL, Carl 
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Fig. 1. Differentiation of HCN cells into neurons, oligodendrocytes, and astrocytes. (A) A schematic timeline for differentiation experiments. (B) Un-
differentiated and differentiated HCN cells were stained for Nestin, MAP2, RIP, and GFAP (green) with Hoechst 33342 (blue), and imaged by confocal 
microscopy. Scale bar, 25 µm. (C) Sox2 mRNA levels in undifferentiated HCN cells (Con) and HCN cells differentiated into neurons (Neuron), oligo-
dendrocytes (Oligo), or astrocytes (Astro). (D) Changes in NeuN, GalC and Gfap mRNA levels after differentiation. *p<0.05, **p<0.01, and ***p<0.001. 
n≥3.
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Zeiss). Stained cells were quantified using automated image analy-
sis software Matlab with CellC package. The percentage of cell 
death was calculated as follows: 

Cell death (%)=[PI (red) positive cell number/ Hoechst (blue) 
positive cell number]×100. 

Statistical analysis 

All values are presented as mean±standard error of the mean 
(SEM) obtained by averaging the data from at least three indepen-
dent experiments. Statistical significance was determined by a two-
tailed unpaired Student’s t-test using GraphPad Prism (GraphPad 
Software, USA).

RESULTS

HCN cells can differentiate into neurons, astrocytes, and 

oligodendrocytes

To confirm their potential to differentiate into neurons, astro-
cytes, and oligodendrocytes, HCN cells were exposed to differ-
ent differentiation media (Fig. 1A). Immunocytochemistry data 
showed that undifferentiated HCN cells highly expressed nestin, 
an NSC-specific marker (Fig 1B). After differentiation into neu-
rons, oligodendrocytes, and astrocytes, the expression of respec-
tive lineage-specific markers (MAP2, mature neuronal marker; 
RIP, oligodendrocyte marker; GFAP, astrocyte marker) was read-
ily detectable by immunofluorescent staining (Fig. 1B). We also 
performed qPCR to compare the mRNA levels of these markers 
between undifferentiated and differentiated HCN cells. First, we 
chose β-actin for normalization; however, its expression changed 
substantially during differentiation, possibly due to rapid remodel-
ing of cytoskeleton (data not shown). Therefore, the gene for 18S 
ribosomal RNA (18S ) was selected as a reference gene for nor-
malization throughout this study. As expected, the mRNA level of 
Sox2 (neural stem cell marker) was high in undifferentiated HCN 
cells, but declined dramatically during differentiation (Fig. 1C), 
with a concomitant increase in the expression of each neural cell 
type-specific marker, namely neuronal nuclei (NeuN ) in mature 
neurons, GalC  in oligodendrocytes, and Gfap  in astrocytes (Fig. 
1D). These data show that HCN cells have intact ability to differ-
entiate into neurons, oligodendrocytes, and astrocytes under our 
experimental conditions.

Time course analyses of HCN cell differentiation into astro-

cytes

To study the role of autophagy during astrogenesis, we character-
ized the astrogenesis every 24 h (Fig. 2A). Before induction of dif-
ferentiation, all HCN cells were nestin-positive, whereas GFAP was 

barely detectable. However, GFAP was detected in most cells while 
nestin was rarely detectable after the completion of astrogenesis 
(Fig. 2B). Time course analysis of GFAP immunoreactivity and 
protein levels showed a steady increase in the amount of GFAP 
during astrogenesis with a concurrent decrease in Sox2 (Fig. 2C 
and 2D). Cell morphology also changed from spherical stem cell 
shape to radial, which is typical for astrocytes (Fig. 2C). Consistent 
with the results of Western blotting analysis, mRNA levels of Gfap 
and tenascin C (Tnc), which is a marker of early stage of astrocyte 
differentiation [44, 45], also greatly increased during astrogenesis 
(Fig. 2E and 2F). On the other hand, mRNA levels of NeuN and 
GalC did not change, confirming the efficiency and specificity of 
the protocol used for astrogenesis induction (Fig. 2G).

Autophagy flux increased from the early stage of astrogen-

esis and remained high

Highly dynamic nature of neural development implies reconsti-
tution of cellular components and remodeling of cellular structure 
during differentiation, requiring energy supply and participation 
of catabolic processes. To explore whether autophagy is activated 
in HCN cells during astrogenesis, we examined autophagosome 
formation in mRFP-GFP-LC3 stable cell lines. Before differentia-
tion, the number of LC3 puncta was low in HCN cells. Interest-
ingly, the number of LC3 puncta increased at early time points (D1 
and D2), and decreased afterwards (D3 and D4) (Fig. 3A). Block-
ing autophagy flux with Baf.A1 should increase accumulation of 
LC3-II if autophagy flux rate is high [6]. Administration of Baf.A1 
at D2 further increased autophagosome formation, suggesting that 
autophagic flux was very high at this time point (Fig. 3B). Western 
blotting analysis showed a similar increase in LC3-II and decrease 
in p62 at D1 and D2 of differentiation; their levels then returned 
to the basal state (Fig. 3C). To compare the autophagic flux be-
tween different time points, we treated the cells with Baf.A1 at D0, 
D2 and D4, and examined the LC3-II levels by Western blotting 
analysis. Interestingly, Baf.A1 treatment at D4 led to more signifi-
cant accumulation of LC3-II than D2, although it did not reach 
statistical significance (Fig. 3D). These data suggest that although 
autophagy flux seems to return to the basal state after the peak at 
D2, the overall capacity of on-rate autophagy flux, which can be 
revealed after blocking of late stage of autophagy, still remains high 
until D4 during differentiation. In line with the assumption that 
autophagy was induced from early times points, Baf.A1 increased 
the levels of LC3-II at D2 (Fig. 3E). In addition to Baf.A1, we tested 
another autophagy blocker, pepstatin A and E64d (PepA/E64d), 
which inhibit lysosomal proteases [46]. Administration of PepA/
E64d also increased LC3-II and p62 levels at D2 in a similar man-
ner as Baf.A1 (Fig. 3E). These results suggest that autophagy flux 
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Fig. 2. Time course analyses of HCN cell differentiation into astrocytes. (A) A schematic timeline for astrogenesis experiments. D, day. (B) Images of 
HCN cells stained with nestin and GFAP antibodies at D0 and D4 during astrogenesis. Scale bar, 50 µm. (C) Astrocyte morphology examined with 
GFAP staining. Scale bar, 25 µm. (D) GFAP and Sox2 protein levels analyzed by Western blotting. (E) Gfap mRNA levels. (F) Tnc mRNA levels. (G) 
mRNA levels of other neural cell markers, NeuN and GalC. ns, not significant. **p<0.01, and ***p<0.001. n≥3.
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was dramatically increased from D1 and D2 upon the induction 
of astrogenesis and seemingly declined afterwards at basal state. 
However, overall capacity of autophagy remained high until D4 
stage.

Suppression of autophagy alleviates astrogenesis in HCN 

cells

To examine whether the upregulated autophagy is crucial for 
HCN cell differentiation into astrocytes, we genetically repressed 

autophagy by stable knockdown of Atg7 in HCN cells (Fig. 4A). As 
Atg7 plays a key role in autophagosome formation [47], its knock-
down prevents autophagy in HCN cells, as we previously demon-
strated [38, 42, 48]. Western blotting analysis showed a substantial 
reduction in the GFAP level in HCN cells with stable knockdown 
of Atg7 (Sh-Atg7) in comparison with control shRNA–transduced 
HCN cells (Sh-Con) (Fig. 4B). qPCR results also indicated a de-
crease in the Gfap  mRNA level in Sh-Atg7 HCN cells (Fig. 4C). 
In addition, Sh-Atg7 HCN cells displayed abnormal morphology 

Fig. 3. An increase in autophagy flux from early time points during astrogenesis. (A) Analysis of autophagy flux using mRFP-GFP-LC3 stable HCN 
cells. Scale bar, 15 µm. (B) After Baf.A1 treatment, autophagy flux was measured in mRFP-GFP-LC3 stable HCN cells at D2. Baf.A1 (20 nM) was added 
1 h before harvesting. Scale bar, 15 µm. (C) Time course analyses of LC3-II by Western blotting. (D) Time course analyses of autophagy flux by Western 
blotting of LC3-II after Baf.A1 treatment. Baf.A1 (20 nM) was added 1 h before harvesting. (E) Increased autophagy flux at D2. Baf.A1 (20 nM) or PepA/
E64d (10 µg/ml for each) was treated 1 h before harvesting. *p<0.05, **p<0.01, and ***p<0.001. n≥3.
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Fig. 4. Impaired astrogenesis by the suppression of autophagy in HCN cells. (A) Verification of Atg7 knockdown by Western blotting analysis. (B, C) 
Decrease in GFAP protein (B) and mRNA (C) levels in Sh-Atg7 cells compared with Sh-Con cells. (D) Impaired astrocyte morphology in Sh-Atg7 cells 
compared with Sh-Con cells at D4. (E) Verification of LC3 knockdown by Western blotting analysis. (F) Decrease in Gfap mRNA level in Sh-LC3 cells. (G) 
Reduction of Gfap and Tnc mRNA levels by Baf.A1 treatment. Baf.A1 (0.5 nM) was added at D0 and D2 and half of media was changed at D1 and D3. 
Scale bar, 25 µm. *p<0.05, **p<0.01, and ***p<0.001. n≥5.
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Fig. 5. Impaired astrogenesis in p62 knockout HCN cells. (A) Genetic deficiency of p62 abrogated an increase in GFAP expression in differentiated p62 
knockout HCN cells (Sg-p62) in comparison with control cells (Sg-Con) at D4. (B) A dramatic decrease in Gfap mRNA expression level in Sg-p62 cells 
in comparison with Sg-Con cells at D4. (C) Impaired astrocyte morphology in Sg-p62 cells in comparison with Sg-Con cells at D4. Scale bar, 25 µm. (D) 
The absence of induction of cell death during astrogenesis. (E~G) Recovery of GFAP protein (E), mRNA (F) levels, and astrocyte morphology (G) by 
expression of GFP-p62, but not GFP-EV (empty vector) in Sg-p62 cells at D4. Scale bar, 25 µm. *p<0.05, **p<0.01, and ***p<0.001. n≥3.
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with much fewer processes, whereas Sh-Con cells had normal 
astrocyte morphology (Fig. 4D). These data show that the key au-
tophagy gene Atg7 is required for astrogenesis in HCN cells. Fur-
thermore, we tested whether knockdown of LC3 also modulates 
astrogenesis of HCN cells. Compare to control cells, knockdown 
of LC3 (Sh-LC3) decreased Gfap mRNA level, indicating dimin-
ished astrogenesis (Fig. 4E and 4F). Besides genetical suppression 
of autophagy, we checked whether pharmacological inhibition of 
autophagy affects astrogenesis. Baf.A1 treatment during 4 days 
reduced the transcript levels of Gfap  and Tnc (Fig. 4G). Overall, 
these data provide the evidence supporting our hypothesis that the 
autophagy is critical for astrogenesis.

Knockout of p62 impairs astrogenesis in HCN cells

To confirm the requirement of autophagy for astrogenesis, we 
deleted another key autophagy-related gene, p62 , by using the 
CRISPR/cas9 system [49]. Successful knockout of p62  in HCN 
cells (Sg-p62) was confirmed by Western blotting analysis (Fig. 
5A). p62 deficiency blocked astrogenesis, as evidenced by dra-
matic down-regulation of the GFAP protein and mRNA levels (Fig. 
5A and 5B) and impaired astrocyte morphology (Fig. 5C). Since 
the long-term absence of autophagy may decrease cell viability, we 
checked cell death rates in Sg-p62 cell lines, but found no signifi-
cant induction of cell death in comparison with control cells (Fig. 
5D). These results also suggest that the reduced number of intact 
astrocytes did not result from death of autophagy-impaired cells. 
To examine whether reintroduction of p62 can rescue impaired 
astrogenesis phenotypes, GFP-fused p62 was expressed in Sh-
p62 cells. By Western blotting, qPCR, and immunocytochemical 
analyses, we confirmed that the expression level of GFAP was 
restored and astrocyte morphology became normal (Fig. 5E~G). 
Thus, astrogenesis was recovered by re-expression of p62 in Sg-
p62 cells. These results suggest that canonical autophagy mediated 
by Atg7 and p62 is required for differentiation of HCN cells into 

astrocytes.

DISCUSSION

Various intrinsic and extrinsic cues regulate astrocyte differ-
entiation in the developing brain [50]. Being a major process for 
turnover and recycling of cellular constituents, autophagy is also 
intimately involved in development; thus, it is not surprising that 
autophagy is critical for the development of the nervous system. 
The role of autophagy in astrocyte differentiation in the develop-
ing brain was recently studied [51]. However, so far, the role of au-
tophagy in astrocyte differentiation from adult NSCs is very little 
known. Although the present study was restricted to in vitro con-
ditions, it was the first study to investigate the role of autophagy in 
astrogenesis of adult NSCs. It should be mentioned that deletion 
of autophagy genes in NSCs in vivo will cause degeneration of the 
nervous system because of long-term deficiency in autophagy, and 
it is not feasible to perform an in-depth mechanistic study in vivo. 
Therefore, despite the limitations of the in vitro cellular model, it is 
still very useful for detailed study of astrogenesis using HCN cells.

Interestingly, we observed an increase in autophagy flux at rela-
tively early time points during 5-day differentiation of HCN cells 
into astrocytes. Autophagy flux peaked on days 1 and 2, and then 
returned to a level similar to that in control HCN cells. However, 
when fusion of autophagosomes with lysosomes was blocked 
by Baf.A1, differentiating HCN cells at D4 still displayed similar 
or higher capacity of autophagy flux, compared with D2. When 
autophagy was suppressed by a stable knockdown of Atg7 or 
LC3 using sh-Atg7 or sh-LC3-expressing lentivirus or by genetic 
knockout of p62 using CRISPR-Cas9 genome editing, the ability 
of HCN cells to differentiate into astrocytes was greatly impaired. 
p62 is an adapter protein that regulates multiple signaling path-
ways, such as those mediated by nuclear factor erythroid factor 2, 
mammalian target of rapamycin, nuclear factor-κB, or mitogen 
activated protein kinase [52]. p62 can also act as a receptor for 
selective autophagic clearance of protein aggregates and damaged 
organelles [53]. p62 can serve as a signaling hub through its roles 
related to recruitment of important signaling molecules to control 
events such as cell survival, cell death, and autophagy [54]. Hence, 
our study shows a prominent role of autophagy in HCN cell differ-
entiation into astrocytes and suggests a p62-mediated mechanistic 
link between autophagy and astrogenesis in these cells (Fig. 6).

In the presence of differentiation cues, autophagy stimulates 
differentiation of stem cells by regulating a dynamic and highly in-
ducible metabolic process [55]. Autophagy is also a crucial player 
in intracellular remodeling, and this role of autophagy is particu-
larly important for stem cells. Our results show that autophagy 

Fig. 6. A schematic diagram illustrating the involvement of autophagy in 
astrogenesis.
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is critical for remodeling of adult NSCs. Due to high metabolic 
demand during differentiation and tissue remodeling, mitochon-
dria are also important for differentiation and tissue remodeling. 
We previously reported that mitophagy occurs in HCN cells [38]. 
Autophagy may also regulate astrogenesis of HCN cells by con-
trolling the mitochondrial network during differentiation [56]. 

Differentiation capability of neural stem/progenitor cells can be 
used for the development of treatments for various neurodegen-
erative diseases [57]. Studies using HCN cells can contribute to the 
molecular dissection of autophagy-mediated neural differentia-
tion and better understanding of the basic and applied biology of 
adult NSCs.
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