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Abstract

Current human whole genome sequencing projects produce massive amounts of data, often creating significant
computational challenges. Different approaches have been developed for each type of genome variant and method of
its detection, necessitating users to run multiple algorithms to find variants. We present Genome Rearrangement
OmniMapper (GROM), a novel comprehensive variant detection algorithm accepting aligned read files as input and finding
SNVs, indels, structural variants (SVs), and copy number variants (CNVs). We show that GROM outperforms state-of-the-art
methods on 7 validated benchmarks using 2 whole genome sequencing (WGS) data sets. Additionally, GROM boasts
lightning-fast run times, analyzing a 50× WGS human data set (NA12878) on commonly available computer hardware in
11 minutes, more than an order of magnitude (up to 72 times) faster than tools detecting a similar range of variants.
Addressing the needs of big data analysis, GROM combines in 1 algorithm SNV, indel, SV, and CNV detection, providing
superior speed, sensitivity, and precision. GROM is also able to detect CNVs, SNVs, and indels in non-paired-read WGS
libraries, as well as SNVs and indels in whole exome or RNA sequencing data sets.
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Findings
Introduction

The 1000 Genomes Project [1] was launched in 2008with the goal
of producing and analyzing whole genome sequencing (WGS)
for 1000 genomes. By 2016 decreasing costs and increasing se-
quencing throughput had led to an exponential increase in the
size and scope of WGS projects from Human Longevity, Inc.’s 10
000 publicly available WGS genomes [2] to the United Kingdom’s
100 000 Genomes Project [3] to even larger, though less-clearly
defined, sequencing projects involving 1 000 000 participants
proposed in the United States (Precision Medicine Initiative [4]
and Million Veteran Program [5]) and China [6]. Such projects
produce massive amounts of data, straining computational
resources and requiring much faster methods than current
capabilities [7].

Comprehensive analysis of genomic differences requires de-
tection of a wide range of variants, including single nucleotide
variations (SNVs), indels (insertions and deletions <50 bases),
and larger copy number variants (CNVs) and structural vari-
ants (SVs), which include deletions, duplications, insertions, in-
versions, and translocations. Methods have been developed for
each type of variant; subsequently, a typicalWGS analysis work-
flow requires running multiple algorithms. A recent pipeline,
SpeedSeq [8], focused on reducing the computational resources
needed for WGS analysis, though it still employed 4 variant de-
tection algorithms. This can be wasteful of computational re-
sources due to repetitive input/output and analysis of the same
read sequences by several algorithms.

We present our method, Genome Rearrangement Omni-
Mapper (GROM), a novel comprehensive method of variant de-
tection, combining mismatch, split-read, read pair, and read
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Figure 1: Examples of variants detected by GROM. GROM detects a comprehen-
sive range of variants (SNVs, indels, deletions, insertions, inversions, and dupli-
cations). GROM also detects translocations spanning more than 1 chromosome
(not shown).

depthWGS evidence. GROM boasts lightning-speed runtimes an
order of magnitude faster than state-of-the-art variant detec-
tion pipelines. While drastically reducing computational time,
GROM detects SNVs, indels, SVs, and CNVs in a single algorithm
and provides superior overall variant detection compared with
commonly employed algorithms.

Algorithm

Differences in variant types (Fig. 1) have resulted in separate
algorithms designed for a limited range of variants. GROM
achieves fast, comprehensive variant analysis via a compact
workflow (Fig. 2), efficiently analyzing and gathering informa-
tion at each reference base in 1 pass through a BAM file. Base

information includes average mapping and base qualities, over-
lapping discordant pairs, unmapped mate reads, and split-
reads, and read depth. Discordant pairs are identified based on
abnormal read orientation or abnormal insert size. GROM de-
termines abnormal insert size based on a sample of 10 mil-
lion paired reads. Since insert size distributions tend to have
right skewness, GROM calculates the median insert size and
uses a rank-based method to determine abnormal insert size
thresholds corresponding to 3 standard deviations from theme-
dian under a normal distribution (after outliers more than 5×
the median insert size have been filtered). Each read with a
split mapping, indel, discordant mate, or unmapped mate con-
tributes breakpoint evidence to each potential reference base
breakpoint. For simple cases such as a 2-base deletion within
a read, there is 1 potential reference base start breakpoint and 1
potential reference base end breakpoint. Other cases may have
less precise breakpoints, such as a read from a discordant dele-
tion pair (abnormally large insert size). In this case, the exact
breakpoint is unknown and a potential breakpoint is recorded
for each reference base consistent with forming a concordant
pair in the sample, where a concordant pair corresponds to in-
sert sizes ≥imin and ≤imax, where imin and imax represent the mini-
mum and maximum insert size thresholds, respectively (Fig. 3).
Using the deletion example in Fig. 3, a breakpoint distant from
both reads would necessitate an insert size that is too large to
be consistent with a concordant pair (and the source DNA frag-
ment), and thuswould not be a potential breakpoint.When soft-
clipping (≥5 bases) or a split-read (each mapped split ≥20 bases)

Figure 2: GROM workflow. GROM simultaneously collects data for each reference base and identifies candidate breakpoints and SNVs in 1 pass through a BAM file.
After each chromosome, SNVs are filtered; start and end breakpoints are matched and filtered for each indel and SV type (excluding translocations), and CNVs are

identified (using read depth).

Figure 3: Example of SV evidence and potential breakpoints. GROM considers multiple input features at each reference base position to statistically determine the

likelihood of an SNV, indel, SV, or CNV. Inputs in this example (discordant pairs, split-reads, and unmappedmate reads) are primarily used for SV detection. Discordant
deletion pairs identified by insert size exceeding imax . For discordant pairs, potential start and end breakpoints are recorded for each reference base capable of forming
a concordant pair in the sample. Lr indicates read length.
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occurs in the potential breakpoint region, the reference base im-
mediately adjacent to the soft-clipping or split-read is recorded
as a potential breakpoint and other potential breakpoints are
recorded with half-weighting. This enables base resolution of
breakpoints while limiting a single aberrant read mapping from
misidentifying the true breakpoint.

Base by base of the reference, breakpoint evidence is stored
for each distinct indel or SV. In some cases, it is difficult to dis-
tinguish variants. For instance, 2 heterozygous deletions may
overlap and have similar start and end breakpoints and simi-
lar lengths. Thus, for each potential breakpoint, we cluster read
evidence by variant type and length. Such clustering can be a
computationally intensive task. We use the following efficient
method.

We define a cluster or breakpoint cluster as a specific refer-
ence base location with a set of reads supporting a breakpoint at
that location for a specific indel or SV type (deletion, duplication,
etc.) of a certain length. A read from a discordant pair provides
imprecise breakpoints and thus may be a member of multiple
clusters, 1 cluster per reference location. A read is placed into
an existing breakpoint cluster if the read and cluster support the
same indel or SV type and the variant lengths are close, i.e.,

|Lbc − Ldisc | ≤ (imax − imin + imedian − 2Lr )
(
1 + 1

xbc

)
, (1)

where Lbc is the mean indel or SV length for the breakpoint clus-
ter, Ldisc is the length of the indel or SV pertaining to the candi-
date read, Lr is the read length, xbc is the number of previously
recorded reads supporting the breakpoint cluster, and imax, imin,
and imedian are themaximum,minimum, andmedian concordant
pair lengths, respectively. If a candidate read does not fit in any
existing breakpoint clusters, a new cluster is created. If a can-
didate read fits in more than 1 breakpoint cluster at the same
reference position, the breakpoint cluster with the most reads
is chosen. This method is efficient and has the benefit of a read
being considered in multiple clusters.

Additionally, the number of previously recorded reads influ-
ences whether a read is added to a breakpoint cluster because
we expect our estimated (averaged) variant length to be closer to
the true SV length as supporting reads are incorporated into the
SV length average. For example, in Equation (1), let insert size
statistics be such that imax − imin + imedian − 2Lr = 500, let an SV
be a deletion of 1200 bases, and let our first discordant pair indi-
cate an SV of length Ldisc = 1700. One read is a poor estimate of
the true SV length. Thus, in our example, the second read’s SV
length may differ from the first read’s SV length by 1000 bases,
|1700 – Ldisc| ≤ 1000. However, as the number of supporting reads
increase, we expect the average SV length (Lbc) to converge to
the true SV length of 1200, at which point we will not add the
read as evidence unless its estimated SV length (Ldisc) is within
500 bases of the true SV length, |1200 – Ldisc| ≤ 500∗(1 + ε), where
ε � 1.

For each reference base, a mismapping probability, pbc, is cal-
culated for each possible SNV, indel, and SV. pbc is the binomial
probability of at least xbc reads supporting the breakpoint clus-
ter given nbc read depth and a mapping quality threshold m.
Thus, pbc indicates the likelihood that all of the supporting reads
are mismappings. Read depth includes all mapped reads, un-
sequenced segments between concordant pairs, and potential
breakpoints, and thus is an estimate of physical coverage. Phys-
ical coverage provides a more comprehensive representation of
genome coverage than read coverage. It also helps GROM de-
fine deletion and duplication breakpoints when soft-clipping is

unavailable as a decrease in coverage will affect breakpoint
probability estimates. The mapping quality threshold m indi-
cates the probability of a read mismapping, p = 10−m/10. Thus,
pbc is given as

pbc = Pr (X ≥ x) = 1 −
x−1∑
k = 0

(
n
k

)
pkqn−k, (2)

where q = 1- p. To reduce computational time, binomial proba-
bility tables are precomputed and stored as data files. GROMwill
compute additional probability data files if the default mapping
quality threshold (m = 20) is adjusted.

Potential indel and SV breakpoints are retained for further
analysis. After processing reads for a chromosome (or the whole
genome for translocations), GROM identifies indels and SVswith
matching start and end breakpoints. Matching SV breakpoints
must meet the following criteria:

|BS + L S − Be| ≤ c × (imax − imin) , (3)

|Be − Le − Bs| ≤ c × (imax − imin) , (4)

where c = 3/8, Bs and Be are the start and end breakpoints, re-
spectively, and Ls and Le are the average variant length of reads
supporting the start or end breakpoints, respectively. Match-
ing translocation breakpoints follow the same concept modi-
fied due to the start and end breakpoints occurring on different
chromosomes,

|MS − Be| ≤ c × (imax − imin) , (5)

|Me − Bs| ≤ c × (imax − imin) , (6)

where c = 3/8, Bs and Be are the start and end breakpoints,
respectively, and Ms and Me are the average mate read refer-
ence locations of reads supporting the start or end breakpoints,
respectively.

Mixed libraries/BAM files, e.g., with insert size distributions
appreciably different as to affect Equations (3–6) for matching
breakpoints, or libraries containing paired-end with mate-pair
data, require separate runs of GROM. Also, GROM can analyze
exome or RNA sequencing reads with detection limited to SNVs
and indels.

GROM will also work for libraries of non-paired reads us-
ing (in addition to finding SNVs and SVs within reads) our ear-
lier method for finding copy number variants (CNVs), GROM-RD
[9]. GROM-RD also performs well compared with the standard
tools such as CNVnator [10]. GROM and GROM-RD have the same
foundation of collecting information for each reference base, but
GROM-RD detects CNVs based on read depth, where low or high
coverage is evidence of a deletion or duplication, respectively.
This method is complementary to the core GROM approach de-
scribed above.

GROM is able to simultaneously perform duplicate filtering;
its duplicate filter is conceptually similar to Picard’s MarkDupli-
cates [11] and SAMtools rmdup [12], which have been shown to
have similar performance. Duplicate filtering may improve pre-
dictive accuracy relative to no filtering [13]. GROM provides an
option to include such filtering, if necessary. GROM filters read
pairs with identical orientation and external mapping coordi-
nates, retaining the pair with highest mapping quality. Unlike
SAMtools, GROM and Picard’s MarkDuplicates are able to filter
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duplicates with reads mapping to different chromosomes and
adjust external coordinates based on soft-clipping [13]. For the
sake of speed optimization and 1-pass analysis, soft-clipping is
not considered for a read’s mate.

Results

We compared GROM’s performance to 4 commonly used algo-
rithms, GATK HaplotypeCaller (GATK-HC) [14], SAMtools [12],
LUMPY [15], andManta [16] using 2 extensively validated human
WGS data sets, 51× NA12878 “platinum” genome [17] and 68×
HX1, a recent Chinese genome [18]. GATK-HC, considered a gold
standard in SNV/indel detection, has been shown to outperform
state-of-the-art algorithms [19], and SAMtools is present in
most pipelines. Because GROM integrates multiple lines of
evidence, we also specifically compared it with a similar SV tool
in the SpeedSeq pipeline (SpeedSeq, RRID:SCR 000469), LUMPY,
shown to outperform other algorithms [15], such as DELLY
(DELLY, RRID:SCR 004603) [20], Pindel (Pindel, RRID:SCR 000560)
[21], and GASVPro (GASVPro, RRID:SCR 005259) [22]. As part of a
10 000 genome sequencing study, presently the largest human
WGS variant study, a comparison of 7 SV detection algorithms
(BreakDancer [23], DELLY [20], GenomeSTRiP [24], LUMPY [15],
Manta [16], MatchClip2 [25], and Pindel [21]), showed that
Manta performed the best for SV detection [2]. We evaluated
SNV and indel detection with the Illumina Platinum pedigree-
validated benchmark sets [17]. GROM exhibited the highest SNV
and insertion indel sensitivity and precision and the highest
deletion indel sensitivity when compared with GATK-HC and
SAMtools for the NA12878 genome (Supplementary Table S1).
SVs are notoriously difficult to reliably detect [2]. Thus, we
extensively analyzed GROM’s performance using 4 benchmark
sets for NA12878: Database of Genomic Variants Gold Standard
(DGV-GS, deletions and duplications) [26], Mills Gold Standard
(Mills-GS; deletions, duplications, and insertions) [27], Genome
in a Bottle (GIAB, deletions and insertions) [28]; and Pendleton
PacBio (deletions and inversions) [29]. And we utilized 3 deletion
and duplication benchmark sets for HX1: DGV-GS, Shi PacBio
[18], and Shi IrysChip [18] (see the Methods section for a more
complete description of benchmark/validation sets). A sum-
mary of the deletion and duplication comparison with LUMPY
and Manta indicated superior deletion and duplication detec-
tion (Supplementary Table S2), with GROM being the highest in
10 of 14 deletion (Supplementary Table S3) and 7 of 10 duplica-
tion (Supplemental Table S4) metrics (sensitivity and precision)
across the benchmark data sets. Additionally, GROM was
highest in all inversion (Supplemental Table S5) and insertion
(Supplemental Table S6) metrics. GROM also detected 545 and
472 translocation events inNA12878 andHX1, respectively. How-
ever, these events were not included in the benchmarking due to
the lack of validated translocation data sets for either genome.

With dropping sequencing costs and growing data through-
put, it is imperative to reduce the computational costs of big
data analysis. GROM was 1.7× (NA12878) and 2.1× (HX1) faster
than the next fastest algorithm, Manta (Supplementary Table
S7). Since typical analyses involve running separate algorithms
for SNV/indel and SV detection, we compared a simple 24-
thread parallelized GROM version (allocating a thread per 1/24 of
the genome) with the fastest and best-performing 2-algorithm
workflow (GATK-HC/Manta). Strikingly, GROM ranged from 24×
(HX1, no duplicate filtering) to 72× (NA12878 with duplicate
filtering) faster than a combination of 22-thread GATK-HC/2-
thread Manta (Supplementary Table S8), drastically reducing
variant detection and duplicate filtering from 41% to <1% of a

Figure 4: Total WGS pipeline timing on NA12878. GROM reduces WGS analysis
time by drastically cutting run time for variant detection (green). It enables fur-
ther speedup in preprocessing (red) by simultaneously performing an optional

step, duplicate filtering. For visibility in the bar chart, GROM’s variant detection
run time was artificially increased 3-fold.

typical WGS analysis pipeline (Fig. 4). For 1000 genomes on a 24-
thread server, it may literally save years of computation.

Comparing the variants predicted by different tools, we iden-
tified 33 validated NA12878 SVs detected by GROM (but unre-
ported by LUMPY and Manta) that overlapped genes and ranked
themusing the number of independent validations (Supplemen-
tary Table S9). A variant was considered validated if it occurred
in at least 1 of the NA12878 benchmarks corresponding to the
SV type (DGV-GS, Mills-GS, GIAB, Pendleton PacBio for deletions;
DGV-SV, Mills-GS for duplications; Mills-GS, GIAB for insertions;
and Pendleton PacBio for inversions).

Among these variants, we noted 4 deletions with signifi-
cant health-related impact for NA12878: RHD, GSTM1, IFI16, and
UGT2B17 (Fig. 5). GROM predicted a deletion spanning the en-
tire RHD gene, 1 of 2 genes responsible for Rh blood group anti-
gens [30]. Decreased copy numbers or null genotype of GSTM1
have been associated with hepatotoxicity [31] and higher risk of
many cancers including lung cancer [32], gastric cancer [33], and
bladder cancer [34]. UGT2B17 copy number variation has been
associated with changes in bone mineral density and risk of os-
teoporosis [35]. IFI16 is involved in viral defense [36] and p53-
mediated apoptosis [37, 38].

Additionally, GROM provides an option to include duplicate
filtering. This leads tominor accuracy gains in a number of cases
(see example in Supplementary Table S10) and achieves addi-
tional speedup (Supplementary Table S8). Lastly, we have sum-
marized GROM’s relative performance in Table 1.

Methods

All timings were performed on an Intel Xeon E5–2690 v. 3 pro-
cessor, 2.60 GHz, with 24 threads and 128 GB RAM.

Rankings in Table 1 and Supplementary Table S2 were based
on average ranking across benchmarks (1-highest to 3-lowest).
Ranking for each benchmark was based on sensitivity and preci-
sion values in Supplementary Tables S3–S6. For instance, GROM
had the highest value for 10, second highest for 2, and lowest
for 2 of the 14 deletion sensitivity and precision benchmarks
(average benchmark rank, 1.4) Subsequently, the algorithms
were ranked after sorting by their average benchmark ranking,
resulting in deletion rankings of GROM, 1; LUMPY, 2; and Manta,
3 (as shown in Table 1).

Unlike most SV variant callers, GROM is able to analyze data
sets with single or paired reads. However, all SV tests included

https://scicrunch.org/resolver/RRID:SCR_000469
https://scicrunch.org/resolver/RRID:SCR_004603
https://scicrunch.org/resolver/RRID:SCR_000560
https://scicrunch.org/resolver/RRID:SCR_005259
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Figure 5: Example of genes overlapped by validated GROM-specific SVs. In the
example are 4 of 33 genes overlapped by validated SVs that were identified by

GROM and unreported by LUMPY andManta. Biological significance listed below
gene.

only paired reads since most of the other callers operate on
those.

While state-of-the-art detection methods for SNVs and in-
dels have been deemed adequate for the clinical setting, SV de-
tection is notably more difficult [2]. Additionally, synthetic data
sets have suffered from oversimplifications andmisleading con-
clusions [2]. Thus, we extensively analyzed GROM’s SV detection
performance using 4 validation benchmark sets for NA12878:

1. Database of Genomic Variants Gold Standard (deletions and
duplications) [26] in Supplementary Tables S2–S4;

2. Mills Gold Standard (deletions, duplications, and insertions)
[27] in Supplementary Tables S2–S5;

3. Genome in a Bottle (deletions and insertions) [28] in Supple-
mentary Tables S2, S3, S5; and

4. Pendleton PacBio (deletions and inversions) [29] in Supple-
mentary Tables S2, S3, S6.

Additionally, we utilized 3 deletion and duplication bench-
mark sets for HX1: DGV-GS (as above), Shi PacBio, and Shi
IrysChip [18] in Supplementary Tables S2–S4. For NA12878
DGV-GS benchmarks, all deletions and duplications with the
“NA12878” tag were extracted from the DGV-GS. The HX1 DGV-
GS benchmarks were created by extracting deletions and dupli-
cations with the “Asian” tag. To obtain a benchmark set of com-
mon Asian variants, deletions and duplications with fewer than
200 “Asian”-tagged samples were filtered.

To limit potential biases, we selected benchmarks cover-
ing a range of technologies, including Illumina, PacBio, and
IrysChip, and inclusive of multiple variant detection algorithms
(Illumina platinum pedigree-validated, DGV-GS, Mills-GS, and
GIAB). Indelswere defined as deletions and insertions<50 bases,
whereas SVs were ≥50 bases. To identify true positives, in-
del benchmarking required variant call breakpoints within 2
bases of the benchmark. Insertion SV calls within 10 bases
of the benchmark were considered true. All other SV bench-
marking required a 50% (10% for IrysChip due to low resolu-
tion) reciprocal overlap of a variant call and the benchmark.
Some false positives may potentially be true positives not rep-
resented in the benchmark. To limit false positives due to un-
represented calls, for each SV type (excluding insertions where
the length is often unknown), we ignored SV calls smaller or
larger than a particular benchmark’s shortest or longest SV,
respectively.

NA12878 and HX1 Illumina platinum fasta files weremapped
to human references hg19 and GRCh38, respectively, using
BWA mem [39], version 0.7.15, with the -M parameter to mark
shorter read splits as secondary. Duplicate filtering compar-
isons were performed using default parameters for SAMtools
[12], version 1.3.1, and Sambamba [40], version 0.6.4. GATK
version 3.6.0 HaplotypeCaller (GATK, RRID:SCR 001876) [14],
SAMtools (SAMTOOLS, RRID:SCR 002105) [12], LUMPY (LUMPY,
RRID:SCR 003253; version 0.2.11) [15], and Manta (version 1.0.1)
[16] were run with default parameters.

Conclusion

Our extensive performance analysis indicates that GROM
achieves superior variant detection and is significantly faster
than current state-of-the-art methods by incorporating compre-
hensive variant detection (SNV, indel, SV, CNV), duplicate filter-
ing, and multi-threading in 1 algorithm. GROM’s superior vari-
ant detection makes it valuable for WGS analysis projects of

Table 1: Comparison of GROM and leading algorithms’ variant detection accuracy and run time

GATK-HC SAMtools LUMPY Manta GROM

SNV 2 3 - - 1
Indel Deletion 1 3 - - 1

Insertion 2 3 - - 1
SV Deletion - - 2 3 1

Duplication - - 2 2 1
Insertion - - - 2 1
Inversion - - 3 2 1

Run time 4 5 3 2 1

Performance based on sensitivity and precision rankings (1 = highest, 3 = lowest) averaged across benchmarks for NA12878 and HX1. Bold text indicates the
best-performing algorithm in each category. A dash sign indicates that an algorithm does not detect variant type.

https://scicrunch.org/resolver/RRID:SCR_001876
https://scicrunch.org/resolver/RRID:SCR_002105
https://scicrunch.org/resolver/RRID:SCR_003253
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all sizes, and its “lightning”-fast speed is especially critical for
keeping pace with increasingly higher sequencing throughput
and larger data projects.

Availability of data and materials

NA12878 raw short-read Illumina platinum WGS data, as well
as pedigree-validated SNVs and indels, supporting the results
in this study are available from the Database of Genotypes and
Phenotypes under accession number phs001224.v1.p1 [41]. HX1
raw short-read Illumina WGS data supporting the results in
this study are available from the National Center for Biotech-
nology Information (NCBI) Sequence Read Archive (SRA), study
PRJNA301527 [42]. DGV-GS-validated SVs supporting the results
in this study are available from the Database of Genomic Vari-
ants website [43]. Mills-GS-validated SVs supporting the results
in this study are available as Supplementary Table S5 in the
associated paper [27]. GIAB validation data supporting the re-
sults in this study are available from NCBI at separate locations
for deletions (v. 3.3.1) [44] and insertions [45]. Pendleton PacBio–
validated deletions and inversions supporting the results in this
study are available as Supplementary Tables S5 and S6, respec-
tively, in the associated paper [29]. Shi PacBio– and Shi IrysChip–
validated SVs supporting the results in this study are available
from the corresponding author’s website [46]. Human reference
genomes hg19 andGRCh38 are available from the Broad Institute
[47] and UCSC [48], respectively. Snapshots of the GROM project
code are available via the Open Science Framework [49] and the
GigaScience database, GigaDB [50].

Availability and requirements

Project name: GROM
Project home page: https://osf.io/6rtws/
Code DOI: 10.17605/OSF.IO/6RTWS
Operating system: Linux
Programming language: C
Other requirements: see manual in the distribution
License: GNU General Public License v2

Additional files

Additional file 1: Supplementary tables. Benchmark results
(Supplementary Tables S1–S6), run time comparisons (Supple-
mentary Tables S7–S8), GROM-specific SVs overlapping genes
(Supplementary Table S9), and duplicate read filtering compari-
son (Supplementary Table S10).
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CNV: copy number variant; DGV-GS: Database of Genomic
Variants–Gold Standard; GATK-HC: GATKHaplotypeCaller; GIAB:
Genome In A Bottle; GROM: Genome Rearrangement Om-
niMapper; Mills-GS: Mills–Gold Standard; SNV: single nu-
cleotide variant; SV: structural variant; WGS: whole genome
sequencing.
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